Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
December-2024 Volume 28 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2024 Volume 28 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Biomarkers to predict the benefits of immune‑checkpoint blockade‑based therapy in patients with malignant peritoneal mesothelioma (Review)

  • Authors:
    • Chunhong Wang
    • Yan Zhao
    • Wanru Liang
  • View Affiliations / Copyright

    Affiliations: Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 600
    |
    Published online on: October 9, 2024
       https://doi.org/10.3892/ol.2024.14733
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Malignant peritoneal mesothelioma (MPeM) is a type of rare and highly lethal tumor. Immune checkpoint blockade (ICB)‑based therapy has shown encouraging clinical activity for MPeM. However, no definitive biomarkers have been identified for predicting which patients with MPeM will benefit from ICB‑based therapy. At present, there are several novel potential biomarkers proposed for predicting the response to ICB‑based therapy, and biomarkers available in MPeM cells and in the tumor microenvironment have been identified with the potential to predict the efficacy of ICB‑based therapy in MPeM. According to the molecular characteristics of MPeM itself, the feasibility of biomarkers in practice, and the body of available evidence, we hypothesize that the following five types of biomarkers can be used to predict the response of ICB‑based therapy in patients with MPeM: Tertiary lymphoid structures, immune checkpoints and their ligands, fusion gene neoantigen burden, BRCA1‑associated protein‑1 haploinsufficiency and transcriptome‑based biomarkers. The present review discusses the value and limitations of each type of biomarker, and potential solutions to address the limitations are proposed. The aim of the present review is to provide a background for future studies on ICB‑based therapy for MPeM.
View Figures

Figure 1

View References

1 

Kusamura S, Kepenekian V, Villeneuve L, Lurvink RJ, Govaerts K, De Hingh IHJT, Moran BJ, Van der Speeten K, Deraco M and Glehen O; PSOGI: Peritoneal mesothelioma: PSOGI/EURACAN clinical practice guidelines for diagnosis, treatment and follow-up. Eur J Surg Oncol. 47:36–59. 2021. View Article : Google Scholar

2 

Greenbaum A and Alexander HR: Peritoneal mesothelioma. Transl Lung Cancer Res. 9 (Suppl 1):S120–S132. 2020. View Article : Google Scholar

3 

Rui R, Zhou L and He S: Cancer immunotherapies: Advances and bottlenecks. Front Immunol. 14:12124762023. View Article : Google Scholar

4 

Scherpereel A, Mazieres J, Greillier L, Lantuejoul S, Dô P, Bylicki O, Monnet I, Corre R, Audigier-Valette C, Locatelli-Sanchez M, et al: Nivolumab or nivolumab plus ipilimumab in patients with relapsed malignant pleural mesothelioma (IFCT-1501 MAPS2): A multicentre, open-label, randomised, non-comparative, phase 2 trial. Lancet Oncol. 20:239–253. 2019. View Article : Google Scholar

5 

Disselhorst MJ, Quispel-Janssen J, Lalezari F, Monkhorst K, de Vries JF, van der Noort V, Harms E, Burgers S and Baas P: Ipilimumab and nivolumab in the treatment of recurrent malignant pleural mesothelioma (INITIATE): Results of a prospective, single-arm, phase 2 trial. Lancet Respir Med. 7:260–270. 2019. View Article : Google Scholar

6 

Baas P, Scherpereel A, Nowak AK, Fujimoto N, Peters S, Tsao AS, Mansfield AS, Popat S, Jahan T, Antonia S, et al: First-line nivolumab plus ipilimumab in unresectable malignant pleural mesothelioma (CheckMate 743): A multicentre, randomised, open-label, phase 3 trial. Lancet. 397:375–386. 2021. View Article : Google Scholar

7 

Raghav K, Liu S, Overman M, Morani A, Willette A, Fournier K and Varadhachary G: Clinical efficacy of immune checkpoint inhibitors in patients with advanced malignant peritoneal mesothelioma. JAMA Netw Open. 4:e21199342021. View Article : Google Scholar

8 

Raghav K, Liu S, Overman MJ, Willett AF, Knafl M, Fu SC, Malpica A, Prasad S, Royal RE, Scally CP, et al: Efficacy, safety, and biomarker analysis of combined PD-L1 (Atezolizumab) and VEGF (Bevacizumab) blockade in advanced malignant peritoneal mesothelioma. Cancer Discov. 11:2738–2747. 2021. View Article : Google Scholar

9 

Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, et al: Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 515:563–567. 2014. View Article : Google Scholar

10 

Marabelle A, Fakih M, Lopez J, Shah M, Shapira-Frommer R, Nakagawa K, Chung HC, Kindler HL, Lopez-Martin JA, Miller WH Jr, et al: Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 21:1353–1365. 2020. View Article : Google Scholar

11 

Sepulveda AR, Hamilton SR, Allegra CJ, Grody W, Cushman-Vokoun AM, Funkhouser WK, Kopetz SE, Lieu C, Lindor NM, Minsky BD, et al: Molecular biomarkers for the evaluation of colorectal cancer: Guideline From the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology. J Clin Oncol. 35:1453–1486. 2017. View Article : Google Scholar

12 

Lu S, Stein JE, Rimm DL, Wang DW, Bell JM, Johnson DB, Sosman JA, Schalper KA, Anders RA, Wang H, et al: Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: A systematic review and meta-analysis. JAMA Oncol. 5:1195–1204. 2019. View Article : Google Scholar

13 

André T, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, Smith D, Garcia-Carbonero R, Benavides M, Gibbs P, et al: Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med. 383:2207–2218. 2020. View Article : Google Scholar

14 

Bonneville R, Krook MA, Kautto EA, Miya J, Wing MR, Chen HZ, Reeser JW, Yu L and Roychowdhury S: Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol. 2017.PO.17.00073. 2017. View Article : Google Scholar

15 

Cedrés S, Ponce-Aix S, Iranzo P, Callejo A, Pardo N, Navarro A, Martinez-Marti A, Gómez-Abecia S, Zucchiatti AC, Sansano I, et al: Analysis of mismatch repair (MMR) proteins expression in a series of malignant pleural mesothelioma (MPM) patients. Clin Transl Oncol. 22:1390–1398. 2020. View Article : Google Scholar

16 

Zhang Z, Liu S, Zhang B, Qiao L and Zhang Y and Zhang Y: T cell dysfunction and exhaustion in cancer. Front Cell Dev Biol. 8:172020. View Article : Google Scholar

17 

Ott PA, Bang YJ, Piha-Paul SA, Razak ARA, Bennouna J, Soria JC, Rugo HS, Cohen RB, O'Neil BH, Mehnert JM, et al: T-Cell-Inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. J Clin Oncol. 37:318–327. 2019. View Article : Google Scholar

18 

Hiltbrunner S, Mannarino L, Kirschner MB, Opitz I, Rigutto A, Laure A, Lia M, Nozza P, Maconi A, Marchini S, et al: Tumor immune microenvironment and genetic alterations in mesothelioma. Front Oncol. 11:6600392021. View Article : Google Scholar

19 

Bentham R, Litchfield K, Watkins TBK, Lim EL, Rosenthal R, Martínez-Ruiz C, Hiley CT, Bakir MA, Salgado R, Moore DA, et al: Using DNA sequencing data to quantify T cell fraction and therapy response. Nature. 597:555–560. 2021. View Article : Google Scholar

20 

Petitprez F, de Reyniès A, Keung EZ, Chen TW, Sun CM, Calderaro J, Jeng YM, Hsiao LP, Lacroix L, Bougoüin A, et al: B cells are associated with survival and immunotherapy response in sarcoma. Nature. 577:556–560. 2020. View Article : Google Scholar

21 

Khanal S, Wieland A and Gunderson AJ: Mechanisms of tertiary lymphoid structure formation: Cooperation between inflammation and antigenicity. Front Immunol. 14:12676542023. View Article : Google Scholar

22 

Trüb M and Zippelius A: Tertiary lymphoid structures as a predictive biomarker of response to cancer immunotherapies. Front Immunol. 12:6745652021. View Article : Google Scholar

23 

Jacquelot N, Tellier J, Nutt SL and Belz GT: Tertiary lymphoid structures and B lymphocytes in cancer prognosis and response to immunotherapies. Oncoimmunology. 10:19005082021. View Article : Google Scholar

24 

Schumacher TN and Thommen DS: Tertiary lymphoid structures in cancer. Science. 375:eabf94192022. View Article : Google Scholar

25 

Schweiger T, Berghoff AS, Glogner C, Glueck O, Rajky O, Traxler D, Birner P, Preusser M, Klepetko W and Hoetzenecker K: Tumor-infiltrating lymphocyte subsets and tertiary lymphoid structures in pulmonary metastases from colorectal cancer. Clin Exp Metastasis. 33:727–739. 2016. View Article : Google Scholar

26 

Siliņa K, Soltermann A, Attar FM, Casanova R, Uckeley ZM, Thut H, Wandres M, Isajevs S, Cheng P, Curioni-Fontecedro A, et al: Germinal centers determine the prognostic relevance of tertiary lymphoid structures and are impaired by corticosteroids in lung squamous cell carcinoma. Cancer Res. 78:1308–1320. 2018. View Article : Google Scholar

27 

Calderaro J, Petitprez F, Becht E, Laurent A, Hirsch TZ, Rousseau B, Luciani A, Amaddeo G, Derman J, Charpy C, et al: Intra-tumoral tertiary lymphoid structures are associated with a low risk of early recurrence of hepatocellular carcinoma. J Hepatol. 70:58–65. 2019. View Article : Google Scholar

28 

Sofopoulos M, Fortis SP, Vaxevanis CK, Sotiriadou NN, Arnogiannaki N, Ardavanis A, Vlachodimitropoulos D, Perez SA and Baxevanis CN: The prognostic significance of peritumoral tertiary lymphoid structures in breast cancer. Cancer Immunol Immunother. 68:1733–1745. 2019. View Article : Google Scholar

29 

He W, Zhang D, Liu H, Chen T, Xie J, Peng L, Zheng X, Xu B, Li Q and Jiang J: The high level of tertiary lymphoid structure is correlated with superior survival in patients with advanced gastric cancer. Front Oncol. 10:9802020. View Article : Google Scholar

30 

Lin Q, Tao P, Wang J, Ma L, Jiang Q, Li J, Zhang G, Liu J, Zhang Y, Hou Y, et al: Tumor-associated tertiary lymphoid structure predicts postoperative outcomes in patients with primary gastrointestinal stromal tumors. Oncoimmunology. 9:17473392020. View Article : Google Scholar

31 

Magara T, Nakamura M, Nojiri Y, Yoshimitsu M, Kano S, Matsubara A, Kato H and Morita A: Tertiary lymphoid structures correlate with better prognosis in cutaneous angiosarcoma. J Dermatol Sci. 103:57–59. 2021. View Article : Google Scholar

32 

Baker PM, Clement PB and Young RH: Malignant peritoneal mesothelioma in women: A study of 75 cases with emphasis on their morphologic spectrum and differential diagnosis. Am J Clin Pathol. 123:724–737. 2005. View Article : Google Scholar

33 

Benzerdjeb N, Dartigues P, Kepenekian V, Valmary-Degano S, Mery E, Avérous G, Chevallier A, Laverriere MH, Villa I, Harou O, et al: Tertiary lymphoid structures in epithelioid malignant peritoneal mesothelioma are associated with neoadjuvant chemotherapy, but not with prognosis. Virchows Arch. 479:765–772. 2021. View Article : Google Scholar

34 

Gao J, Navai N, Alhalabi O, Siefker-Radtke A, Campbell MT, Tidwell RS, Guo CC, Kamat AM, Matin SF, Araujo JC, et al: Neoadjuvant PD-L1 plus CTLA-4 blockade in patients with cisplatin-ineligible operable high-risk urothelial carcinoma. Nat Med. 26:1845–1851. 2020. View Article : Google Scholar

35 

Helmink BA, Reddy SM, Gao J, Zhang S, Basar R, Thakur R, Yizhak K, Sade-Feldman M, Blando J, Han G, et al: B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 577:549–555. 2020. View Article : Google Scholar

36 

Cabrita R, Lauss M, Sanna A, Donia M, Skaarup Larsen M, Mitra S, Johansson I, Phung B, Harbst K, Vallon-Christersson J, et al: Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature. 577:561–565. 2020. View Article : Google Scholar

37 

Lee HS, Jang HJ, Ramineni M, Wang DY, Ramos D, Choi JM, Splawn T, Espinoza M, Almarez M, Hosey L, et al: A phase II window of opportunity study of neoadjuvant PD-L1 versus PD-L1 plus CTLA-4 blockade for patients with malignant pleural mesothelioma. Clin Cancer Res. 29:548–559. 2023. View Article : Google Scholar

38 

Chapel DB, Stewart R, Furtado LV, Husain AN, Krausz T and Deftereos G: Tumor PD-L1 expression in malignant pleural and peritoneal mesothelioma by Dako PD-L1 22C3 pharmDx and Dako PD-L1 28-8 pharmDx assays. Hum Pathol. 87:11–17. 2019. View Article : Google Scholar

39 

Gazivoda VP, Kangas-Dick AW, Greenbaum AA, Roshal J, Chen C, Moore DF, Langan RC, Kennedy TJ, Minerowicz C and Alexander HR: Expression of PD-L1 in patients with malignant peritoneal mesothelioma: A pilot study. J Surg Res. 277:131–137. 2022. View Article : Google Scholar

40 

Pezzuto F, Vimercati L, Fortarezza F, Marzullo A, Pennella A, Cavone D, Punzi A, Caporusso C, d'Amati A, Lettini T and Serio G: Evaluation of prognostic histological parameters proposed for pleural mesothelioma in diffuse malignant peritoneal mesothelioma. A short report. Diagn Pathol. 16:642021. View Article : Google Scholar

41 

Desai A, Karrison T, Rose B, Tan Y, Hill B, Pemberton E, Straus C, Seiwert T and Kindler HL: OA08.03 phase II Trial of pembrolizumab (NCT02399371) in previously-treated malignant mesothelioma (MM): Final analysis. J Thorac Oncol. 13:S3392018. View Article : Google Scholar

42 

Zong L, Mo S, Yu S, Zhou Y, Zhang M, Chen J and Xiang Y: Expression of the immune checkpoint VISTA in breast cancer. Cancer Immunol Immunother. 69:1437–1446. 2020. View Article : Google Scholar

43 

Zong L, Zhou Y, Zhang M, Chen J and Xiang Y: VISTA expression is associated with a favorable prognosis in patients with high-grade serous ovarian cancer. Cancer Immunol Immunother. 69:33–42. 2020. View Article : Google Scholar

44 

Xie S, Huang J, Qiao Q, Zang W, Hong S, Tan H, Dong C, Yang Z and Ni L: Expression of the inhibitory B7 family molecule VISTA in human colorectal carcinoma tumors. Cancer Immunol Immunother. 67:1685–1694. 2018. View Article : Google Scholar

45 

Noelle RJ, Lines JL, Lewis LD, Martell RE, Guillaudeux T, Lee SW, Mahoney KM, Vesely MD, Boyd-Kirkup J, Nambiar DK and Scott AM: Clinical and research updates on the VISTA immune checkpoint: Immuno-oncology themes and highlights. Front Oncol. 13:12250812023. View Article : Google Scholar

46 

Hmeljak J, Sanchez-Vega F, Hoadley KA, Shih J, Stewart C, Heiman D, Tarpey P, Danilova L, Drill E, Gibb EA, et al: Integrative molecular characterization of malignant pleural mesothelioma. Cancer Discov. 8:1548–1565. 2018. View Article : Google Scholar

47 

Alcala N, Mangiante L, Le-Stang N, Gustafson CE, Boyault S, Damiola F, Alcala K, Brevet M, Thivolet-Bejui F, Blanc-Fournier C, et al: Redefining malignant pleural mesothelioma types as a continuum uncovers immune-vascular interactions. EBioMedicine. 48:191–202. 2019. View Article : Google Scholar

48 

Muller S, Victoria Lai W, Adusumilli PS, Desmeules P, Frosina D, Jungbluth A, Ni A, Eguchi T, Travis WD, Ladanyi M, et al: V-domain Ig-containing suppressor of T-cell activation (VISTA), a potentially targetable immune checkpoint molecule, is highly expressed in epithelioid malignant pleural mesothelioma. Mod Pathol. 33:303–311. 2020. View Article : Google Scholar

49 

Chung YS, Kim M, Cha YJ, Kim KA and Shim HS: Expression of V-set immunoregulatory receptor in malignant mesothelioma. Mod Pathol. 33:263–270. 2020. View Article : Google Scholar

50 

Offin M, Yang SR, Egger J, Jayakumaran G, Spencer RS, Lopardo J, Nash GM, Cercek A, Travis WD, Kris MG, et al: Molecular characterization of peritoneal mesotheliomas. J Thorac Oncol. 17:455–460. 2022. View Article : Google Scholar

51 

Gao J, Ward JF, Pettaway CA, Shi LZ, Subudhi SK, Vence LM, Zhao H, Chen J, Chen H, Efstathiou E, et al: VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med. 23:551–555. 2017. View Article : Google Scholar

52 

Kakavand H, Jackett LA, Menzies AM, Gide TN, Carlino MS, Saw RPM, Thompson JF, Wilmott JS, Long GV and Scolyer RA: Negative immune checkpoint regulation by VISTA: A mechanism of acquired resistance to anti-PD-1 therapy in metastatic melanoma patients. Mod Pathol. 30:1666–1676. 2017. View Article : Google Scholar

53 

ElTanbouly MA, Zhao Y, Nowak E, Li J, Schaafsma E, Le Mercier I, Ceeraz S, Lines JL, Peng C, Carriere C, et al: VISTA is a checkpoint regulator for naïve T cell quiescence and peripheral tolerance. Science. 367:eaay05242020. View Article : Google Scholar

54 

Shekari N, Shanehbandi D, Kazemi T, Zarredar H, Baradaran B and Jalali SA: VISTA and its ligands: The next generation of promising therapeutic targets in immunotherapy. Cancer Cell Int. 23:2652023. View Article : Google Scholar

55 

ElTanbouly MA, Schaafsma E, Noelle RJ and Lines JL: VISTA: Coming of age as a multi-lineage immune checkpoint. Clin Exp Immunol. 200:120–130. 2020. View Article : Google Scholar

56 

ElTanbouly MA, Croteau W, Noelle RJ and Lines JL: VISTA: A novel immunotherapy target for normalizing innate and adaptive immunity. Semin Immunol. 42:1013082019. View Article : Google Scholar

57 

Liu J, Yuan Y, Chen W, Putra J, Suriawinata AA, Schenk AD, Miller HE, Guleria I, Barth RJ, Huang YH, et al: Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses. Proc Natl Acad Sci USA. 112:6682–6687. 2015. View Article : Google Scholar

58 

Hosseinkhani N, Hemmat N, Baghbani E, Baghbanzadeh A, Kazemi T, Mokhtarzadeh A, Jafarlou M, Amin Doustvandi M and Baradaran B: Dual silencing of tumor-intrinsic VISTA and CTLA-4 stimulates T-cell mediated immune responses and inhibits MCF7 breast cancer development. Gene. 896:1480432024. View Article : Google Scholar

59 

Lei CJ, Wang B, Long ZX, Ren H, Pan QY and Li Y: Investigation of PD-1H in DEN-induced mouse liver cancer model. Eur Rev Med Pharmacol Sci. 22:5194–5199. 2018.

60 

Iadonato S, Ovechkina Y, Lustig K, Cross J, Eyde N, Frazier E, Kabi N, Katz C, Lance R, Peckham D, et al: A highly potent anti-VISTA antibody KVA12123-a new immune checkpoint inhibitor and a promising therapy against poorly immunogenic tumors. Front Immunol. 14:13116582023. View Article : Google Scholar

61 

Sasikumar PG, Sudarshan NS, Adurthi S, Ramachandra RK, Samiulla DS, Lakshminarasimhan A, Ramanathan A, Chandrasekhar T, Dhudashiya AA, Talapati SR, et al: PD-1 derived CA-170 is an oral immune checkpoint inhibitor that exhibits preclinical anti-tumor efficacy. Commun Biol. 4:6992021. View Article : Google Scholar

62 

Curis Inc: A Study of CA-170 (Oral PD-L1, PD-L2 and VISTA Checkpoint Antagonist) in Patients With Advanced Tumors and Lymphomas. 2016. https://ClinicalTrials.gov/show/NCT02812875

63 

Tawbi HA, Schadendorf D, Lipson EJ, Ascierto PA, Matamala L, Castillo Gutiérrez E, Rutkowski P, Gogas HJ, Lao CD, De Menezes JJ, et al: Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N Engl J Med. 386:24–34. 2022. View Article : Google Scholar

64 

Shrestha R, Nabavi N, Lin YY, Mo F, Anderson S, Volik S, Adomat HH, Lin D, Xue H, Dong X, et al: BAP1 haploinsufficiency predicts a distinct immunogenic class of malignant peritoneal mesothelioma. Genome Med. 11:82019. View Article : Google Scholar

65 

Osmanbeyoglu HU, Palmer D, Sagan A, Sementino E, Becich MJ and Testa JR: Isolated BAP1 genomic alteration in malignant pleural mesothelioma predicts distinct immunogenicity with implications for immunotherapeutic response. Cancers (Basel). 14:56262022. View Article : Google Scholar

66 

Zelba H, Bedke J, Hennenlotter J, Mostböck S, Zettl M, Zichner T, Chandran A, Stenzl A, Rammensee HG and Gouttefangeas C: PD-1 and LAG-3 dominate checkpoint receptor-mediated T-cell inhibition in renal cell carcinoma. Cancer Immunol Res. 7:1891–1899. 2019. View Article : Google Scholar

67 

Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, Bettini ML, Gravano DM, Vogel P, Liu CL, et al: Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 72:917–927. 2012. View Article : Google Scholar

68 

Marcq E, Van Audenaerde JRM, De Waele J, Merlin C, Pauwels P, van Meerbeeck JP, Fisher SA and Smits ELJ: The Search for an Interesting Partner to Combine with PD-L1 Blockade in Mesothelioma: Focus on TIM-3 and LAG-3. Cancers (Basel). 13:2822021. View Article : Google Scholar

69 

Aggarwal V, Workman CJ and Vignali DAA: LAG-3 as the third checkpoint inhibitor. Nat Immunol. 24:1415–1422. 2023. View Article : Google Scholar

70 

Feng L, Gao X, Jiao Z, Wang Z and Min F: BTK inhibitor combined with anti-PD-1 monoclonal antibody for the treatment of CD20-negative primary central nervous system lymphoma: A case report. Oncol Lett. 25:482022. View Article : Google Scholar

71 

Maccaroni E, Lunerti V, Agostinelli V, Giampieri R, Zepponi L, Pagliacci A and Berardi R: New insights into hormonal therapies in uterine sarcomas. Cancers (Basel). 14:9212022. View Article : Google Scholar

72 

Pan C, Yu T, Han L, Hao D, Yang M, Li L, Chu L and Ni Q: Surufatinib combined camrelizumab as a valuable third-line rescue therapy for a patient with extensive-stage for small-cell lung cancer: A case report and literature review. Anticancer Drugs. 35:271–276. 2024. View Article : Google Scholar

73 

Peri A, Salomon N, Wolf Y, Kreiter S, Diken M and Samuels Y: The landscape of T cell antigens for cancer immunotherapy. Nat Cancer. 4:937–954. 2023. View Article : Google Scholar

74 

McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, Jamal-Hanjani M, Wilson GA, Birkbak NJ, Hiley CT, et al: Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 351:1463–1469. 2016. View Article : Google Scholar

75 

Anzar I, Malone B, Samarakoon P, Vardaxis I, Simovski B, Fontenelle H, Meza-Zepeda LA, Stratford R, Keung EZ, Burgess M, et al: The interplay between neoantigens and immune cells in sarcomas treated with checkpoint inhibition. Front Immunol. 14:12264452023. View Article : Google Scholar

76 

Nguyen KB, Roerden M, Copeland CJ, Backlund CM, Klop-Packel NG, Remba T, Kim B, Singh NK, Birnbaum ME, Irvine DJ and Spranger S: Decoupled neoantigen cross-presentation by dendritic cells limits anti-tumor immunity against tumors with heterogeneous neoantigen expression. Elife. 12:e852632023. View Article : Google Scholar

77 

Shi Y, Jing B and Xi R: Comprehensive analysis of neoantigens derived from structural variation across whole genomes from 2528 tumors. Genome Biol. 24:1692023. View Article : Google Scholar

78 

Wei Z, Zhou C, Zhang Z, Guan M, Zhang C, Liu Z and Liu Q: The landscape of tumor fusion neoantigens: A pan-cancer analysis. iScience. 21:249–260. 2019. View Article : Google Scholar

79 

Yang W, Lee KW, Srivastava RM, Kuo F, Krishna C, Chowell D, Makarov V, Hoen D, Dalin MG, Wexler L, et al: Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat Med. 25:767–775. 2019. View Article : Google Scholar

80 

Cortés-Ciriano I, Lee JJ, Xi R, Jain D, Jung YL, Yang L, Gordenin D, Klimczak LJ, Zhang CZ, Pellman DS, et al: Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat Genet. 52:331–341. 2020. View Article : Google Scholar

81 

Oey H, Daniels M, Relan V, Chee TM, Davidson MR, Yang IA, Ellis JJ, Fong KM, Krause L and Bowman RV: Whole-genome sequencing of human malignant mesothelioma tumours and cell lines. Carcinogenesis. 40:724–734. 2019. View Article : Google Scholar

82 

Bueno R, Stawiski EW, Goldstein LD, Durinck S, De Rienzo A, Modrusan Z, Gnad F, Nguyen TT, Jaiswal BS, Chirieac LR, et al: Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet. 48:407–416. 2016. View Article : Google Scholar

83 

Mansfield AS, Peikert T, Smadbeck JB, Udell JBM, Garcia-Rivera E, Elsbernd L, Erskine CL, Van Keulen VP, Kosari F, Murphy SJ, et al: Neoantigenic potential of complex chromosomal rearrangements in mesothelioma. J Thorac Oncol. 14:276–287. 2019. View Article : Google Scholar

84 

Yoshikawa Y, Emi M, Hashimoto-Tamaoki T, Ohmuraya M, Sato A, Tsujimura T, Hasegawa S, Nakano T, Nasu M, Pastorino S, et al: High-density array-CGH with targeted NGS unmask multiple noncontiguous minute deletions on chromosome 3p21 in mesothelioma. Proc Natl Acad Sci USA. 113:13432–13437. 2016. View Article : Google Scholar

85 

Relan V, Morrison L, Parsonson K, Clarke BE, Duhig EE, Windsor MN, Matar KS, Naidoo R, Passmore L, McCaul E, et al: Phenotypes and karyotypes of human malignant mesothelioma cell lines. PLoS One. 8:e581322013. View Article : Google Scholar

86 

Panagopoulos I, Andersen K, Brunetti M, Gorunova L, Davidson B, Lund-Iversen M, Micci F and Heim S: Genetic pathways in peritoneal mesothelioma tumorigenesis. Cancer Genomics Proteomics. 20:363–374. 2023. View Article : Google Scholar

87 

Verdegaal EM, de Miranda NF, Visser M, Harryvan T, van Buuren MM, Andersen RS, Hadrup SR, van der Minne CE, Schotte R, Spits H, et al: Neoantigen landscape dynamics during human melanoma-T cell interactions. Nature. 536:91–95. 2016. View Article : Google Scholar

88 

Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, Barron DA, Zehir A, Jordan EJ, Omuro A, et al: Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 51:202–206. 2019. View Article : Google Scholar

89 

Ren Y, Cherukuri Y, Wickland DP, Sarangi V, Tian S, Carter JM, Mansfield AS, Block MS, Sherman ME, Knutson KL, et al: HLA class-I and class-II restricted neoantigen loads predict overall survival in breast cancer. Oncoimmunology. 9:17449472020. View Article : Google Scholar

90 

Zou XL, Li XB, Ke H, Zhang GY, Tang Q, Yuan J, Zhou CJ, Zhang JL, Zhang R and Chen WY: Prognostic value of neoantigen load in immune checkpoint inhibitor therapy for cancer. Front Immunol. 12:6890762021. View Article : Google Scholar

91 

Kosari F, Disselhorst M, Yin J, Peikert T, Udell J, Johnson S, Smadbeck J, Murphy S, McCune A, Karagouga G, et al: Tumor junction burden and antigen presentation as predictors of survival in mesothelioma treated with immune checkpoint inhibitors. J Thorac Oncol. 17:446–454. 2022. View Article : Google Scholar

92 

Lee HS, Jang HJ, Choi JM, Zhang J, de Rosen VL, Wheeler TM, Lee JS, Tu T, Jindra PT, Kerman RH, et al: Comprehensive immunoproteogenomic analyses of malignant pleural mesothelioma. JCI Insight. 3:e985752018. View Article : Google Scholar

93 

Tandon RT, Jimenez-Cortez Y, Taub R and Borczuk AC: Immunohistochemistry in peritoneal mesothelioma: A single-center experience of 244 cases. Arch Pathol Lab Med. 142:236–242. 2018. View Article : Google Scholar

94 

Leblay N, Leprêtre F, Le Stang N, Gautier-Stein A, Villeneuve L, Isaac S, Maillet D, Galateau-Sallé F, Villenet C, Sebda S, et al: BAP1 is altered by copy number loss, mutation, and/or loss of protein expression in more than 70% of malignant peritoneal mesotheliomas. J Thorac Oncol. 12:724–733. 2017. View Article : Google Scholar

95 

Gezgin G, Dogrusöz M, van Essen TH, Kroes WGM, Luyten GPM, van der Velden PA, Walter V, Verdijk RM, van Hall T, van der Burg SH and Jager MJ: Genetic evolution of uveal melanoma guides the development of an inflammatory microenvironment. Cancer Immunol Immunother. 66:903–912. 2017. View Article : Google Scholar

96 

Lai J, Zhou Z, Tang XJ, Gao ZB, Zhou J and Chen SQ: A tumor-specific neo-antigen caused by a frameshift mutation in BAP1 is a potential personalized biomarker in malignant peritoneal mesothelioma. Int J Mol Sci. 17:7392016. View Article : Google Scholar

97 

Rizzolo A, Ah-Lan KC, Nu TNT and Alcindor T: Response to Ipilimumab and nivolumab in a patient with malignant peritoneal mesothelioma. Clin Colorectal Cancer. 21:371–374. 2022. View Article : Google Scholar

98 

Liu K, Huang Y, Xu Y, Wang G, Cai S, Zhang X and Shi T: BAP1-related signature predicts benefits from immunotherapy over VEGFR/mTOR inhibitors in ccRCC: A retrospective analysis of JAVELIN Renal 101 and checkmate-009/010/025 trials. Cancer Immunol Immunother. 72:2557–2572. 2023. View Article : Google Scholar

99 

Topalian SL, Taube JM, Anders RA and Pardoll DM: Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 16:275–287. 2016. View Article : Google Scholar

100 

Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, Albright A, Cheng JD, Kang SP, Shankaran V, et al: IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 127:2930–2940. 2017. View Article : Google Scholar

101 

Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, Li Z, Traugh N, Bu X, Li B, et al: Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 24:1550–1558. 2018. View Article : Google Scholar

102 

Cui C, Xu C, Yang W, Chi Z, Sheng X, Si L, Xie Y, Yu J, Wang S, Yu R, et al: Ratio of the interferon-γ signature to the immunosuppression signature predicts anti-PD-1 therapy response in melanoma. NPJ Genom Med. 6:72021. View Article : Google Scholar

103 

Lee JS, Nair NU, Dinstag G, Chapman L, Chung Y, Wang K, Sinha S, Cha H, Kim D, Schperberg AV, et al: Synthetic lethality-mediated precision oncology via the tumor transcriptome. Cell. 184:2487–2502.e13. 2021. View Article : Google Scholar

104 

Nair NU, Jiang Q, Wei JS, Misra VA, Morrow B, Kesserwan C, Hermida LC, Lee JS, Mian I, Zhang J, et al: Genomic and transcriptomic analyses identify a prognostic gene signature and predict response to therapy in pleural and peritoneal mesothelioma. Cell Rep Med. 4:1009382023. View Article : Google Scholar

105 

Dinstag G, Shulman ED, Elis E, Ben-Zvi DS, Tirosh O, Maimon E, Meilijson I, Elalouf E, Temkin B, Vitkovsky P, et al: Clinically oriented prediction of patient response to targeted and immunotherapies from the tumor transcriptome. Med. 4:15–30.e8. 2023. View Article : Google Scholar

106 

Hoang DT, Dinstag G, Shulman ED, Hermida LC, Ben-Zvi DS, Elis E, Caley K, Sammut SJ, Sinha S, Sinha N, et al: A deep-learning framework to predict cancer treatment response from histopathology images through imputed transcriptomics. Nat Cancer. Jul 3–2024.(Epub ahead of print). View Article : Google Scholar

107 

Panagi M, Mpekris F, Voutouri C, Hadjigeorgiou AG, Symeonidou C, Porfyriou E, Michael C, Stylianou A, Martin JD, Cabral H, et al: Stabilizing tumor-resident mast cells restores T-Cell infiltration and sensitizes sarcomas to PD-L1 inhibition. Clin Cancer Res. 30:2582–2597. 2024. View Article : Google Scholar

108 

Sautès-Fridman C, Lawand M, Giraldo NA, Kaplon H, Germain C, Fridman WH and Dieu-Nosjean MC: Tertiary lymphoid structures in cancers: Prognostic value, regulation, and manipulation for therapeutic intervention. Front Immunol. 7:4072016. View Article : Google Scholar

109 

Yang ZR, Su YD, Ma R, Wu HL and Li Y: Efficacy and adverse events of apatinib salvage treatment for refractory diffuse malignant peritoneal mesothelioma: A pilot study. Front Oncol. 12:8118002022. View Article : Google Scholar

110 

Zauderer MG, Alley EW, Bendell J, Capelletto E, Bauer TM, Callies S, Szpurka AM, Kang S, Willard MD, Wacheck V and Varghese AM: Phase 1 cohort expansion study of LY3023414, a dual PI3K/mTOR inhibitor, in patients with advanced mesothelioma. Invest New Drugs. 39:1081–1088. 2021. View Article : Google Scholar

111 

Yang H, Hall SRR, Sun B, Zhao L, Gao Y, Schmid RA, Tan ST, Peng RW and Yao F: NF2 and Canonical Hippo-YAP pathway define distinct tumor subsets characterized by different immune deficiency and treatment implications in human pleural mesothelioma. Cancers (Basel). 13:15612021. View Article : Google Scholar

112 

Fennell DA, King A, Mohammed S, Branson A, Brookes C, Darlison L, Dawson AG, Gaba A, Hutka M, Morgan B, et al: Rucaparib in patients with BAP1-deficient or BRCA1-deficient mesothelioma (MiST1): An open-label, single-arm, phase 2a clinical trial. Lancet Respir Med. 9:593–600. 2021. View Article : Google Scholar

113 

Hung YP, Dong F, Watkins JC, Nardi V, Bueno R, Dal Cin P, Godleski JJ, Crum CP and Chirieac LR: Identification of ALK rearrangements in malignant peritoneal mesothelioma. JAMA Oncol. 4:235–238. 2018. View Article : Google Scholar

114 

Li Petri G, Pecoraro C, Randazzo O, Zoppi S, Cascioferro SM, Parrino B, Carbone D, El Hassouni B, Cavazzoni A, Zaffaroni N, et al: New Imidazo[2,1-b][1,3,4]Thiadiazole derivatives inhibit FAK phosphorylation and potentiate the antiproliferative effects of gemcitabine through modulation of the human equilibrative nucleoside transporter-1 in peritoneal mesothelioma. Anticancer Res. 40:4913–4919. 2020. View Article : Google Scholar

115 

Quispel-Janssen JM, Badhai J, Schunselaar L, Price S, Brammeld J, Iorio F, Kolluri K, Garnett M, Berns A, Baas P, et al: Comprehensive pharmacogenomic profiling of malignant pleural mesothelioma identifies a subgroup sensitive to FGFR inhibition. Clin Cancer Res. 24:84–94. 2018. View Article : Google Scholar

116 

Bensaid D, Blondy T, Deshayes S, Dehame V, Bertrand P, Grégoire M, Errami M and Blanquart C: Assessment of new HDAC inhibitors for immunotherapy of malignant pleural mesothelioma. Clin Epigenetics. 10:792018. View Article : Google Scholar

117 

McGale JP, Chen DL, Trebeschi S, Farwell MD, Wu AM, Cutler CS, Schwartz LH and Dercle L: Artificial intelligence in immunotherapy PET/SPECT imaging. Eur Radiol. Feb 15–2024.(Epub ahead of print). View Article : Google Scholar

118 

Addala V, Newell F, Pearson JV, Redwood A, Robinson BW, Creaney J and Waddell N: Computational immunogenomic approaches to predict response to cancer immunotherapies. Nat Rev Clin Oncol. 21:28–46. 2024. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang C, Zhao Y and Liang W: Biomarkers to predict the benefits of immune‑checkpoint blockade‑based therapy in patients with malignant peritoneal mesothelioma (Review). Oncol Lett 28: 600, 2024.
APA
Wang, C., Zhao, Y., & Liang, W. (2024). Biomarkers to predict the benefits of immune‑checkpoint blockade‑based therapy in patients with malignant peritoneal mesothelioma (Review). Oncology Letters, 28, 600. https://doi.org/10.3892/ol.2024.14733
MLA
Wang, C., Zhao, Y., Liang, W."Biomarkers to predict the benefits of immune‑checkpoint blockade‑based therapy in patients with malignant peritoneal mesothelioma (Review)". Oncology Letters 28.6 (2024): 600.
Chicago
Wang, C., Zhao, Y., Liang, W."Biomarkers to predict the benefits of immune‑checkpoint blockade‑based therapy in patients with malignant peritoneal mesothelioma (Review)". Oncology Letters 28, no. 6 (2024): 600. https://doi.org/10.3892/ol.2024.14733
Copy and paste a formatted citation
x
Spandidos Publications style
Wang C, Zhao Y and Liang W: Biomarkers to predict the benefits of immune‑checkpoint blockade‑based therapy in patients with malignant peritoneal mesothelioma (Review). Oncol Lett 28: 600, 2024.
APA
Wang, C., Zhao, Y., & Liang, W. (2024). Biomarkers to predict the benefits of immune‑checkpoint blockade‑based therapy in patients with malignant peritoneal mesothelioma (Review). Oncology Letters, 28, 600. https://doi.org/10.3892/ol.2024.14733
MLA
Wang, C., Zhao, Y., Liang, W."Biomarkers to predict the benefits of immune‑checkpoint blockade‑based therapy in patients with malignant peritoneal mesothelioma (Review)". Oncology Letters 28.6 (2024): 600.
Chicago
Wang, C., Zhao, Y., Liang, W."Biomarkers to predict the benefits of immune‑checkpoint blockade‑based therapy in patients with malignant peritoneal mesothelioma (Review)". Oncology Letters 28, no. 6 (2024): 600. https://doi.org/10.3892/ol.2024.14733
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team