
Roles of deubiquitinases in urologic cancers (Review)
- Authors:
- Liangpei Wu
- Jiahui Wang
- Lin Chai
- Jun Chen
- Xiaofeng Jin
-
Affiliations: Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China - Published online on: October 14, 2024 https://doi.org/10.3892/ol.2024.14743
- Article Number: 609
-
Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Nguyen-Nielsen M and Borre M: Diagnostic and Therapeutic Strategies for Prostate Cancer. Semin Nucl Med. 46:484–490. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bahadoram S, Davoodi M, Hassanzadeh S, Bahadoram M, Barahman M and Mafakher L: Renal cell carcinoma: An overview of the epidemiology, diagnosis, and treatment. G Ital Nefrol. 39:2022–vol3. 2022.PubMed/NCBI | |
Lenis AT, Lec PM, Chamie K and Mshs MD: Bladder Cancer: A Review. JAMA. 324:1980–1991. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gao H, Yin J, Ji C, Yu X, Xue J, Guan X, Zhang S, Liu X and Xing F: Targeting ubiquitin specific proteases (USPs) in cancer immunotherapy: From basic research to preclinical application. J Exp Clin Cancer Res. 42:2252023. View Article : Google Scholar : PubMed/NCBI | |
Zheng LL, Wang LT, Pang YW, Sun LP and Shi L: Recent advances in the development of deubiquitinases inhibitors as antitumor agents. Eur J Med Chem. 266:1161612024. View Article : Google Scholar : PubMed/NCBI | |
Popovic D, Vucic D and Dikic I: Ubiquitination in disease pathogenesis and treatment. Nat Med. 20:1242–1253. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dagar G, Kumar R, Yadav KK, Singh M and Pandita TK: Ubiquitination and deubiquitination: Implications on cancer therapy. Biochim Biophys Acta Gene Regul Mech. 1866:1949792023. View Article : Google Scholar : PubMed/NCBI | |
Han S, Wang R, Zhang Y, Li X, Gan Y, Gao F, Rong P, Wang W and Li W: The role of ubiquitination and deubiquitination in tumor invasion and metastasis. Int J Biol Sci. 18:2292–2303. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ye Z, Yang J, Jiang H and Zhan X: The roles of protein ubiquitination in tumorigenesis and targeted drug discovery in lung cancer. Front Endocrinol (Lausanne). 14:12201082023. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Zheng K, Zhou S, Yang Y, Chen J and Jin X: E3 ubiquitin ligases in nasopharyngeal carcinoma and implications for therapies. J Mol Med (Berl). 101:1543–1565. 2023. View Article : Google Scholar : PubMed/NCBI | |
Dewson G, Eichhorn PJA and Komander D: Deubiquitinases in cancer. Nat Rev Cancer. 23:842–862. 2023. View Article : Google Scholar : PubMed/NCBI | |
Coutte L, Dreyer C, Sablin MP, Faivre S and Raymond E: PI3K-AKT-mTOR pathway and cancer. Bull Cancer. 99:173–180. 2012.(In French). View Article : Google Scholar : PubMed/NCBI | |
Cantley LC: The phosphoinositide 3-kinase pathway. Science. 296:1655–1657. 2002. View Article : Google Scholar : PubMed/NCBI | |
Vanhaesebroeck B, Whitehead MA and Piñeiro R: Molecules in medicine mini-review: Isoforms of PI3K in biology and disease. J Mol Med (Berl). 94:5–11. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gagliardi PA, Puliafito A and Primo L: PDK1: At the crossroad of cancer signaling pathways. Semin Cancer Biol. 48:27–35. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tan AC: Targeting the PI3K/Akt/mTOR pathway in non-small cell lung cancer (NSCLC). Thorac Cancer. 11:511–518. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yu Z, Li H, Zhu J, Wang H and Jin X: The roles of E3 ligases in Hepatocellular carcinoma. Am J Cancer Res. 12:1179–1214. 2022.PubMed/NCBI | |
Ngeow J and Eng C: PTEN in Hereditary and Sporadic Cancer. Cold Spring Harb Perspect Med. 10:a0360872020. View Article : Google Scholar : PubMed/NCBI | |
Noorolyai S, Shajari N, Baghbani E, Sadreddini S and Baradaran B: The relation between PI3K/AKT signalling pathway and cancer. Gene. 698:120–128. 2019. View Article : Google Scholar : PubMed/NCBI | |
Christine A, Park MK, Song SJ and Song MS: The equilibrium of tumor suppression: DUBs as active regulators of PTEN. Exp Mol Med. 54:1814–1821. 2022. View Article : Google Scholar : PubMed/NCBI | |
Saha G, Roy S, Basu M and Ghosh MK: USP7-a crucial regulator of cancer hallmarks. Biochim Biophys Acta Rev Cancer. 1878:1889032023. View Article : Google Scholar : PubMed/NCBI | |
Pozhidaeva A and Bezsonova I: USP7: Structure, substrate specificity, and inhibition. DNA Repair (Amst). 76:30–39. 2019. View Article : Google Scholar : PubMed/NCBI | |
Song MS, Salmena L, Carracedo A, Egia A, Lo-Coco F, Teruya-Feldstein J and Pandolfi PP: The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature. 455:813–817. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Sun Z, Xia W, Sun L, Du Y, Zhang Y and Jia Z: Role of USP13 in physiology and diseases. Front Mol Biosci. 9:9771222022. View Article : Google Scholar : PubMed/NCBI | |
Jin J, He J, Li X, Ni X and Jin X: The role of ubiquitination and deubiquitination in PI3K/AKT/mTOR pathway: A potential target for cancer therapy. Gene. 889:1478072023. View Article : Google Scholar : PubMed/NCBI | |
Cui X, Yu H, Yao J, Li J, Li Z and Jiang Z: ncRNA-mediated overexpression of ubiquitin-specific proteinase 13 contributes to the progression of prostate cancer via modulating AR signaling, DNA damage repair and immune infiltration. BMC Cancer. 22:13502022. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Zhang B, Lei Y, Sun J, Zhang Y, Yang S and Zhang X: Knockdown of USP39 induces cell cycle arrest and apoptosis in melanoma. Tumour Biol. 37:13167–13176. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yuan J, Li X, Zhang G, Cheng W, Wang W, Lei Y, Ma Q and Song G: USP39 mediates p21-dependent proliferation and neoplasia of colon cancer cells by regulating the p53/p21/CDC2/cyclin B1 axis. Mol Carcinog. 60:265–278. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yuan X, Sun X, Shi X, Jiang C, Yu D, Zhang W, Guan W, Zhou J, Wu Y, Qiu Y and Ding Y: USP39 promotes the growth of human hepatocellular carcinoma in vitro and in vivo. Oncol Rep. 34:823–832. 2015. View Article : Google Scholar : PubMed/NCBI | |
An Y, Yang S, Guo K, Ma B and Wang Y: Reduced USP39 expression inhibits malignant proliferation of medullary thyroid carcinoma in vitro. World J Surg Oncol. 13:2552015. View Article : Google Scholar : PubMed/NCBI | |
Li KY, Zhang J, Jiang LC, Zhang B, Xia CP, Xu K, Chen HY, Yang QZ, Liu SW and Zhu H: Knockdown of USP39 by lentivirus-mediated RNA interference suppresses the growth of oral squamous cell carcinoma. Cancer Biomark. 16:137–144. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xing Z, Sun F, He W, Wang Z, Song X and Zhang F: Downregulation of ubiquitin-specific peptidase 39 suppresses the proliferation and induces the apoptosis of human colorectal cancer cells. Oncol Lett. 15:5443–5450. 2018.PubMed/NCBI | |
Xu Y, Zhu MR, Zhang JY, Si GM and Lv JJ: Knockdown of ubiquitin-specific peptidase 39 inhibits the malignant progression of human renal cell carcinoma. Mol Med Rep. 17:4729–4735. 2018.PubMed/NCBI | |
Rolén U, Kobzeva V, Gasparjan N, Ovaa H, Winberg G, Kisseljov F and Masucci MG: Activity profiling of deubiquitinating enzymes in cervical carcinoma biopsies and cell lines. Mol Carcinog. 45:260–269. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Fu D, Xi J, Ji Z, Liu T, Ma Y, Zhao Y, Dong L, Wang Q and Shen X: Expression and clinical significance of UCH37 in human esophageal squamous cell carcinoma. Dig Dis Sci. 57:2310–2317. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Chen YJ, Xu K, Wang YY, Shen XZ and Tu RQ: High expression of UCH37 is significantly associated with poor prognosis in human epithelial ovarian cancer. Tumour Biol. 35:11427–11433. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Niu X, Li Z, Yu Y, Ye X, Lu S and Chen Z: Effect of ubiquitin carboxy-terminal hydrolase 37 on apoptotic in A549 cells. Cell Biochem Funct. 29:142–148. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cutts AJ, Soond SM, Powell S and Chantry A: Early phase TGFβ receptor signalling dynamics stabilised by the deubiquitinase UCH37 promotes cell migratory responses. Int J Biochem Cell Biol. 43:604–612. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Yan X, Bai X, Tang F, Si P, Bai C, Tuoheti K, Guo L, Yisha Z and Liu T and Liu T: UCHL5 Promotes Proliferation and Migration of Bladder Cancer Cells by Activating c-Myc via AKT/mTOR Signaling. Cancers (Basel). 14:55382022. View Article : Google Scholar : PubMed/NCBI | |
Oeckinghaus A, Hayden MS and Ghosh S: Crosstalk in NF-κB signaling pathways. Nat Immunol. 12:695–708. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lawrence T: The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 1:a0016512009. View Article : Google Scholar : PubMed/NCBI | |
Gilmore TD: Introduction to NF-kappaB: Players, pathways, perspectives. Oncogene. 25:6680–6684. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hayden MS and Ghosh S: Shared principles in NF-kappaB signaling. Cell. 132:344–362. 2008. View Article : Google Scholar : PubMed/NCBI | |
Au PY and Yeh WC: Physiological roles and mechanisms of signaling by TRAF2 and TRAF5. Adv Exp Med Biol. 597:32–47. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Zhang X, Wu XL, He LS, Zeng XF, Crammer AC and Lipsky PE: Competition between TRAF2 and TRAF6 regulates NF-kappaB activation in human B lymphocytes. Chin Med Sci J. 25:1–12. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Zeng L, Yang Y, Guo C and Wang H: Bcl-3: A Double-Edged Sword in Immune Cells and Inflammation. Front Immunol. 13:8476992022. View Article : Google Scholar : PubMed/NCBI | |
Franzoso G, Bours V, Azarenko V, Park S, Tomita-Yamaguchi M, Kanno T, Brown K and Siebenlist U: The oncoprotein Bcl-3 can facilitate NF-kappa B-mediated transactivation by removing inhibiting p50 homodimers from select kappa B sites. EMBO J. 12:3893–3901. 1993. View Article : Google Scholar : PubMed/NCBI | |
Fujita T, Nolan GP, Liou HC, Scott ML and Baltimore D: The candidate proto-oncogene bcl-3 encodes a transcriptional coactivator that activates through NF-kappa B p50 homodimers. Genes Dev. 7:1354–1363. 1993. View Article : Google Scholar : PubMed/NCBI | |
Tang W, Wang H, Claudio E, Tassi I, Ha HL, Saret S and Siebenlist U: The oncoprotein and transcriptional regulator Bcl-3 governs plasticity and pathogenicity of autoimmune T cells. Immunity. 41:555–566. 2014. View Article : Google Scholar : PubMed/NCBI | |
Marín-Rubio JL, Raote I, Inns J, Dobson-Stone C and Rajan N: CYLD in health and disease. Dis Model Mech. 16:dmm0500932023. View Article : Google Scholar : PubMed/NCBI | |
Mathis BJ, Lai Y, Qu C, Janicki JS and Cui T: CYLD-mediated signaling and diseases. Curr Drug Targets. 16:284–294. 2015. View Article : Google Scholar : PubMed/NCBI | |
Massoumi R: CYLD: A deubiquitination enzyme with multiple roles in cancer. Future Oncol. 7:285–297. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sim MY, Yuen JSP and Go ML: Anti-survivin effect of the small molecule inhibitor YM155 in RCC cells is mediated by time-dependent inhibition of the NF-κB pathway. Sci Rep. 8:102892018. View Article : Google Scholar : PubMed/NCBI | |
Yuan H, Wei S, Ren Z, Li F, Liu B, Liu R and Zhang X: KLHL21/CYLD signaling confers aggressiveness in bladder cancer through inactivating NF-κB signaling. Int Immunopharmacol. 114:1092022023. View Article : Google Scholar : PubMed/NCBI | |
Man X, Piao C, Lin X, Kong C, Cui X and Jiang Y: USP13 functions as a tumor suppressor by blocking the NF-kB-mediated PTEN downregulation in human bladder cancer. J Exp Clin Cancer Res. 38:2592019. View Article : Google Scholar : PubMed/NCBI | |
Man X, Piao C, Lin X, Kong C, Cui X and Jiang Y: Correction to: USP13 functions as a tumor suppressor by blocking the NF-kB-mediated PTEN downregulation in human bladder cancer. J Exp Clin Cancer Res. 40:3862021. View Article : Google Scholar : PubMed/NCBI | |
Yang GF, Zhang X, Su YG, Zhao R and Wang YY: The role of the deubiquitinating enzyme DUB3/USP17 in cancer: A narrative review. Cancer Cell Int. 21:4552021. View Article : Google Scholar : PubMed/NCBI | |
Han L, Yang J, Wang X, Wu Q, Yin S, Li Z, Zhang J, Xing Y, Chen Z, Tsun A, et al: The E3 deubiquitinase USP17 is a positive regulator of retinoic acid-related orphan nuclear receptor γt (RORγt) in Th17 cells. J Biol Chem. 289:25546–25555. 2014. View Article : Google Scholar : PubMed/NCBI | |
Haq S and Ramakrishna S: Deubiquitylation of deubiquitylases. Open Biol. 7:1700162017. View Article : Google Scholar : PubMed/NCBI | |
Baohai X, Shi F and Yongqi F: Inhibition of ubiquitin specific protease 17 restrains prostate cancer proliferation by regulation of epithelial-to-mesenchymal transition (EMT) via ROS production. Biomed Pharmacother. 118:1089462019. View Article : Google Scholar : PubMed/NCBI | |
Fang JY and Richardson BC: The MAPK signalling pathways and colorectal cancer. Lancet Oncol. 6:322–327. 2005. View Article : Google Scholar : PubMed/NCBI | |
Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y and Hu LL: ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 19:1997–2007. 2020.PubMed/NCBI | |
Santarpia L, Lippman SM and El-Naggar AK: Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets. 16:103–119. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wu PK, Becker A and Park JI: Growth Inhibitory Signaling of the Raf/MEK/ERK Pathway. Int J Mol Sci. 21:54362020. View Article : Google Scholar : PubMed/NCBI | |
Maik-Rachline G, Hacohen-Lev-Ran A and Seger R: Nuclear ERK: Mechanism of Translocation, Substrates, and Role in Cancer. Int J Mol Sci. 20:11942019. View Article : Google Scholar : PubMed/NCBI | |
Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, Dimitriadoy S, Liu DL, Kantheti HS, Saghafinia S, et al: Oncogenic signaling pathways in the cancer genome atlas. Cell. 173:321–337.e10. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Wang J, Luan T, Zuo Y, Chen J, Zhang H, Ye Z, Wang H and Hai B: Deubiquitinase USP9X regulates the invasion of prostate cancer cells by regulating the ERK pathway and mitochondrial dynamics. Oncol Rep. 41:3292–3304. 2019.PubMed/NCBI | |
Hu W, Su Y, Fei X, Wang X, Zhang G, Su C, Du T, Yang T, Wang G, Tang Z and Zhang J: Ubiquitin specific peptidase 19 is a prognostic biomarker and affect the proliferation and migration of clear cell renal cell carcinoma. Oncol Rep. 43:1964–1974. 2020.PubMed/NCBI | |
Meng Y, Hong C, Yang S, Qin Z, Yang L and Huang Y: Roles of USP9X in cellular functions and tumorigenesis (Review). Oncol Lett. 26:5062023. View Article : Google Scholar : PubMed/NCBI | |
Wan YF, Zhang CY, Cheng XW, Liu LS, Zhou T, Gao JK, Zhu HQ and Liu YH: USP9X expression is functionally related to laryngeal cancer. J Cancer. 14:591–599. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jaiswal A, Murakami K, Elia A, Shibahara Y, Done SJ, Wood SA, Donato NJ, Ohashi PS and Reedijk M: Therapeutic inhibition of USP9x-mediated Notch signaling in triple-negative breast cancer. Proc Natl Acad Sci USA. 118:e21015921182021. View Article : Google Scholar : PubMed/NCBI | |
Jie X, Fong WP, Zhou R, Zhao Y, Zhao Y, Meng R, Zhang S, Dong X, Zhang T, Yang K, et al: USP9X-mediated KDM4C deubiquitination promotes lung cancer radioresistance by epigenetically inducing TGF-β2 transcription. Cell Death Differ. 28:2095–2111. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Gu L, Lin X, Zhou X, Lu B, Liu C, Lei C, Zhou F, Zhao Q, Prochownik EV and Li Y: USP19 exacerbates lipogenesis and colorectal carcinogenesis by stabilizing ME1. Cell Rep. 37:1101742021. View Article : Google Scholar : PubMed/NCBI | |
Lee JG, Kim W, Gygi S and Ye Y: Characterization of the deubiquitinating activity of USP19 and its role in endoplasmic reticulum-associated degradation. J Biol Chem. 289:3510–3517. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dong Z, Guo S, Wang Y, Zhang J, Luo H, Zheng G, Yang D, Zhang T, Yan L, Song L, et al: USP19 Enhances MMP2/MMP9-Mediated tumorigenesis in gastric cancer. Onco Targets Ther. 13:8495–8510. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tyagi A, Karapurkar JK, Colaco JC, Sarodaya N, Antao AM, Kaushal K, Haq S, Chandrasekaran AP, Das S, Singh V, et al: USP19 Negatively Regulates p53 and promotes cervical cancer progression. Mol Biotechnol. 66:2032–2045. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li X, Yuan J, Song C, Lei Y, Xu J, Zhang G, Wang W and Song G: Deubiquitinase USP39 and E3 ligase TRIM26 balance the level of ZEB1 ubiquitination and thereby determine the progression of hepatocellular carcinoma. Cell Death Diffe. 28:2315–2332. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Ma J, Lu M, Liu Z, Sun Y and Chen H: The Deubiquitinase USP39 promotes esophageal squamous cell carcinoma malignancy as a splicing factor. Genes (Basel). 13:8192022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Liu W, Bao X, Sun T, Wang J, Li M and Liu C: USP39 facilitates breast cancer cell proliferation through stabilization of FOXM1. Am J Cancer Res. 12:3644–3661. 2022.PubMed/NCBI | |
Yuan J, Li X, Zhang Y, Zhang G, Cheng W, Wang W, Lei Y and Song G: USP39 attenuates the antitumor activity of cisplatin on colon cancer cells dependent on p53. Cell Biol Toxicol. 39:1995–2010. 2023. View Article : Google Scholar : PubMed/NCBI | |
Huang J: Current developments of targeting the p53 signaling pathway for cancer treatment. Pharmacol Ther. 220:1077202021. View Article : Google Scholar : PubMed/NCBI | |
Joerger AC and Fersht AR: The p53 Pathway: Origins, inactivation in cancer, and emerging therapeutic approaches. Annu Rev Biochem. 85:375–404. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lahalle A, Lacroix M, De Blasio C, Cissé MY, Linares LK and Le Cam L: The p53 pathway and metabolism: The tree that hides the forest. Cancers (Basel). 13:1332021. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Yu H and Hu W: The regulation of MDM2 oncogene and its impact on human cancers. Acta Biochim Biophys Sin (Shanghai). 46:180–189. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kwon SK, Saindane M and Baek KH: p53 stability is regulated by diverse deubiquitinating enzymes. Biochim Biophys Acta Rev Cancer. 1868:404–411. 2017. View Article : Google Scholar : PubMed/NCBI | |
Klein AM, de Queiroz RM, Venkatesh D and Prives C: The roles and regulation of MDM2 and MDMX: It is not just about p53. Genes Dev. 35:575–601. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ren Y, Zhao P, Liu J, Yuan Y, Cheng Q, Zuo Y, Qian L, Liu C, Guo T, Zhang L, et al: Deubiquitinase USP2a sustains interferons antiviral activity by restricting ubiquitination of activated STAT1 in the Nucleus. PLoS Pathog. 12:e10057642016. View Article : Google Scholar : PubMed/NCBI | |
Li Y, He X, Wang S, Shu HB and Liu Y: USP2a positively regulates TCR-induced NF-κB activation by bridging MALT1-TRAF6. Protein Cell. 4:62–70. 2013. View Article : Google Scholar : PubMed/NCBI | |
Allende-Vega N, Sparks A, Lane DP and Saville MK: MdmX is a substrate for the deubiquitinating enzyme USP2a. Oncogene. 29:432–441. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xiong B, Huang J, Liu Y, Zou M, Zhao Z, Gong J, Wu X and Qiu C: Ubiquitin-specific protease 2a promotes hepatocellular carcinoma progression via deubiquitination and stabilization of RAB1A. Cell Oncol (Dordr). 44:329–343. 2021. View Article : Google Scholar : PubMed/NCBI | |
Selvendiran K, Ahmed S, Dayton A, Ravi Y, Kuppusamy ML, Bratasz A, Rivera BK, Kálai T, Hideg K and Kuppusamy P: HO-3867, a synthetic compound, inhibits the migration and invasion of ovarian carcinoma cells through downregulation of fatty acid synthase and focal adhesion kinase. Mol Cancer Res. 8:1188–1197. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Keay SK, You S, Loda M and Freeman MR: A synthetic form of frizzled 8-associated antiproliferative factor enhances p53 stability through USP2a and MDM2. PLoS One. 7:e503922012. View Article : Google Scholar : PubMed/NCBI | |
Stevenson LF, Sparks A, Allende-Vega N, Xirodimas DP, Lane DP and Saville MK: The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J. 26:976–986. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ballar Kirmizibayrak P, Erbaykent-Tepedelen B, Gozen O and Erzurumlu Y: Divergent modulation of proteostasis in prostate cancer. Adv Exp Med Biol. 1233:117–151. 2020. View Article : Google Scholar : PubMed/NCBI | |
Park SH, Fong KW, Kim J, Wang F, Lu X, Lee Y, Brea LT, Wadosky K, Guo C, Abdulkadir SA, et al: Posttranslational regulation of FOXA1 by Polycomb and BUB3/USP7 deubiquitin complex in prostate cancer. Sci Adv. 7:eabe22612021. View Article : Google Scholar : PubMed/NCBI | |
Sun T, Lee GS, Oh WK, Pomerantz M, Yang M, Xie W, Freedman ML and Kantoff PW: Single-nucleotide polymorphisms in p53 pathway and aggressiveness of prostate cancer in a Caucasian population. Clin Cancer Res. 16:5244–5251. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ren X, Jiang M, Ding P, Zhang X, Zhou X, Shen J, Liu D, Yan X and Ma Z: Ubiquitin-specific protease 28: The decipherment of its dual roles in cancer development. Exp Hematol Oncol. 12:272023. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Xu Z, Li Q, Zheng C, Du Y, Yuan R and Peng X: USP28 facilitates pancreatic cancer progression through activation of Wnt/β-catenin pathway via stabilising FOXM1. Cell Death Dis. 12:8872021. View Article : Google Scholar : PubMed/NCBI | |
Zhao LJ, Zhang T, Feng XJ, Chang J, Suo FZ, Ma JL, Liu YJ, Liu Y, Zheng YC and Liu HM: USP28 contributes to the proliferation and metastasis of gastric cancer. J Cell Biochem. 120:7657–7666. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Meng Q, Ding Y, Xiong M, Zhu M, Yang Y, Su H, Gu L, Xu Y, Shi L, et al: USP28 and USP25 are downregulated by Vismodegib in vitro and in colorectal cancer cell lines. FEBS J. 288:1325–1342. 2021. View Article : Google Scholar : PubMed/NCBI | |
Devrim T, Ataç F, Devrim AK and Balcı M: The concomitant use of USP28 and p53 to predict the progression of urothelial carcinoma of the bladder. Pathol Res Pract. 216:1527742020. View Article : Google Scholar : PubMed/NCBI | |
Fong CS, Mazo G, Das T, Goodman J, Kim M, O'Rourke BP, Izquierdo D and Tsou MF: 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis. Elife. 5:e162702016. View Article : Google Scholar : PubMed/NCBI | |
Tzavlaki K and Moustakas A: TGF-β Signaling. Biomolecules. 10:4872020. View Article : Google Scholar : PubMed/NCBI | |
Derynck R and Budi EH: Specificity, versatility, and control of TGF-β family signaling. Sci Signal. 12:eaav51832019. View Article : Google Scholar : PubMed/NCBI | |
Hata A and Chen YG: TGF-β Signaling from Receptors to Smads. Cold Spring Harb Perspect Biol. 8:a0220612016. View Article : Google Scholar : PubMed/NCBI | |
Peng D, Fu M, Wang M, Wei Y and Wei X: Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol Cancer. 21:1042022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Alexander PB and Wang XF: TGF-β family signaling in the control of cell proliferation and survival. Cold Spring Harb Perspect Biol. 9:a0221452017. View Article : Google Scholar : PubMed/NCBI | |
Haque S and Morris JC: Transforming growth factor-β: A therapeutic target for cancer. Hum Vaccin Immunother. 13:1741–1750. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sakai K, Ito C, Wakabayashi M, Kanzaki S, Ito T, Takada S, Toshimori K, Sekita Y and Kimura T: Usp26 mutation in mice leads to defective spermatogenesis depending on genetic background. Sci Rep. 9:137572019. View Article : Google Scholar : PubMed/NCBI | |
Tang J, Luo Y and Xiao L: USP26 promotes anaplastic thyroid cancer progression by stabilizing TAZ. Cell Death Dis. 13:3262022. View Article : Google Scholar : PubMed/NCBI | |
Ye Y, Li M, Pan Q, Fang X, Yang H, Dong B, Yang J, Zheng Y, Zhang R and Liao Z: Machine learning-based classification of deubiquitinase USP26 and its cell proliferation inhibition through stabilizing KLF6 in cervical cancer. Comput Biol Med. 168:1077452024. View Article : Google Scholar : PubMed/NCBI | |
Li G, Qi HW, Dong HG, Bai P, Sun M and Liu HY: Targeting deubiquitinating enzyme USP26 by microRNA-203 regulates Snail1's pro-metastatic functions in esophageal cancer. Cancer Cell Int. 20:3552020. View Article : Google Scholar : PubMed/NCBI | |
Wosnitzer MS, Mielnik A, Dabaja A, Robinson B, Schlegel PN and Paduch DA: Ubiquitin Specific Protease 26 (USP26) expression analysis in human testicular and extragonadal tissues indicates diverse action of USP26 in cell differentiation and tumorigenesis. PLoS One. 9:e986382014. View Article : Google Scholar : PubMed/NCBI | |
Dirac AM and Bernards R: The deubiquitinating enzyme USP26 is a regulator of androgen receptor signaling. Mol Cancer Res. 8:844–854. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cai Q, Chen Y, Zhang D, Pan J, Xie Z, Ma S, Liu C, Zuo J, Zhou X, Quan C, et al: Loss of epithelial AR increase castration resistant stem-like prostate cancer cells and promotes cancer metastasis via TGF-β1/EMT pathway. Transl Androl Urol. 9:1013–1027. 2020. View Article : Google Scholar : PubMed/NCBI | |
Allen-Petersen BL and Sears RC: Mission Possible: Advances in MYC Therapeutic Targeting in Cancer. BioDrugs. 33:539–553. 2019. View Article : Google Scholar : PubMed/NCBI | |
Blackwood EM and Eisenman RN: Max: A helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science. 251:1211–1217. 1991. View Article : Google Scholar : PubMed/NCBI | |
Blackwood EM, Lüscher B, Kretzner L and Eisenman RN: The Myc:Max protein complex and cell growth regulation. Cold Spring Harb Symp Quant Biol. 56:109–117. 1991. View Article : Google Scholar : PubMed/NCBI | |
Helander S, Montecchio M, Pilstål R, Su Y, Kuruvilla J, Elvén M, Ziauddin JME, Anandapadamanaban M, Cristobal S, Lundström P, et al: Pre-anchoring of Pin1 to unphosphorylated c-Myc in a fuzzy complex regulates c-Myc activity. Structure. 23:2267–2279. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kato GJ, Barrett J, Villa-Garcia M and Dang CV: An amino-terminal c-myc domain required for neoplastic transformation activates transcription. Mol Cell Biol. 10:5914–5920. 1990. View Article : Google Scholar : PubMed/NCBI | |
Prendergast GC and Ziff EB: Methylation-sensitive sequence-specific DNA binding by the c-Myc basic region. Science. 251:186–189. 1991. View Article : Google Scholar : PubMed/NCBI | |
Ashrafizadeh M, Zarabi A, Hushmandi K, Moghadam ER, Hashemi F, Daneshi S, Hashemi F, Tavakol S, Mohammadinejad R, Najafi M, et al: C-Myc signaling pathway in treatment and prevention of brain tumors. Curr Cancer Drug Targets. 21:2–20. 2021. View Article : Google Scholar : PubMed/NCBI | |
Park JH, Pyun WY and Park HW: Cancer Metabolism: Phenotype, signaling and therapeutic targets. Cells. 9:23082020. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Liu H and Qing G: Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct Target Ther. 3:52018. View Article : Google Scholar : PubMed/NCBI | |
Yang S, Wang J, Guo S, Huang D, Lorigados IB, Nie X, Lou D, Li Y, Liu M, Kang Y, et al: Transcriptional activation of USP16 gene expression by NFκB signaling. Mol Brain. 12:1202019. View Article : Google Scholar : PubMed/NCBI | |
Zheng J, Chen C, Guo C, Caba C, Tong Y and Wang H: The pleiotropic ubiquitin-specific peptidase 16 and its many substrates. Cells. 12:8862023. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Li H, Zhu Y, Ma X, Shao Z, Yang Z, Cai C, Wu Z, Li M, Gong W and Wu X: LncRNA MNX1-AS1 sustains inactivation of Hippo pathway through a positive feedback loop with USP16/IGF2BP3 axis in gallbladder cancer. Cancer Lett. 547:2158622022. View Article : Google Scholar : PubMed/NCBI | |
Xu G, Yang Z, Ding Y, Liu Y, Zhang L, Wang B, Tang M, Jing T, Jiao K, Xu X, et al: The deubiquitinase USP16 functions as an oncogenic factor in K-RAS-driven lung tumorigenesis. Oncogene. 40:5482–5494. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Rao Y, Zhu H, Jiang B and Zhu M: USP16 regulates the stability and function of LDL receptor by Deubiquitination. Int Heart J. 61:1034–1040. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ge J, Yu W, Li J, Ma H, Wang P, Zhou Y, Wang Y, Zhang J and Shi G: USP16 regulates castration-resistant prostate cancer cell proliferation by deubiquitinating and stablizing c-Myc. J Exp Clin Cancer Res. 40:592021. View Article : Google Scholar : PubMed/NCBI | |
He L, Liu X, Yang J, Li W, Liu S, Liu X, Yang Z, Ren J, Wang Y, Shan L, et al: Imbalance of the reciprocally inhibitory loop between the ubiquitin-specific protease USP43 and EGFR/PI3K/AKT drives breast carcinogenesis. Cell Res. 28:934–951. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ye DX, Wang SS, Huang Y, Wang XJ and Chi P: USP43 directly regulates ZEB1 protein, mediating proliferation and metastasis of colorectal cancer. J Cancer. 12:404–416. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xue Y, Li M, Hu J, Song Y, Guo W, Miao C, Ge D, Hou Y, Wang X, Huang X, et al: Ca(v)2.2-NFAT2-USP43 axis promotes invadopodia formation and breast cancer metastasis through cortactin stabilization. Cell Death Dis. 13:8122022. View Article : Google Scholar : PubMed/NCBI | |
Sun Q, Zhang H, Zong L, Julaiti A, Jing X and Zhang L: Prognostic value and oncogenic effects of ubiquitin-specific protease 43 in lung squamous cell carcinoma. Tohoku J Exp Med. 257:135–145. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Lin Z, Guo X, Al-Danakh A, He H, Qin H, Ma C, Zhang N and Tan G: Ubiquitin-specific protease 43 impacts pancreatic ductal adenocarcinoma prognosis by altering its proliferation and infiltration of surrounding immune cells. J Immunol Res. 2023:43113882023. View Article : Google Scholar : PubMed/NCBI | |
Lavaud M, Mullard M, Tesfaye R, Amiaud J, Legrand M, Danieau G, Brion R, Morice S, Regnier L, Dupuy M, et al: Overexpression of the Ubiquitin Specific Proteases USP43, USP41, USP27x and USP6 in Osteosarcoma Cell Lines: Inhibition of Osteosarcoma Tumor Growth and Lung Metastasis Development by the USP Antagonist PR619. Cells. 10:22682021. View Article : Google Scholar : PubMed/NCBI | |
Li M, Yu J, Ju L, Wang Y, Jin W, Zhang R, Xiang W, Ji M, Du W, Wang G, et al: USP43 stabilizes c-Myc to promote glycolysis and metastasis in bladder cancer. Cell Death Dis. 15:442024. View Article : Google Scholar : PubMed/NCBI | |
Nusse R and Varmus HE: Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 31:99–109. 1982. View Article : Google Scholar : PubMed/NCBI | |
Zou G and Park JI: Wnt signaling in liver regeneration, disease, and cancer. Clin Mol Hepatol. 29:33–50. 2023. View Article : Google Scholar : PubMed/NCBI | |
Clevers H and Nusse R: Wnt/β-catenin signaling and disease. Cell. 149:1192–1205. 2012. View Article : Google Scholar : PubMed/NCBI | |
Steinhart Z and Angers S: Wnt signaling in development and tissue homeostasis. Development. 145:dev1465892018. View Article : Google Scholar : PubMed/NCBI | |
Zhan T, Rindtorff N and Boutros M: Wnt signaling in cancer. Oncogene. 36:1461–1473. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hafez N, Modather El-Awadly Z and Arafa RK: UCH-L3 structure and function: Insights about a promising drug target. Eur J Med Chem. 227:1139702022. View Article : Google Scholar : PubMed/NCBI | |
Zhu T, Xu L, Peng J, Chen M and Xu H: Molecular characteristics and immune function of ubiquitin C-terminal hydrolase-L3 in Macrobrachium nipponense. Fish Shellfish Immunol. 121:295–304. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ma Q, Lu Q, Lei X, Zhao J, Sun W, Wang J, Zhu Q and Huang D: UCHL3 promotes hepatocellular carcinoma cell migration by de-ubiquitinating and stabilizing Vimentin. Front Oncol. 13:10884752023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Liu JB, Liu J, Liu M, Liu HL and Zhang J: UCHL3 promotes cervical cancer development and metastasis by stabilizing NRF2 via deubiquitination. Biochem Biophys Res Commun. 641:132–138. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zheng Y, Li X, Dong X, Chen W, Guan Z and Zhang C: UCHL3 promotes proliferation of colorectal cancer cells by regulating SOX12 via AKT/mTOR signaling pathway. Am J Transl Res. 12:6445–6454. 2020.PubMed/NCBI | |
Moroney MR, Woodruff E, Qamar L, Bradford AP, Wolsky R, Bitler BG and Corr BR: Inhibiting Wnt/beta-catenin in CTNNB1-mutated endometrial cancer. Mol Carcinog. 60:511–523. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Fan MQ, Xie XX, Shu QP, Du XH, Qi LZ, Zhang XD, Zhang MH, Shan G, Du RL and Li SZ: Activation of CTNNB1 by deubiquitinase UCHL3-mediated stabilization facilitates bladder cancer progression. J Transl Med. 21:6562023. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Qin B, Yassine DM, Luo M, Liu X, Wang F and Wang Y: Structure and function of the highly homologous deubiquitinases ubiquitin specific peptidase 25 and 28: Insights into their pathophysiological and therapeutic roles. Biochem Pharmacol. 213:1156242023. View Article : Google Scholar : PubMed/NCBI | |
Zhong B, Liu X, Wang X, Liu X, Li H, Darnay BG, Lin X, Sun SC and Dong C: Ubiquitin-specific protease 25 regulates TLR4-dependent innate immune responses through deubiquitination of the adaptor protein TRAF3. Sci Signal. 6:ra352013. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Miao X, Shen J, Lou L, Chen K, Mei F, Chen M, Su X, Du X, Zhu Z, et al: USP25 ameliorates diabetic nephropathy by inhibiting TRAF6-mediated inflammatory responses. Int Immunopharmacol. 124((Pt A)): 1108772023. View Article : Google Scholar : PubMed/NCBI | |
Ye B, Zhou H, Chen Y, Luo W, Lin W, Zhao Y, Han J, Han X, Huang W, Wu G, et al: USP25 Ameliorates Pathological Cardiac Hypertrophy by Stabilizing SERCA2a in Cardiomyocytes. Circ Res. 132:465–480. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zheng Q, Song B, Li G, Cai F, Wu M, Zhao Y, Jiang L, Guo T, Shen M, Hou H, et al: USP25 inhibition ameliorates Alzheimer's pathology through the regulation of APP processing and Aβ generation. J Clin Invest. 132:e1521702022. View Article : Google Scholar : PubMed/NCBI | |
Cheng H, Li X, Wang C, Chen Y, Li S, Tan J, Tan B and He Y: Inhibition of tankyrase by a novel small molecule significantly attenuates prostate cancer cell proliferation. Cancer Lett. 443:80–90. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gu Z, Lin C, Hu J, Xia J, Wei S and Gao D: USP34 Regulated Human Pancreatic Cancer Cell Survival via AKT and PKC Pathways. Biol Pharm Bull. 42:573–579. 2019. View Article : Google Scholar : PubMed/NCBI | |
Guo YC, Wang MY, Zhang SW, Wu YS, Zhou CC, Zheng RX, Shao B, Wang Y, Xie L, Liu WQ, et al: Ubiquitin-specific protease USP34 controls osteogenic differentiation and bone formation by regulating BMP2 signaling. EMBO J. 37:e993982018. View Article : Google Scholar : PubMed/NCBI | |
Zhu Q, Liang P, Meng H, Li F, Miao W, Chu C, Wang W, Li D, Chen C, Shi Y, et al: Stabilization of Pin1 by USP34 promotes Ubc9 isomerization and protein sumoylation in glioma stem cells. Nat Commun. 15:402024. View Article : Google Scholar : PubMed/NCBI | |
Lui TT, Lacroix C, Ahmed SM, Goldenberg SJ, Leach CA, Daulat AM and Angers S: The ubiquitin-specific protease USP34 regulates axin stability and Wnt/β-catenin signaling. Mol Cell Biol. 31:2053–2065. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Yan Y, Ma R, Lv X, Zhang L, Wang J, Zhu W, Zhao L, Jiang L, Zhao L, et al: Expression signature of six-snoRNA serves as novel non-invasive biomarker for diagnosis and prognosis prediction of renal clear cell carcinoma. J Cell Mol Med. 24:2215–2228. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ma S, Meng Z, Chen R and Guan KL: The Hippo Pathway: Biology and Pathophysiology. Annu Rev Biochem. 88:577–604. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lee U, Cho EY and Jho EH: Regulation of Hippo signaling by metabolic pathways in cancer. Biochim Biophys Acta Mol Cell Res. 1869:1192012022. View Article : Google Scholar : PubMed/NCBI | |
Wu Z and Guan KL: Hippo Signaling in Embryogenesis and Development. Trends Biochem Sci. 46:51–63. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cao Z, An L, Han Y, Jiao S and Zhou Z: The Hippo signaling pathway in gastric cancer. Acta Biochim Biophys Sin (Shanghai). 55:893–903. 2023.PubMed/NCBI | |
Zhu N, Yang R, Wang X, Yuan L, Li X, Wei F and Zhang L: The Hippo signaling pathway: From multiple signals to the hallmarks of cancers. Acta Biochim Biophys Sin (Shanghai). 55:904–913. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gu Y, Wu S, Fan J, Meng Z, Gao G, Liu T, Wang Q, Xia H, Wang X and Wu K: CYLD regulates cell ferroptosis through Hippo/YAP signaling in prostate cancer progression. Cell Death Dis. 15:792024. View Article : Google Scholar : PubMed/NCBI | |
Abdul Rehman SA, Kristariyanto YA, Choi SY, Nkosi PJ, Weidlich S, Labib K, Hofmann K and Kulathu Y: MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes. Mol Cell. 63:146–155. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tang J, Luo Y, Long G and Zhou L: MINDY1 promotes breast cancer cell proliferation by stabilizing estrogen receptor α. Cell Death Dis. 12:9372021. View Article : Google Scholar : PubMed/NCBI | |
Xia BL, Liu KW, Huang HX, Shen MM, Wang B and Gao J: Deubiquitinating enzyme MINDY1 is an independent risk factor for the maintenance of stemness and poor prognosis in liver cancer cells. Zhonghua Gan Zang Bing Za Zhi. 31:518–523. 2023.(In Chinese). PubMed/NCBI | |
James C, Zhao TY, Rahim A, Saxena P, Muthalif NA, Uemura T, Tsuneyoshi N, Ong S, Igarashi K, Lim CY, et al: MINDY1 Is a Downstream Target of the Polyamines and Promotes Embryonic Stem Cell Self-Renewal. Stem Cells. 36:1170–1178. 2018. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Zhou J, Tang J, Zhou F, He Z and Liu T and Liu T: MINDY1 promotes bladder cancer progression by stabilizing YAP. Cancer Cell Int. 21:3952021. View Article : Google Scholar : PubMed/NCBI | |
Dai C, Heemers H and Sharifi N: Androgen signaling in prostate cancer. Cold Spring Harb Perspect Med. 7:a0304522017. View Article : Google Scholar : PubMed/NCBI | |
Deng CC, Zhu DH, Chen YJ, Huang TY, Peng Y, Liu SY, Lu P, Xue YH, Xu YP, Yang B and Rong Z: TRAF4 Promotes Fibroblast Proliferation in Keloids by Destabilizing p53 via Interacting with the Deubiquitinase USP10. J Invest Dermatol. 139:1925–1935.e5. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zeng Z, Wu HX, Zhan N, Huang YB, Wang ZS, Yang GF, Wang P and Fu GH: Prognostic significance of USP10 as a tumor-associated marker in gastric carcinoma. Tumour Biol. 35:3845–3853. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lu C, Ning Z, Wang A, Chen D, Liu X, Xia T, Tekcham DS, Wang W, Li T, Liu X, et al: USP10 suppresses tumor progression by inhibiting mTOR activation in hepatocellular carcinoma. Cancer Lett. 436:139–148. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ye Z, Chen J, Huang P, Xuan Z and Zheng S: Ubiquitin-specific peptidase 10, a deubiquitinating enzyme: Assessing its role in tumor prognosis and immune response. Front Oncol. 12:9901952022. View Article : Google Scholar : PubMed/NCBI | |
Kong L and Jin X: Dysregulation of deubiquitination in breast cancer. Gene. 902:1481752024. View Article : Google Scholar : PubMed/NCBI | |
An T, Lu Y, Yan X and Hou J: Insights Into the Properties, Biological Functions, and Regulation of USP21. Front Pharmacol. 13:9440892022. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Wang L, Jin J, Luan Y, Chen C, Li Y, Chu H, Wang X, Liao G, Yu Y, et al: p38 inhibition provides anti-DNA virus immunity by regulation of USP21 phosphorylation and STING activation. J Exp Med. 214:991–1010. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Kruswick A, Dang H, Tran AD, Kwon SM, Wang XW and Oberdoerffer P: Ubiquitin-specific protease 21 stabilizes BRCA2 to control DNA repair and tumor growth. Nat Commun. 8:1372017. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Zhou B and Chen D: USP21 promotes cell proliferation and metastasis through suppressing EZH2 ubiquitination in bladder carcinoma. Onco Targets Ther. 10:681–689. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lin Z, Yang H, Kong Q, Li J, Lee SM, Gao B, Dong H, Wei J, Song J, Zhang DD and Fang D: USP22 antagonizes p53 transcriptional activation by deubiquitinating Sirt1 to suppress cell apoptosis and is required for mouse embryonic development. Mol Cell. 46:484–494. 2012. View Article : Google Scholar : PubMed/NCBI | |
Feng T, Ling S, Xu C, Ying L, Su D and Xu X: Ubiquitin-specific peptidase 22 in cancer. Cancer Lett. 514:30–37. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zeng K, Xie W, Wang C, Wang S, Liu W, Su Y, Lin L, Zou R, Sun G, Zhou B, et al: USP22 upregulates ZEB1-mediated VEGFA transcription in hepatocellular carcinoma. Cell Death Dis. 14:1942023. View Article : Google Scholar : PubMed/NCBI | |
Xu G, Cai J, Wang L, Jiang L, Huang J, Hu R and Ding F: MicroRNA-30e-5p suppresses non-small cell lung cancer tumorigenesis by regulating USP22-mediated Sirt1/JAK/STAT3 signaling. Exp Cell Res. 362:268–278. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yuan X, Wang H, Xu A, Zhu X, Zhan Y and Wang W: Ubiquitin-specific peptidase 22 promotes proliferation and metastasis in human colon cancer. Oncol Lett. 18:5567–5576. 2019.PubMed/NCBI | |
Lv L, Xiao XY, Gu ZH, Zeng FQ, Huang LQ and Jiang GS: Silencing USP22 by asymmetric structure of interfering RNA inhibits proliferation and induces cell cycle arrest in bladder cancer cells. Mol Cell Biochem. 346:11–21. 2011. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Zhao J, Fu W, Xu Q and Huang D: Immune Evasion and Drug Resistance Mediated by USP22 in Cancer: Novel Targets and Mechanisms. Front Immunol. 13:9183142022. View Article : Google Scholar : PubMed/NCBI | |
Nag N and Dutta S: Deubiquitination in prostate cancer progression: Role of USP22. J Cancer Metastasis Treat. 6:162020.PubMed/NCBI | |
Li C, Zeng X, Qiu S, Gu Y and Zhang Y: Nanomedicine for urologic cancers: Diagnosis and management. Semin Cancer Biol. 86:463–475. 2022. View Article : Google Scholar : PubMed/NCBI | |
Schauer NJ, Magin RS, Liu X, Doherty LM and Buhrlage SJ: Advances in Discovering Deubiquitinating Enzyme (DUB) Inhibitors. J Med Chem. 63:2731–2750. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lee JE, Park CM and Kim JH: USP7 deubiquitinates and stabilizes EZH2 in prostate cancer cells. Genet Mol Biol. 43:e201903382020. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Zhang J, Xu C, Zhang S, Bian S, Jiang F, Ni W, Qu L, Lu C, Ni R, et al: Ubiquitin-specific protease 7 is a drug-able target that promotes hepatocellular carcinoma and chemoresistance. Cancer Cell Int. 20:282020. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Zhu X, Sun R, Ma P, Zhang E, Wang Z, Fan Y, Zhou G and Mao R: Ubiquitin-specific protease 7 is a druggable target that is essential for pancreatic cancer growth and chemoresistance. Invest New Drugs. 38:1707–1716. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Kollipara RK, Srivastava N, Li R, Ravindranathan P, Hernandez E, Freeman E, Humphries CG, Kapur P, Lotan Y, et al: Ablation of the oncogenic transcription factor ERG by deubiquitinase inhibition in prostate cancer. Proc Natl Acad Sci USA. 111:4251–4256. 2014. View Article : Google Scholar : PubMed/NCBI | |
Stolte B, Iniguez AB, Dharia NV, Robichaud AL, Conway AS, Morgan AM, Alexe G, Schauer NJ, Liu X, Bird GH, et al: Genome-scale CRISPR-Cas9 screen identifies druggable dependencies in TP53 wild-type Ewing sarcoma. J Exp Med. 215:2137–2155. 2018. View Article : Google Scholar : PubMed/NCBI | |
Turnbull AP, Ioannidis S, Krajewski WW, Pinto-Fernandez A, Heride C, Martin ACL, Tonkin LM, Townsend EC, Buker SM, Lancia DR, et al: Molecular basis of USP7 inhibition by selective small-molecule inhibitors. Nature. 550:481–486. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Adisetiyo H, Tamura S, Grande F, Garofalo A, Roy-Burman P and Neamati N: Dual inhibition of survivin and MAOA synergistically impairs growth of PTEN-negative prostate cancer. Br J Cancer. 113:242–251. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tolcher AW, Quinn DI, Ferrari A, Ahmann F, Giaccone G, Drake T, Keating A and de Bono JS: A phase II study of YM155, a novel small-molecule suppressor of survivin, in castration-resistant taxane-pretreated prostate cancer. Ann Oncol. 23:968–973. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chow PM, Dong JR, Chang YW, Kuo KL, Lin WC, Liu SH and Huang KH: The UCHL5 inhibitor b-AP15 overcomes cisplatin resistance via suppression of cancer stemness in urothelial carcinoma. Mol Ther Oncolytics. 26:387–398. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jamroze A, Chatta G and Tang DG: Androgen receptor (AR) heterogeneity in prostate cancer and therapy resistance. Cancer Lett. 518:1–9. 2021. View Article : Google Scholar : PubMed/NCBI | |
He Y, Xu W, Xiao YT, Huang H, Gu D and Ren S: Targeting signaling pathways in prostate cancer: mechanisms and clinical trials. Signal Transduct Target Ther. 7:1982022. View Article : Google Scholar : PubMed/NCBI | |
Schellhammer PF and Davis JW: An evaluation of bicalutamide in the treatment of prostate cancer. Clin Prostate Cancer. 2:213–219. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chi KN, Agarwal N, Bjartell A, Chung BH, Pereira de Santana Gomes AJ, Given R, Juárez Soto Á, Merseburger AS, Özgüroğlu M, Uemura H, et al: Apalutamide for metastatic, castration-sensitive prostate cancer. N Engl J Med. 381:13–24. 2019. View Article : Google Scholar : PubMed/NCBI | |
Armstrong AJ, Szmulewitz RZ, Petrylak DP, Holzbeierlein J, Villers A, Azad A, Alcaraz A, Alekseev B, Iguchi T, Shore ND, et al: ARCHES: A Randomized, phase III study of androgen deprivation therapy with enzalutamide or placebo in men with metastatic hormone-sensitive prostate cancer. J Clin Oncol. 37:2974–2986. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fizazi K, Tran N, Fein L, Matsubara N, Rodriguez-Antolin A, Alekseev BY, Özgüroğlu M, Ye D, Feyerabend S, Protheroe A, et al: Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N Engl J Med. 377:352–360. 2017. View Article : Google Scholar : PubMed/NCBI | |
Isaacsson Velho P and Antonarakis ES: PD-1/PD-L1 pathway inhibitors in advanced prostate cancer. Expert Rev Clin Pharmacol. 11:475–486. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Gu Z, Chen Y, Chen B, Chen W, Weng L and Liu X: Application of PD-1 Blockade in Cancer Immunotherapy. Comput Struct Biotechnol J. 17:661–674. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kuang Z, Liu X, Zhang N, Dong J, Sun C, Yin M, Wang Y, Liu L, Xiao D, Zhou X, et al: USP2 promotes tumor immune evasion via deubiquitination and stabilization of PD-L1. Cell Death Differ. 30:2249–2264. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sweeney PL, Suri Y, Basu A, Koshkin VS and Desai A: Mechanisms of tyrosine kinase inhibitor resistance in renal cell carcinoma. Cancer Drug Resist. 6:858–873. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ebrahimi N, Fardi E, Ghaderi H, Palizdar S, Khorram R, Vafadar R, Ghanaatian M, Rezaei-Tazangi F, Baziyar P, Ahmadi A, et al: Receptor tyrosine kinase inhibitors in cancer. Cell Mol Life Sci. 80:1042023. View Article : Google Scholar : PubMed/NCBI | |
McCann AP, Smyth P, Cogo F, McDaid WJ, Jiang L, Lin J, Evergren E, Burden RE, Van Schaeybroeck S, Scott CJ and Burrows JF: USP17 is required for trafficking and oncogenic signaling of mutant EGFR in NSCLC cells. Cell Commun Signal. 16:772018. View Article : Google Scholar : PubMed/NCBI | |
Popova NV and Jücker M: The Role of mTOR signaling as a therapeutic target in cancer. Int J Mol Sci. 22:17432021. View Article : Google Scholar : PubMed/NCBI | |
Hasskarl J: Everolimus. Recent Results Cancer Res. 211:101–123. 2018. View Article : Google Scholar : PubMed/NCBI | |
Stock C, Zaccagnini M, Schulze M, Teber D and Rassweiler JJ: Temsirolimus. Recent Results Cancer Res. 184:189–197. 2010. View Article : Google Scholar : PubMed/NCBI | |
Porta C, Calvo E, Climent MA, Vaishampayan U, Osanto S, Ravaud A, Bracarda S, Hutson TE, Escudier B, Grünwald V, et al: Efficacy and safety of everolimus in elderly patients with metastatic renal cell carcinoma: an exploratory analysis of the outcomes of elderly patients in the RECORD-1 Trial. Eur Urol. 61:826–833. 2012. View Article : Google Scholar : PubMed/NCBI | |
Roldán-Romero JM, Valdivia C, Santos M, Lanillos J, Maroto P, Anguera G, Calsina B, Martinez-Montes A, Monteagudo M, Mellid S, et al: Deubiquitinase USP9X loss sensitizes renal cancer cells to mTOR inhibition. Int J Cancer. 153:1300–1312. 2023. View Article : Google Scholar : PubMed/NCBI |