1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Balboa-Barreiro V, Pertega-Diaz S,
Garcia-Rodriguez T, González-Martín C, Pardeiro-Pértega R,
Yáñez-González-Dopeso L and Seoane-Pillado T: Colorectal cancer
recurrence and its impact on survival after curative surgery: An
analysis based on multistate models. Dig Liver Dis. 56:1229–1236.
2024. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zare-Bandamiri M, Fararouei M, Zohourinia
S, Daneshi N and Dianatinasab M: Risk factors predicting colorectal
cancer recurrence following initial treatment: A 5-year cohort
study. Asian Pac J Cancer Prev. 18:2465–2470. 2017.PubMed/NCBI
|
4
|
Ogunwobi OO, Mahmood F and Akingboye A:
Biomarkers in colorectal cancer: Current research and future
prospects. Int J Mol Sci. 21:53112020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Guraya SY: Pattern, stage, and time of
recurrent colorectal cancer after curative surgery. Clin Colorectal
Cancer. 18:e223–e228. 2019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Jia S, Zhang R, Li Z and Li J: Clinical
and biological significance of circulating tumor cells, circulating
tumor DNA, and exosomes as biomarkers in colorectal cancer.
Oncotarget. 8:55632–55645. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hao YX, Fu Q, Guo YY, Ye M, Zhao HX, Wang
Q, Peng XM, Li QW, Wang RL and Xiao WH: Effectiveness of
circulating tumor DNA for detection of KRAS gene mutations in
colorectal cancer patients: A meta-analysis. Onco Targets Ther.
10:945–953. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Tiedje V, Ting S, Herold T, Synoracki S,
Latteyer S, Moeller LC, Zwanziger D, Stuschke M, Fuehrer D and
Schmid KW: NGS based identification of mutational hotspots for
targeted therapy in anaplastic thyroid carcinoma. Oncotarget.
8:42613–42620. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Huang Q, Li S, Cheng P, Deng M, He X, Wang
Z, Yang CH, Zhao XY and Huang J: High expression of anti-apoptotic
protein Bcl-2 is a good prognostic factor in colorectal cancer:
Result of a meta-analysis. World J Gastroenterol. 23:5018–5033.
2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Su P, Yang Y, Wang G, Chen X and Ju Y:
Curcumin attenuates resistance to irinotecan via induction of
apoptosis of cancer stem cells in chemoresistant colon cancer
cells. Int J Oncol. 53:1343–1353. 2018.PubMed/NCBI
|
11
|
Sun D, Tao W, Zhang F, Shen W, Tan J, Li
L, Meng Q, Chen Y, Yang Y and Cheng H: Trifolirhizin induces
autophagy-dependent apoptosis in colon cancer via AMPK/mTOR
signaling. Signal Transduct Target Ther. 5:1742020. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhou Y, Zhang X, Zhang J, Fang J, Ge Z and
Li X: LRG1 promotes proliferation and inhibits apoptosis in
colorectal cancer cells via RUNX1 activation. PLoS One.
12:e01751222017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Miura K, Fujibuchi W, Ishida K, Naitoh T,
Ogawa H, Ando T, Yazaki N, Watanabe K, Haneda S, Shibata C and
Sasaki I: Inhibitor of apoptosis protein family as diagnostic
markers and therapeutic targets of colorectal cancer. Surg Today.
41:175–182. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Cetraro P, Plaza-Diaz J, MacKenzie A and
Abadia-Molina F: A review of the current impact of inhibitors of
apoptosis proteins and their repression in cancer. Cancers (Basel).
14:16712022. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hector S and Prehn JH: Apoptosis signaling
proteins as prognostic biomarkers in colorectal cancer: A review.
Biochim Biophys Acta. 1795:117–129. 2009.PubMed/NCBI
|
16
|
Cheung CHA, Chang YC, Lin TY, Cheng SM and
Leung E: Anti-apoptotic proteins in the autophagic world: An update
on functions of XIAP, Survivin, and BRUCE. J Biomed Sci. 27:312020.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Cao C, Mu Y, Hallahan DE and Lu B: XIAP
and survivin as therapeutic targets for radiation sensitization in
preclinical models of lung cancer. Oncogene. 23:7047–7052. 2004.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Devi Daimary U, Girisa S, Parama D, Verma
E, Kumar A and Kunnumakkara AB: Embelin: A novel XIAP inhibitor for
the prevention and treatment of chronic diseases. J Biochem Mol
Toxicol. 36:e229502022. View Article : Google Scholar : PubMed/NCBI
|
19
|
Devi GR: XIAP as target for therapeutic
apoptosis in prostate cancer. Drug News Perspect. 17:127–134. 2004.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Tong QS, Zheng LD, Wang L, Zeng FQ, Chen
FM, Dong JH and Lu GC: Downregulation of XIAP expression induces
apoptosis and enhances chemotherapeutic sensitivity in human
gastric cancer cells. Cancer Gene Ther. 12:509–514. 2005.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Huang Q and Liu F: Ceramide analogue 5cc
overcomes TRAIL-resistance by enhancing JNK activation and
repressing XIAP expression in metastatic colon cancer cells.
Chemotherapy. 68:210–218. 2023. View Article : Google Scholar : PubMed/NCBI
|
22
|
Seo HG, Kim HB, Yoon JY, Kweon TH, Park
YS, Kang J, Jung J, Son S, Yi EC, Lee TH, et al: Mutual regulation
between OGT and XIAP to control colon cancer cell growth and
invasion. Cell Death Dis. 11:8152020. View Article : Google Scholar : PubMed/NCBI
|
23
|
LaCasse EC: Pulling the plug on a cancer
cell by eliminating XIAP with AEG35156. Cancer Lett. 332:215–224.
2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Oost TK, Sun C, Armstrong RC, Al-Assaad
AS, Betz SF, Deckwerth TL, Ding H, Elmore SW, Meadows RP,
Olejniczak ET, et al: Discovery of potent antagonists of the
antiapoptotic protein XIAP for the treatment of cancer. J Med Chem.
47:4417–4426. 2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Opo F, Rahman MM, Ahammad F, Ahmed I,
Bhuiyan MA and Asiri AM: Structure based pharmacophore modeling,
virtual screening, molecular docking and ADMET approaches for
identification of natural anti-cancer agents targeting XIAP
protein. Sci Rep. 11:40492021. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hosseinahli N, Aghapour M, Duijf PHG and
Baradaran B: Treating cancer with microRNA replacement therapy: A
literature review. J Cell Physiol. 233:5574–5588. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Alves Dos Santos K, Clemente Dos Santos
IC, Santos Silva C, Gomes Ribeiro H, de Farias Domingos I and
Nogueira Silbiger V: Circulating exosomal mirnas as biomarkers for
the diagnosis and prognosis of colorectal cancer. Int J Mol Sci.
22:3462020. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yuan D, Li K, Zhu K, Yan R and Dang C:
Plasma miR-183 predicts recurrence and prognosis in patients with
colorectal cancer. Cancer Biol Ther. 16:268–275. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Moridikia A, Mirzaei H, Sahebkar A and
Salimian J: MicroRNAs: Potential candidates for diagnosis and
treatment of colorectal cancer. J Cell Physiol. 233:901–913. 2018.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang V and Wu W: MicroRNA-based
therapeutics for cancer. BioDrugs. 23:15–23. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Mollaei H, Safaralizadeh R and Rostami Z:
MicroRNA replacement therapy in cancer. J Cell Physiol.
234:12369–12384. 2019. View Article : Google Scholar : PubMed/NCBI
|
32
|
He X, Cheng G, Xiao F, Zhang L, Jin G,
Zhao X, Liu Y, Liang J, Li Y, Liu Z, et al: miR-4477b gene as a
novel pathogenic mutation occurring during the transformation of
colorectal adenoma into colorectal cancer. J Gastrointest Oncol.
12:69–78. 2021. View Article : Google Scholar : PubMed/NCBI
|
33
|
Li H and Durbin R: Fast and accurate
long-read alignment with Burrows-Wheeler transform. Bioinformatics.
26:589–595. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
McKenna A, Hanna M, Banks E, Sivachenko A,
Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly
M and DePristo MA: The Genome Analysis Toolkit: A MapReduce
framework for analyzing next-generation DNA sequencing data. Genome
Res. 20:1297–1303. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Razali NN, Raja Ali RA, Muhammad Nawawi
KN, Yahaya A and Mokhtar NM: Targeted sequencing of
Cytokine-Induced PI3K-Related genes in ulcerative colitis,
colorectal cancer and Colitis-Associated cancer. Int J Mol Sci.
23:114722022. View Article : Google Scholar : PubMed/NCBI
|
36
|
Degalez F, Jehl F, Muret K, Bernard M,
Lecerf F, Lagoutte L, Désert C, Pitel F, Klopp C and Lagarrigue S:
Watch Out for a Second SNP: Focus on Multi-Nucleotide variants in
coding regions and rescued Stop-Gained. Front Genet. 12:6592872021.
View Article : Google Scholar : PubMed/NCBI
|
37
|
McLaren W, Gil L, Hunt SE, Riat HS,
Ritchie GR, Thormann A, Flicek P and Cunningham F: The ensembl
variant effect predictor. Genome Biol. 17:1222016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Maran MIJ and Davis GD: Benefits of
merging paired-end reads before pre-processing environmental
metagenomics data. Mar Genomics. 61:1009142022. View Article : Google Scholar : PubMed/NCBI
|
39
|
Xiang G, Wen X, Wang H, Chen K and Liu H:
Expression of X-linked inhibitor of apoptosis protein in human
colorectal cancer and its correlation with prognosis. J Surg Oncol.
100:708–712. 2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Lin ZH, Lu MK, Lo HC, Chang CC, Tseng AJ,
Chao CH and Lin TY: ZnF3, a sulfated polysaccharide from Antrodia
cinnamomea, inhibits lung cancer cells via induction of apoptosis
and activation of M1-like macrophage-induced cell death. Int J Biol
Macromol. 238:1241442023. View Article : Google Scholar : PubMed/NCBI
|
41
|
Huang CJ, Pu CM, Su SY, Lo SL, Lee CH and
Yen YH: Improvement of wound healing by capsaicin through
suppression of the inflammatory response and amelioration of the
repair process. Mol Med Rep. 28:1552023. View Article : Google Scholar : PubMed/NCBI
|
42
|
Huang CJ, Yang SH, Lee CL, Cheng YC, Tai
SY and Chien CC: Ribosomal protein S27-like in colorectal cancer: A
candidate for predicting prognoses. PLoS One. 8:e670432013.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Sherry ST, Ward MH, Kholodov M, Baker J,
Phan L, Smigielski EM and Sirotkin K: dbSNP: The NCBI database of
genetic variation. Nucleic Acids Res. 29:308–311. 2001. View Article : Google Scholar : PubMed/NCBI
|
44
|
Hanifeh M and Ataei F: XIAP as a
multifaceted molecule in cellular signaling. Apoptosis. 27:441–453.
2022. View Article : Google Scholar : PubMed/NCBI
|
45
|
Jiang R, Su G, Chen X, Chen S, Li Q, Xie B
and Zhao Y: Esculetin inhibits endometrial cancer proliferation and
promotes apoptosis via hnRNPA1 to downregulate BCLXL and XIAP.
Cancer Lett. 521:308–321. 2021. View Article : Google Scholar : PubMed/NCBI
|
46
|
Liu F, Dai Z, Cheng Q, Xu L, Huang L, Liu
Z, Li X, Wang N, Wang G, Wang L and Wang Z: LncRNA-targeting
bio-scaffold mediates triple immune effects for postoperative
colorectal cancer immunotherapy. Biomaterials. 284:1214852022.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Hossain MS, Karuniawati H, Jairoun AA,
Urbi Z, Ooi J, John A, Lim YC, Kibria KMK, Mohiuddin AKM, Ming LC,
et al: Colorectal cancer: A review of carcinogenesis, global
epidemiology, current challenges, risk factors, preventive and
treatment strategies. Cancers (Basel). 14:17322022. View Article : Google Scholar : PubMed/NCBI
|
48
|
Ganz A, Gandhi SR, Schafer J, Singh T,
Puleo E, Mullett G and Wilson C: PERCEPT: indoor navigation for the
blind and visually impaired. Annu Int Conf IEEE Eng Med Biol Soc.
2011:856–859. 2011.PubMed/NCBI
|
49
|
Wolpin BM, Wei EK, Ng K, Meyerhardt JA,
Chan JA, Selhub J, Giovannucci EL and Fuchs CS: Prediagnostic
plasma folate and the risk of death in patients with colorectal
cancer. J Clin Oncol. 26:3222–3228. 2008. View Article : Google Scholar : PubMed/NCBI
|
50
|
Lygirou V, Fasoulakis K, Stroggilos R,
Makridakis M, Latosinska A, Frantzi M, Katafigiotis I, Alamanis C,
Stravodimos KG, Constantinides CA, et al: Proteomic analysis of
prostate cancer FFPE samples reveals markers of disease progression
and aggressiveness. Cancers (Basel). 14:37652022. View Article : Google Scholar : PubMed/NCBI
|
51
|
Walter RF, Mairinger FD, Wohlschlaeger J,
Worm K, Ting S, Vollbrecht C, Schmid KW and Hager T: FFPE tissue as
a feasible source for gene expression analysis-a comparison of
three reference genes and one tumor marker. Pathol Res Pract.
209:784–789. 2013. View Article : Google Scholar : PubMed/NCBI
|
52
|
Lu C, Hong M, Chen B, Liu K, Lv Y, Zhou X
and Su G: MicroRNA-215 regulates the apoptosis of HCT116 colon
cancer cells by Inhibiting X-Linked inhibitor of apoptosis protein.
Cancer Biother Radiopharm. 36:728–736. 2021.PubMed/NCBI
|
53
|
Holcik M, Gibson H and Korneluk RG: XIAP:
apoptotic brake and promising therapeutic target. Apoptosis.
6:253–261. 2001. View Article : Google Scholar : PubMed/NCBI
|
54
|
Devi GR, Finetti P, Morse MA, Lee S, de
Nonneville A, Van Laere S, Troy J, Geradts J, McCall S and Bertucci
F: Expression of X-Linked inhibitor of apoptosis protein (XIAP) in
breast cancer is associated with shorter survival and resistance to
chemotherapy. Cancers (Basel). 13:28072021. View Article : Google Scholar : PubMed/NCBI
|
55
|
Saha G, Sarkar S, Mohanta PS, Kumar K,
Chakrabarti S, Basu M and Ghosh MK: USP7 targets XIAP for cancer
progression: Establishment of a p53-independent therapeutic avenue
for glioma. Oncogene. 41:5061–5075. 2022. View Article : Google Scholar : PubMed/NCBI
|
56
|
Zhang Y, Huang F, Luo Q, Wu X, Liu Z, Chen
H and Huang Y: Inhibition of XIAP increases carboplatin sensitivity
in ovarian cancer. Onco Targets Ther. 11:8751–8759. 2018.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Delbue D, Mendonca BS, Robaina MC, Lemos
LGT, Lucena PI, Viola JPB, Magalhães LM, Crocamo S, Oliveira CAB,
Teixeira FR, et al: Expression of nuclear XIAP associates with cell
growth and drug resistance and confers poor prognosis in breast
cancer. Biochim Biophys Acta Mol Cell Res. 1867:1187612020.
View Article : Google Scholar : PubMed/NCBI
|
58
|
Gao X, Zhang L, Wei Y, Yang Y, Li J, Wu H
and Yin Y: Prognostic value of XIAP level in patients with various
cancers: A systematic review and Meta-Analysis. J Cancer.
10:1528–1537. 2019. View Article : Google Scholar : PubMed/NCBI
|
59
|
Liu XG, Xu J, Li F, Li MJ and Hu T:
Down-regulation of miR-377 contributes to cisplatin resistance by
targeting XIAP in osteosarcoma. Eur Rev Med Pharmacol Sci.
22:1249–1257. 2018.PubMed/NCBI
|
60
|
Jost PJ and Vucic D: Regulation of cell
death and immunity by XIAP. Cold Spring Harb Perspect Biol.
12:a0364262020. View Article : Google Scholar : PubMed/NCBI
|
61
|
Vucic D: XIAP at the crossroads of cell
death and inflammation. Oncotarget. 9:27319–27320. 2018. View Article : Google Scholar : PubMed/NCBI
|
62
|
Prabhu NB, Vinay CM, Satyamoorthy K and
Rai PS: Pharmacogenomics deliberations of 2-deoxy-d-glucose in the
treatment of COVID-19 disease: An in silico approach 3. Biotech.
12:2872022.
|
63
|
Noguchi T, Toiyama Y, Kitajima T, Imaoka
H, Hiro J, Saigusa S, Tanaka K, Inoue Y, Mohri Y, Toden S and
Kusunoki M: miRNA-503 promotes tumor progression and is associated
with early recurrence and poor prognosis in human colorectal
cancer. Oncology. 90:221–231. 2016. View Article : Google Scholar : PubMed/NCBI
|
64
|
Kou CH, Zhou T, Han XL, Zhuang HJ and Qian
HX: Downregulation of mir-23b in plasma is associated with poor
prognosis in patients with colorectal cancer. Oncol Lett.
12:4838–4844. 2016. View Article : Google Scholar : PubMed/NCBI
|
65
|
Bonfrate L, Altomare DF, Di Lena M,
Travaglio E, Rotelli MT, De Luca A and Portincasa P: MicroRNA in
colorectal cancer: New perspectives for diagnosis, prognosis and
treatment. J Gastrointestin Liver Dis. 22:311–320. 2013.PubMed/NCBI
|
66
|
Yin Z, Zhou Y, Ma T, Chen S, Shi N, Zou Y,
Hou B and Zhang C: Down-regulated lncRNA SBF2-AS1 in M2
macrophage-derived exosomes elevates miR-122-5p to restrict XIAP,
thereby limiting pancreatic cancer development. J Cell Mol Med.
24:5028–5038. 2020. View Article : Google Scholar : PubMed/NCBI
|
67
|
Yang L, Zhang L, Lu L and Wang Y:
miR-214-3p regulates Multi-Drug resistance and apoptosis in
retinoblastoma cells by targeting ABCB1 and XIAP. Onco Targets
Ther. 13:803–811. 2020. View Article : Google Scholar : PubMed/NCBI
|
68
|
Cheng Q, Zhang X, Xu X and Lu X: MiR-618
inhibits anaplastic thyroid cancer by repressing XIAP in one ATC
cell line. Ann Endocrinol (Paris). 75:187–193. 2014. View Article : Google Scholar : PubMed/NCBI
|
69
|
Chhichholiya Y, Suryan AK, Suman P, Munshi
A and Singh S: SNPs in miRNAs and target sequences: Role in cancer
and diabetes. Front Genet. 12:7935232021. View Article : Google Scholar : PubMed/NCBI
|
70
|
Preskill C and Weidhaas JB: SNPs in
microRNA binding sites as prognostic and predictive cancer
biomarkers. Crit Rev Oncog. 18:327–340. 2013. View Article : Google Scholar : PubMed/NCBI
|
71
|
Wang S, Liu N, Tang Q, Sheng H, Long S and
Wu W: MicroRNA-24 in cancer: A double side medal with opposite
properties. Front Oncol. 10:5537142020. View Article : Google Scholar : PubMed/NCBI
|
72
|
Kohler C: Histochemical localization of
caldesmon isoforms in colon adenocarcinoma and lymph node
metastases. Virchows Arch. 459:81–89. 2011. View Article : Google Scholar : PubMed/NCBI
|
73
|
Oh J, Oh JM and Cho SY: METTL3-mediated
downregulation of splicing factor SRSF11 is associated with
carcinogenesis and poor survival of cancer patients. Eur Rev Med
Pharmacol Sci. 27:2561–2570. 2023.PubMed/NCBI
|
74
|
Pan YJ, Huo FC, Kang MJ, Liu BW, Wu MD and
Pei DS: Alternative splicing of HSPA12A pre-RNA by SRSF11
contributes to metastasis potential of colorectal cancer. Clin
Transl Med. 12:e11132022. View Article : Google Scholar : PubMed/NCBI
|
75
|
Wang J, Wu HF, Shen W, Xu DY, Ruan TY, Tao
GQ and Lu PH: SRPK2 promotes the growth and migration of the colon
cancer cells. Gene. 586:41–47. 2016. View Article : Google Scholar : PubMed/NCBI
|
76
|
Menon A, Abd-Aziz N, Khalid K, Poh CL and
Naidu R: miRNA: A promising therapeutic target in cancer. Int J Mol
Sci. 23:115022022. View Article : Google Scholar : PubMed/NCBI
|
77
|
Alnuaimi AR, Nair VA, Malhab LJB,
Abu-Gharbieh E, Ranade AV, Pintus G, Hamad M, Busch H, Kirfel J,
Hamoudi R and Abdel-Rahman WM: Emerging role of caldesmon in
cancer: A potential biomarker for colorectal cancer and other
cancers. World J Gastrointest Oncol. 14:1637–1653. 2022. View Article : Google Scholar : PubMed/NCBI
|
78
|
Qiao L, Dai Y, Gu Q, Chan KW, Zou B, Ma J,
Wang J, Lan HY and Wong BC: Down-regulation of X-linked inhibitor
of apoptosis synergistically enhanced peroxisome
proliferator-activated receptor gamma ligand-induced growth
inhibition in colon cancer. Mol Cancer Ther. 7:2203–2211. 2008.
View Article : Google Scholar : PubMed/NCBI
|
79
|
Mukherjee S, Shelar B and Krishna S:
Versatile role of miR-24/24-1*/24-2* expression in cancer and other
human diseases. Am J Transl Res. 14:20–54. 2022.PubMed/NCBI
|
80
|
Zhang H, Guo J, Mao L, Li Q, Guo M, Mu T,
Zhang Q and Bi X: Up-regulation of miR-24-1-5p is involved in the
chemoprevention of colorectal cancer by black raspberry
anthocyanins. Br J Nutr. 122:518–526. 2019. View Article : Google Scholar : PubMed/NCBI
|
81
|
Vucic D and Fairbrother WJ: The inhibitor
of apoptosis proteins as therapeutic targets in cancer. Clin Cancer
Res. 13:5995–6000. 2007. View Article : Google Scholar : PubMed/NCBI
|
82
|
Nagaraju GP, Bramhachari PV, Raghu G and
El-Rayes BF: Hypoxia inducible factor-1α: Its role in colorectal
carcinogenesis and metastasis. Cancer Lett. 366:11–18. 2015.
View Article : Google Scholar : PubMed/NCBI
|
83
|
Belardinilli F, Capalbo C, Malapelle U,
Pisapia P, Raimondo D, Milanetti E, Yasaman M, Liccardi C, Paci P,
Sibilio P, et al: Clinical multigene panel sequencing identifies
distinct mutational association patterns in metastatic colorectal
cancer. Front Oncol. 10:5602020. View Article : Google Scholar : PubMed/NCBI
|
84
|
Li HD and Liang C: Multigene panel
predicting survival of patients with colon cancer. J Cancer.
10:6792–6800. 2019. View Article : Google Scholar : PubMed/NCBI
|