Biomarkers to predict the benefits of immune‑checkpoint blockade‑based therapy in patients with malignant peritoneal mesothelioma (Review)
- Authors:
- Chunhong Wang
- Yan Zhao
- Wanru Liang
-
Affiliations: Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China - Published online on: October 9, 2024 https://doi.org/10.3892/ol.2024.14733
- Article Number: 600
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Kusamura S, Kepenekian V, Villeneuve L, Lurvink RJ, Govaerts K, De Hingh IHJT, Moran BJ, Van der Speeten K, Deraco M and Glehen O; PSOGI: Peritoneal mesothelioma: PSOGI/EURACAN clinical practice guidelines for diagnosis, treatment and follow-up. Eur J Surg Oncol. 47:36–59. 2021. View Article : Google Scholar | |
Greenbaum A and Alexander HR: Peritoneal mesothelioma. Transl Lung Cancer Res. 9 (Suppl 1):S120–S132. 2020. View Article : Google Scholar | |
Rui R, Zhou L and He S: Cancer immunotherapies: Advances and bottlenecks. Front Immunol. 14:12124762023. View Article : Google Scholar | |
Scherpereel A, Mazieres J, Greillier L, Lantuejoul S, Dô P, Bylicki O, Monnet I, Corre R, Audigier-Valette C, Locatelli-Sanchez M, et al: Nivolumab or nivolumab plus ipilimumab in patients with relapsed malignant pleural mesothelioma (IFCT-1501 MAPS2): A multicentre, open-label, randomised, non-comparative, phase 2 trial. Lancet Oncol. 20:239–253. 2019. View Article : Google Scholar | |
Disselhorst MJ, Quispel-Janssen J, Lalezari F, Monkhorst K, de Vries JF, van der Noort V, Harms E, Burgers S and Baas P: Ipilimumab and nivolumab in the treatment of recurrent malignant pleural mesothelioma (INITIATE): Results of a prospective, single-arm, phase 2 trial. Lancet Respir Med. 7:260–270. 2019. View Article : Google Scholar | |
Baas P, Scherpereel A, Nowak AK, Fujimoto N, Peters S, Tsao AS, Mansfield AS, Popat S, Jahan T, Antonia S, et al: First-line nivolumab plus ipilimumab in unresectable malignant pleural mesothelioma (CheckMate 743): A multicentre, randomised, open-label, phase 3 trial. Lancet. 397:375–386. 2021. View Article : Google Scholar | |
Raghav K, Liu S, Overman M, Morani A, Willette A, Fournier K and Varadhachary G: Clinical efficacy of immune checkpoint inhibitors in patients with advanced malignant peritoneal mesothelioma. JAMA Netw Open. 4:e21199342021. View Article : Google Scholar | |
Raghav K, Liu S, Overman MJ, Willett AF, Knafl M, Fu SC, Malpica A, Prasad S, Royal RE, Scally CP, et al: Efficacy, safety, and biomarker analysis of combined PD-L1 (Atezolizumab) and VEGF (Bevacizumab) blockade in advanced malignant peritoneal mesothelioma. Cancer Discov. 11:2738–2747. 2021. View Article : Google Scholar | |
Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, et al: Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 515:563–567. 2014. View Article : Google Scholar | |
Marabelle A, Fakih M, Lopez J, Shah M, Shapira-Frommer R, Nakagawa K, Chung HC, Kindler HL, Lopez-Martin JA, Miller WH Jr, et al: Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 21:1353–1365. 2020. View Article : Google Scholar | |
Sepulveda AR, Hamilton SR, Allegra CJ, Grody W, Cushman-Vokoun AM, Funkhouser WK, Kopetz SE, Lieu C, Lindor NM, Minsky BD, et al: Molecular biomarkers for the evaluation of colorectal cancer: Guideline From the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology. J Clin Oncol. 35:1453–1486. 2017. View Article : Google Scholar | |
Lu S, Stein JE, Rimm DL, Wang DW, Bell JM, Johnson DB, Sosman JA, Schalper KA, Anders RA, Wang H, et al: Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: A systematic review and meta-analysis. JAMA Oncol. 5:1195–1204. 2019. View Article : Google Scholar | |
André T, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, Smith D, Garcia-Carbonero R, Benavides M, Gibbs P, et al: Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med. 383:2207–2218. 2020. View Article : Google Scholar | |
Bonneville R, Krook MA, Kautto EA, Miya J, Wing MR, Chen HZ, Reeser JW, Yu L and Roychowdhury S: Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol. 2017.PO.17.00073. 2017. View Article : Google Scholar | |
Cedrés S, Ponce-Aix S, Iranzo P, Callejo A, Pardo N, Navarro A, Martinez-Marti A, Gómez-Abecia S, Zucchiatti AC, Sansano I, et al: Analysis of mismatch repair (MMR) proteins expression in a series of malignant pleural mesothelioma (MPM) patients. Clin Transl Oncol. 22:1390–1398. 2020. View Article : Google Scholar | |
Zhang Z, Liu S, Zhang B, Qiao L and Zhang Y and Zhang Y: T cell dysfunction and exhaustion in cancer. Front Cell Dev Biol. 8:172020. View Article : Google Scholar | |
Ott PA, Bang YJ, Piha-Paul SA, Razak ARA, Bennouna J, Soria JC, Rugo HS, Cohen RB, O'Neil BH, Mehnert JM, et al: T-Cell-Inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. J Clin Oncol. 37:318–327. 2019. View Article : Google Scholar | |
Hiltbrunner S, Mannarino L, Kirschner MB, Opitz I, Rigutto A, Laure A, Lia M, Nozza P, Maconi A, Marchini S, et al: Tumor immune microenvironment and genetic alterations in mesothelioma. Front Oncol. 11:6600392021. View Article : Google Scholar | |
Bentham R, Litchfield K, Watkins TBK, Lim EL, Rosenthal R, Martínez-Ruiz C, Hiley CT, Bakir MA, Salgado R, Moore DA, et al: Using DNA sequencing data to quantify T cell fraction and therapy response. Nature. 597:555–560. 2021. View Article : Google Scholar | |
Petitprez F, de Reyniès A, Keung EZ, Chen TW, Sun CM, Calderaro J, Jeng YM, Hsiao LP, Lacroix L, Bougoüin A, et al: B cells are associated with survival and immunotherapy response in sarcoma. Nature. 577:556–560. 2020. View Article : Google Scholar | |
Khanal S, Wieland A and Gunderson AJ: Mechanisms of tertiary lymphoid structure formation: Cooperation between inflammation and antigenicity. Front Immunol. 14:12676542023. View Article : Google Scholar | |
Trüb M and Zippelius A: Tertiary lymphoid structures as a predictive biomarker of response to cancer immunotherapies. Front Immunol. 12:6745652021. View Article : Google Scholar | |
Jacquelot N, Tellier J, Nutt SL and Belz GT: Tertiary lymphoid structures and B lymphocytes in cancer prognosis and response to immunotherapies. Oncoimmunology. 10:19005082021. View Article : Google Scholar | |
Schumacher TN and Thommen DS: Tertiary lymphoid structures in cancer. Science. 375:eabf94192022. View Article : Google Scholar | |
Schweiger T, Berghoff AS, Glogner C, Glueck O, Rajky O, Traxler D, Birner P, Preusser M, Klepetko W and Hoetzenecker K: Tumor-infiltrating lymphocyte subsets and tertiary lymphoid structures in pulmonary metastases from colorectal cancer. Clin Exp Metastasis. 33:727–739. 2016. View Article : Google Scholar | |
Siliņa K, Soltermann A, Attar FM, Casanova R, Uckeley ZM, Thut H, Wandres M, Isajevs S, Cheng P, Curioni-Fontecedro A, et al: Germinal centers determine the prognostic relevance of tertiary lymphoid structures and are impaired by corticosteroids in lung squamous cell carcinoma. Cancer Res. 78:1308–1320. 2018. View Article : Google Scholar | |
Calderaro J, Petitprez F, Becht E, Laurent A, Hirsch TZ, Rousseau B, Luciani A, Amaddeo G, Derman J, Charpy C, et al: Intra-tumoral tertiary lymphoid structures are associated with a low risk of early recurrence of hepatocellular carcinoma. J Hepatol. 70:58–65. 2019. View Article : Google Scholar | |
Sofopoulos M, Fortis SP, Vaxevanis CK, Sotiriadou NN, Arnogiannaki N, Ardavanis A, Vlachodimitropoulos D, Perez SA and Baxevanis CN: The prognostic significance of peritumoral tertiary lymphoid structures in breast cancer. Cancer Immunol Immunother. 68:1733–1745. 2019. View Article : Google Scholar | |
He W, Zhang D, Liu H, Chen T, Xie J, Peng L, Zheng X, Xu B, Li Q and Jiang J: The high level of tertiary lymphoid structure is correlated with superior survival in patients with advanced gastric cancer. Front Oncol. 10:9802020. View Article : Google Scholar | |
Lin Q, Tao P, Wang J, Ma L, Jiang Q, Li J, Zhang G, Liu J, Zhang Y, Hou Y, et al: Tumor-associated tertiary lymphoid structure predicts postoperative outcomes in patients with primary gastrointestinal stromal tumors. Oncoimmunology. 9:17473392020. View Article : Google Scholar | |
Magara T, Nakamura M, Nojiri Y, Yoshimitsu M, Kano S, Matsubara A, Kato H and Morita A: Tertiary lymphoid structures correlate with better prognosis in cutaneous angiosarcoma. J Dermatol Sci. 103:57–59. 2021. View Article : Google Scholar | |
Baker PM, Clement PB and Young RH: Malignant peritoneal mesothelioma in women: A study of 75 cases with emphasis on their morphologic spectrum and differential diagnosis. Am J Clin Pathol. 123:724–737. 2005. View Article : Google Scholar | |
Benzerdjeb N, Dartigues P, Kepenekian V, Valmary-Degano S, Mery E, Avérous G, Chevallier A, Laverriere MH, Villa I, Harou O, et al: Tertiary lymphoid structures in epithelioid malignant peritoneal mesothelioma are associated with neoadjuvant chemotherapy, but not with prognosis. Virchows Arch. 479:765–772. 2021. View Article : Google Scholar | |
Gao J, Navai N, Alhalabi O, Siefker-Radtke A, Campbell MT, Tidwell RS, Guo CC, Kamat AM, Matin SF, Araujo JC, et al: Neoadjuvant PD-L1 plus CTLA-4 blockade in patients with cisplatin-ineligible operable high-risk urothelial carcinoma. Nat Med. 26:1845–1851. 2020. View Article : Google Scholar | |
Helmink BA, Reddy SM, Gao J, Zhang S, Basar R, Thakur R, Yizhak K, Sade-Feldman M, Blando J, Han G, et al: B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 577:549–555. 2020. View Article : Google Scholar | |
Cabrita R, Lauss M, Sanna A, Donia M, Skaarup Larsen M, Mitra S, Johansson I, Phung B, Harbst K, Vallon-Christersson J, et al: Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature. 577:561–565. 2020. View Article : Google Scholar | |
Lee HS, Jang HJ, Ramineni M, Wang DY, Ramos D, Choi JM, Splawn T, Espinoza M, Almarez M, Hosey L, et al: A phase II window of opportunity study of neoadjuvant PD-L1 versus PD-L1 plus CTLA-4 blockade for patients with malignant pleural mesothelioma. Clin Cancer Res. 29:548–559. 2023. View Article : Google Scholar | |
Chapel DB, Stewart R, Furtado LV, Husain AN, Krausz T and Deftereos G: Tumor PD-L1 expression in malignant pleural and peritoneal mesothelioma by Dako PD-L1 22C3 pharmDx and Dako PD-L1 28-8 pharmDx assays. Hum Pathol. 87:11–17. 2019. View Article : Google Scholar | |
Gazivoda VP, Kangas-Dick AW, Greenbaum AA, Roshal J, Chen C, Moore DF, Langan RC, Kennedy TJ, Minerowicz C and Alexander HR: Expression of PD-L1 in patients with malignant peritoneal mesothelioma: A pilot study. J Surg Res. 277:131–137. 2022. View Article : Google Scholar | |
Pezzuto F, Vimercati L, Fortarezza F, Marzullo A, Pennella A, Cavone D, Punzi A, Caporusso C, d'Amati A, Lettini T and Serio G: Evaluation of prognostic histological parameters proposed for pleural mesothelioma in diffuse malignant peritoneal mesothelioma. A short report. Diagn Pathol. 16:642021. View Article : Google Scholar | |
Desai A, Karrison T, Rose B, Tan Y, Hill B, Pemberton E, Straus C, Seiwert T and Kindler HL: OA08.03 phase II Trial of pembrolizumab (NCT02399371) in previously-treated malignant mesothelioma (MM): Final analysis. J Thorac Oncol. 13:S3392018. View Article : Google Scholar | |
Zong L, Mo S, Yu S, Zhou Y, Zhang M, Chen J and Xiang Y: Expression of the immune checkpoint VISTA in breast cancer. Cancer Immunol Immunother. 69:1437–1446. 2020. View Article : Google Scholar | |
Zong L, Zhou Y, Zhang M, Chen J and Xiang Y: VISTA expression is associated with a favorable prognosis in patients with high-grade serous ovarian cancer. Cancer Immunol Immunother. 69:33–42. 2020. View Article : Google Scholar | |
Xie S, Huang J, Qiao Q, Zang W, Hong S, Tan H, Dong C, Yang Z and Ni L: Expression of the inhibitory B7 family molecule VISTA in human colorectal carcinoma tumors. Cancer Immunol Immunother. 67:1685–1694. 2018. View Article : Google Scholar | |
Noelle RJ, Lines JL, Lewis LD, Martell RE, Guillaudeux T, Lee SW, Mahoney KM, Vesely MD, Boyd-Kirkup J, Nambiar DK and Scott AM: Clinical and research updates on the VISTA immune checkpoint: Immuno-oncology themes and highlights. Front Oncol. 13:12250812023. View Article : Google Scholar | |
Hmeljak J, Sanchez-Vega F, Hoadley KA, Shih J, Stewart C, Heiman D, Tarpey P, Danilova L, Drill E, Gibb EA, et al: Integrative molecular characterization of malignant pleural mesothelioma. Cancer Discov. 8:1548–1565. 2018. View Article : Google Scholar | |
Alcala N, Mangiante L, Le-Stang N, Gustafson CE, Boyault S, Damiola F, Alcala K, Brevet M, Thivolet-Bejui F, Blanc-Fournier C, et al: Redefining malignant pleural mesothelioma types as a continuum uncovers immune-vascular interactions. EBioMedicine. 48:191–202. 2019. View Article : Google Scholar | |
Muller S, Victoria Lai W, Adusumilli PS, Desmeules P, Frosina D, Jungbluth A, Ni A, Eguchi T, Travis WD, Ladanyi M, et al: V-domain Ig-containing suppressor of T-cell activation (VISTA), a potentially targetable immune checkpoint molecule, is highly expressed in epithelioid malignant pleural mesothelioma. Mod Pathol. 33:303–311. 2020. View Article : Google Scholar | |
Chung YS, Kim M, Cha YJ, Kim KA and Shim HS: Expression of V-set immunoregulatory receptor in malignant mesothelioma. Mod Pathol. 33:263–270. 2020. View Article : Google Scholar | |
Offin M, Yang SR, Egger J, Jayakumaran G, Spencer RS, Lopardo J, Nash GM, Cercek A, Travis WD, Kris MG, et al: Molecular characterization of peritoneal mesotheliomas. J Thorac Oncol. 17:455–460. 2022. View Article : Google Scholar | |
Gao J, Ward JF, Pettaway CA, Shi LZ, Subudhi SK, Vence LM, Zhao H, Chen J, Chen H, Efstathiou E, et al: VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med. 23:551–555. 2017. View Article : Google Scholar | |
Kakavand H, Jackett LA, Menzies AM, Gide TN, Carlino MS, Saw RPM, Thompson JF, Wilmott JS, Long GV and Scolyer RA: Negative immune checkpoint regulation by VISTA: A mechanism of acquired resistance to anti-PD-1 therapy in metastatic melanoma patients. Mod Pathol. 30:1666–1676. 2017. View Article : Google Scholar | |
ElTanbouly MA, Zhao Y, Nowak E, Li J, Schaafsma E, Le Mercier I, Ceeraz S, Lines JL, Peng C, Carriere C, et al: VISTA is a checkpoint regulator for naïve T cell quiescence and peripheral tolerance. Science. 367:eaay05242020. View Article : Google Scholar | |
Shekari N, Shanehbandi D, Kazemi T, Zarredar H, Baradaran B and Jalali SA: VISTA and its ligands: The next generation of promising therapeutic targets in immunotherapy. Cancer Cell Int. 23:2652023. View Article : Google Scholar | |
ElTanbouly MA, Schaafsma E, Noelle RJ and Lines JL: VISTA: Coming of age as a multi-lineage immune checkpoint. Clin Exp Immunol. 200:120–130. 2020. View Article : Google Scholar | |
ElTanbouly MA, Croteau W, Noelle RJ and Lines JL: VISTA: A novel immunotherapy target for normalizing innate and adaptive immunity. Semin Immunol. 42:1013082019. View Article : Google Scholar | |
Liu J, Yuan Y, Chen W, Putra J, Suriawinata AA, Schenk AD, Miller HE, Guleria I, Barth RJ, Huang YH, et al: Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses. Proc Natl Acad Sci USA. 112:6682–6687. 2015. View Article : Google Scholar | |
Hosseinkhani N, Hemmat N, Baghbani E, Baghbanzadeh A, Kazemi T, Mokhtarzadeh A, Jafarlou M, Amin Doustvandi M and Baradaran B: Dual silencing of tumor-intrinsic VISTA and CTLA-4 stimulates T-cell mediated immune responses and inhibits MCF7 breast cancer development. Gene. 896:1480432024. View Article : Google Scholar | |
Lei CJ, Wang B, Long ZX, Ren H, Pan QY and Li Y: Investigation of PD-1H in DEN-induced mouse liver cancer model. Eur Rev Med Pharmacol Sci. 22:5194–5199. 2018. | |
Iadonato S, Ovechkina Y, Lustig K, Cross J, Eyde N, Frazier E, Kabi N, Katz C, Lance R, Peckham D, et al: A highly potent anti-VISTA antibody KVA12123-a new immune checkpoint inhibitor and a promising therapy against poorly immunogenic tumors. Front Immunol. 14:13116582023. View Article : Google Scholar | |
Sasikumar PG, Sudarshan NS, Adurthi S, Ramachandra RK, Samiulla DS, Lakshminarasimhan A, Ramanathan A, Chandrasekhar T, Dhudashiya AA, Talapati SR, et al: PD-1 derived CA-170 is an oral immune checkpoint inhibitor that exhibits preclinical anti-tumor efficacy. Commun Biol. 4:6992021. View Article : Google Scholar | |
Curis Inc: A Study of CA-170 (Oral PD-L1, PD-L2 and VISTA Checkpoint Antagonist) in Patients With Advanced Tumors and Lymphomas. 2016. https://ClinicalTrials.gov/show/NCT02812875 | |
Tawbi HA, Schadendorf D, Lipson EJ, Ascierto PA, Matamala L, Castillo Gutiérrez E, Rutkowski P, Gogas HJ, Lao CD, De Menezes JJ, et al: Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N Engl J Med. 386:24–34. 2022. View Article : Google Scholar | |
Shrestha R, Nabavi N, Lin YY, Mo F, Anderson S, Volik S, Adomat HH, Lin D, Xue H, Dong X, et al: BAP1 haploinsufficiency predicts a distinct immunogenic class of malignant peritoneal mesothelioma. Genome Med. 11:82019. View Article : Google Scholar | |
Osmanbeyoglu HU, Palmer D, Sagan A, Sementino E, Becich MJ and Testa JR: Isolated BAP1 genomic alteration in malignant pleural mesothelioma predicts distinct immunogenicity with implications for immunotherapeutic response. Cancers (Basel). 14:56262022. View Article : Google Scholar | |
Zelba H, Bedke J, Hennenlotter J, Mostböck S, Zettl M, Zichner T, Chandran A, Stenzl A, Rammensee HG and Gouttefangeas C: PD-1 and LAG-3 dominate checkpoint receptor-mediated T-cell inhibition in renal cell carcinoma. Cancer Immunol Res. 7:1891–1899. 2019. View Article : Google Scholar | |
Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, Bettini ML, Gravano DM, Vogel P, Liu CL, et al: Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 72:917–927. 2012. View Article : Google Scholar | |
Marcq E, Van Audenaerde JRM, De Waele J, Merlin C, Pauwels P, van Meerbeeck JP, Fisher SA and Smits ELJ: The Search for an Interesting Partner to Combine with PD-L1 Blockade in Mesothelioma: Focus on TIM-3 and LAG-3. Cancers (Basel). 13:2822021. View Article : Google Scholar | |
Aggarwal V, Workman CJ and Vignali DAA: LAG-3 as the third checkpoint inhibitor. Nat Immunol. 24:1415–1422. 2023. View Article : Google Scholar | |
Feng L, Gao X, Jiao Z, Wang Z and Min F: BTK inhibitor combined with anti-PD-1 monoclonal antibody for the treatment of CD20-negative primary central nervous system lymphoma: A case report. Oncol Lett. 25:482022. View Article : Google Scholar | |
Maccaroni E, Lunerti V, Agostinelli V, Giampieri R, Zepponi L, Pagliacci A and Berardi R: New insights into hormonal therapies in uterine sarcomas. Cancers (Basel). 14:9212022. View Article : Google Scholar | |
Pan C, Yu T, Han L, Hao D, Yang M, Li L, Chu L and Ni Q: Surufatinib combined camrelizumab as a valuable third-line rescue therapy for a patient with extensive-stage for small-cell lung cancer: A case report and literature review. Anticancer Drugs. 35:271–276. 2024. View Article : Google Scholar | |
Peri A, Salomon N, Wolf Y, Kreiter S, Diken M and Samuels Y: The landscape of T cell antigens for cancer immunotherapy. Nat Cancer. 4:937–954. 2023. View Article : Google Scholar | |
McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, Jamal-Hanjani M, Wilson GA, Birkbak NJ, Hiley CT, et al: Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 351:1463–1469. 2016. View Article : Google Scholar | |
Anzar I, Malone B, Samarakoon P, Vardaxis I, Simovski B, Fontenelle H, Meza-Zepeda LA, Stratford R, Keung EZ, Burgess M, et al: The interplay between neoantigens and immune cells in sarcomas treated with checkpoint inhibition. Front Immunol. 14:12264452023. View Article : Google Scholar | |
Nguyen KB, Roerden M, Copeland CJ, Backlund CM, Klop-Packel NG, Remba T, Kim B, Singh NK, Birnbaum ME, Irvine DJ and Spranger S: Decoupled neoantigen cross-presentation by dendritic cells limits anti-tumor immunity against tumors with heterogeneous neoantigen expression. Elife. 12:e852632023. View Article : Google Scholar | |
Shi Y, Jing B and Xi R: Comprehensive analysis of neoantigens derived from structural variation across whole genomes from 2528 tumors. Genome Biol. 24:1692023. View Article : Google Scholar | |
Wei Z, Zhou C, Zhang Z, Guan M, Zhang C, Liu Z and Liu Q: The landscape of tumor fusion neoantigens: A pan-cancer analysis. iScience. 21:249–260. 2019. View Article : Google Scholar | |
Yang W, Lee KW, Srivastava RM, Kuo F, Krishna C, Chowell D, Makarov V, Hoen D, Dalin MG, Wexler L, et al: Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat Med. 25:767–775. 2019. View Article : Google Scholar | |
Cortés-Ciriano I, Lee JJ, Xi R, Jain D, Jung YL, Yang L, Gordenin D, Klimczak LJ, Zhang CZ, Pellman DS, et al: Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat Genet. 52:331–341. 2020. View Article : Google Scholar | |
Oey H, Daniels M, Relan V, Chee TM, Davidson MR, Yang IA, Ellis JJ, Fong KM, Krause L and Bowman RV: Whole-genome sequencing of human malignant mesothelioma tumours and cell lines. Carcinogenesis. 40:724–734. 2019. View Article : Google Scholar | |
Bueno R, Stawiski EW, Goldstein LD, Durinck S, De Rienzo A, Modrusan Z, Gnad F, Nguyen TT, Jaiswal BS, Chirieac LR, et al: Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet. 48:407–416. 2016. View Article : Google Scholar | |
Mansfield AS, Peikert T, Smadbeck JB, Udell JBM, Garcia-Rivera E, Elsbernd L, Erskine CL, Van Keulen VP, Kosari F, Murphy SJ, et al: Neoantigenic potential of complex chromosomal rearrangements in mesothelioma. J Thorac Oncol. 14:276–287. 2019. View Article : Google Scholar | |
Yoshikawa Y, Emi M, Hashimoto-Tamaoki T, Ohmuraya M, Sato A, Tsujimura T, Hasegawa S, Nakano T, Nasu M, Pastorino S, et al: High-density array-CGH with targeted NGS unmask multiple noncontiguous minute deletions on chromosome 3p21 in mesothelioma. Proc Natl Acad Sci USA. 113:13432–13437. 2016. View Article : Google Scholar | |
Relan V, Morrison L, Parsonson K, Clarke BE, Duhig EE, Windsor MN, Matar KS, Naidoo R, Passmore L, McCaul E, et al: Phenotypes and karyotypes of human malignant mesothelioma cell lines. PLoS One. 8:e581322013. View Article : Google Scholar | |
Panagopoulos I, Andersen K, Brunetti M, Gorunova L, Davidson B, Lund-Iversen M, Micci F and Heim S: Genetic pathways in peritoneal mesothelioma tumorigenesis. Cancer Genomics Proteomics. 20:363–374. 2023. View Article : Google Scholar | |
Verdegaal EM, de Miranda NF, Visser M, Harryvan T, van Buuren MM, Andersen RS, Hadrup SR, van der Minne CE, Schotte R, Spits H, et al: Neoantigen landscape dynamics during human melanoma-T cell interactions. Nature. 536:91–95. 2016. View Article : Google Scholar | |
Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, Barron DA, Zehir A, Jordan EJ, Omuro A, et al: Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 51:202–206. 2019. View Article : Google Scholar | |
Ren Y, Cherukuri Y, Wickland DP, Sarangi V, Tian S, Carter JM, Mansfield AS, Block MS, Sherman ME, Knutson KL, et al: HLA class-I and class-II restricted neoantigen loads predict overall survival in breast cancer. Oncoimmunology. 9:17449472020. View Article : Google Scholar | |
Zou XL, Li XB, Ke H, Zhang GY, Tang Q, Yuan J, Zhou CJ, Zhang JL, Zhang R and Chen WY: Prognostic value of neoantigen load in immune checkpoint inhibitor therapy for cancer. Front Immunol. 12:6890762021. View Article : Google Scholar | |
Kosari F, Disselhorst M, Yin J, Peikert T, Udell J, Johnson S, Smadbeck J, Murphy S, McCune A, Karagouga G, et al: Tumor junction burden and antigen presentation as predictors of survival in mesothelioma treated with immune checkpoint inhibitors. J Thorac Oncol. 17:446–454. 2022. View Article : Google Scholar | |
Lee HS, Jang HJ, Choi JM, Zhang J, de Rosen VL, Wheeler TM, Lee JS, Tu T, Jindra PT, Kerman RH, et al: Comprehensive immunoproteogenomic analyses of malignant pleural mesothelioma. JCI Insight. 3:e985752018. View Article : Google Scholar | |
Tandon RT, Jimenez-Cortez Y, Taub R and Borczuk AC: Immunohistochemistry in peritoneal mesothelioma: A single-center experience of 244 cases. Arch Pathol Lab Med. 142:236–242. 2018. View Article : Google Scholar | |
Leblay N, Leprêtre F, Le Stang N, Gautier-Stein A, Villeneuve L, Isaac S, Maillet D, Galateau-Sallé F, Villenet C, Sebda S, et al: BAP1 is altered by copy number loss, mutation, and/or loss of protein expression in more than 70% of malignant peritoneal mesotheliomas. J Thorac Oncol. 12:724–733. 2017. View Article : Google Scholar | |
Gezgin G, Dogrusöz M, van Essen TH, Kroes WGM, Luyten GPM, van der Velden PA, Walter V, Verdijk RM, van Hall T, van der Burg SH and Jager MJ: Genetic evolution of uveal melanoma guides the development of an inflammatory microenvironment. Cancer Immunol Immunother. 66:903–912. 2017. View Article : Google Scholar | |
Lai J, Zhou Z, Tang XJ, Gao ZB, Zhou J and Chen SQ: A tumor-specific neo-antigen caused by a frameshift mutation in BAP1 is a potential personalized biomarker in malignant peritoneal mesothelioma. Int J Mol Sci. 17:7392016. View Article : Google Scholar | |
Rizzolo A, Ah-Lan KC, Nu TNT and Alcindor T: Response to Ipilimumab and nivolumab in a patient with malignant peritoneal mesothelioma. Clin Colorectal Cancer. 21:371–374. 2022. View Article : Google Scholar | |
Liu K, Huang Y, Xu Y, Wang G, Cai S, Zhang X and Shi T: BAP1-related signature predicts benefits from immunotherapy over VEGFR/mTOR inhibitors in ccRCC: A retrospective analysis of JAVELIN Renal 101 and checkmate-009/010/025 trials. Cancer Immunol Immunother. 72:2557–2572. 2023. View Article : Google Scholar | |
Topalian SL, Taube JM, Anders RA and Pardoll DM: Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 16:275–287. 2016. View Article : Google Scholar | |
Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, Albright A, Cheng JD, Kang SP, Shankaran V, et al: IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 127:2930–2940. 2017. View Article : Google Scholar | |
Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, Li Z, Traugh N, Bu X, Li B, et al: Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 24:1550–1558. 2018. View Article : Google Scholar | |
Cui C, Xu C, Yang W, Chi Z, Sheng X, Si L, Xie Y, Yu J, Wang S, Yu R, et al: Ratio of the interferon-γ signature to the immunosuppression signature predicts anti-PD-1 therapy response in melanoma. NPJ Genom Med. 6:72021. View Article : Google Scholar | |
Lee JS, Nair NU, Dinstag G, Chapman L, Chung Y, Wang K, Sinha S, Cha H, Kim D, Schperberg AV, et al: Synthetic lethality-mediated precision oncology via the tumor transcriptome. Cell. 184:2487–2502.e13. 2021. View Article : Google Scholar | |
Nair NU, Jiang Q, Wei JS, Misra VA, Morrow B, Kesserwan C, Hermida LC, Lee JS, Mian I, Zhang J, et al: Genomic and transcriptomic analyses identify a prognostic gene signature and predict response to therapy in pleural and peritoneal mesothelioma. Cell Rep Med. 4:1009382023. View Article : Google Scholar | |
Dinstag G, Shulman ED, Elis E, Ben-Zvi DS, Tirosh O, Maimon E, Meilijson I, Elalouf E, Temkin B, Vitkovsky P, et al: Clinically oriented prediction of patient response to targeted and immunotherapies from the tumor transcriptome. Med. 4:15–30.e8. 2023. View Article : Google Scholar | |
Hoang DT, Dinstag G, Shulman ED, Hermida LC, Ben-Zvi DS, Elis E, Caley K, Sammut SJ, Sinha S, Sinha N, et al: A deep-learning framework to predict cancer treatment response from histopathology images through imputed transcriptomics. Nat Cancer. Jul 3–2024.(Epub ahead of print). View Article : Google Scholar | |
Panagi M, Mpekris F, Voutouri C, Hadjigeorgiou AG, Symeonidou C, Porfyriou E, Michael C, Stylianou A, Martin JD, Cabral H, et al: Stabilizing tumor-resident mast cells restores T-Cell infiltration and sensitizes sarcomas to PD-L1 inhibition. Clin Cancer Res. 30:2582–2597. 2024. View Article : Google Scholar | |
Sautès-Fridman C, Lawand M, Giraldo NA, Kaplon H, Germain C, Fridman WH and Dieu-Nosjean MC: Tertiary lymphoid structures in cancers: Prognostic value, regulation, and manipulation for therapeutic intervention. Front Immunol. 7:4072016. View Article : Google Scholar | |
Yang ZR, Su YD, Ma R, Wu HL and Li Y: Efficacy and adverse events of apatinib salvage treatment for refractory diffuse malignant peritoneal mesothelioma: A pilot study. Front Oncol. 12:8118002022. View Article : Google Scholar | |
Zauderer MG, Alley EW, Bendell J, Capelletto E, Bauer TM, Callies S, Szpurka AM, Kang S, Willard MD, Wacheck V and Varghese AM: Phase 1 cohort expansion study of LY3023414, a dual PI3K/mTOR inhibitor, in patients with advanced mesothelioma. Invest New Drugs. 39:1081–1088. 2021. View Article : Google Scholar | |
Yang H, Hall SRR, Sun B, Zhao L, Gao Y, Schmid RA, Tan ST, Peng RW and Yao F: NF2 and Canonical Hippo-YAP pathway define distinct tumor subsets characterized by different immune deficiency and treatment implications in human pleural mesothelioma. Cancers (Basel). 13:15612021. View Article : Google Scholar | |
Fennell DA, King A, Mohammed S, Branson A, Brookes C, Darlison L, Dawson AG, Gaba A, Hutka M, Morgan B, et al: Rucaparib in patients with BAP1-deficient or BRCA1-deficient mesothelioma (MiST1): An open-label, single-arm, phase 2a clinical trial. Lancet Respir Med. 9:593–600. 2021. View Article : Google Scholar | |
Hung YP, Dong F, Watkins JC, Nardi V, Bueno R, Dal Cin P, Godleski JJ, Crum CP and Chirieac LR: Identification of ALK rearrangements in malignant peritoneal mesothelioma. JAMA Oncol. 4:235–238. 2018. View Article : Google Scholar | |
Li Petri G, Pecoraro C, Randazzo O, Zoppi S, Cascioferro SM, Parrino B, Carbone D, El Hassouni B, Cavazzoni A, Zaffaroni N, et al: New Imidazo[2,1-b][1,3,4]Thiadiazole derivatives inhibit FAK phosphorylation and potentiate the antiproliferative effects of gemcitabine through modulation of the human equilibrative nucleoside transporter-1 in peritoneal mesothelioma. Anticancer Res. 40:4913–4919. 2020. View Article : Google Scholar | |
Quispel-Janssen JM, Badhai J, Schunselaar L, Price S, Brammeld J, Iorio F, Kolluri K, Garnett M, Berns A, Baas P, et al: Comprehensive pharmacogenomic profiling of malignant pleural mesothelioma identifies a subgroup sensitive to FGFR inhibition. Clin Cancer Res. 24:84–94. 2018. View Article : Google Scholar | |
Bensaid D, Blondy T, Deshayes S, Dehame V, Bertrand P, Grégoire M, Errami M and Blanquart C: Assessment of new HDAC inhibitors for immunotherapy of malignant pleural mesothelioma. Clin Epigenetics. 10:792018. View Article : Google Scholar | |
McGale JP, Chen DL, Trebeschi S, Farwell MD, Wu AM, Cutler CS, Schwartz LH and Dercle L: Artificial intelligence in immunotherapy PET/SPECT imaging. Eur Radiol. Feb 15–2024.(Epub ahead of print). View Article : Google Scholar | |
Addala V, Newell F, Pearson JV, Redwood A, Robinson BW, Creaney J and Waddell N: Computational immunogenomic approaches to predict response to cancer immunotherapies. Nat Rev Clin Oncol. 21:28–46. 2024. View Article : Google Scholar |