Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
December-2024 Volume 28 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2024 Volume 28 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Roles of deubiquitinases in urologic cancers (Review)

  • Authors:
    • Liangpei Wu
    • Jiahui Wang
    • Lin Chai
    • Jun Chen
    • Xiaofeng Jin
  • View Affiliations / Copyright

    Affiliations: Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
    Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 609
    |
    Published online on: October 14, 2024
       https://doi.org/10.3892/ol.2024.14743
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Human health is endangered by the occurrence and progression of urological cancers, including renal cell carcinoma, prostate cancer and bladder cancer, which are usually associated with the activation of oncogenic factors and inhibition of cancer suppressors. The primary mechanism for protein breakdown in cells is the ubiquitin‑proteasome system, whilst deubiquitinases contribute to the reversal of this process. However, both are important for protein homeostasis. Deubiquitination may also be involved in the control of the cell cycle, proliferation and apoptosis, and dysregulated deubiquitination is associated with the malignant transformation, invasion and metastasis of urologic malignancies. Therefore, a comprehensive summary of the mechanisms underlying deubiquitination in urological cancers may provide novel strategies and insights for diagnosis and treatment. The present review aimed to methodically clarify the role of deubiquitinating enzymes in urinary system cancers as well as their prospective application prospects for clinical treatment.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Nguyen-Nielsen M and Borre M: Diagnostic and Therapeutic Strategies for Prostate Cancer. Semin Nucl Med. 46:484–490. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Bahadoram S, Davoodi M, Hassanzadeh S, Bahadoram M, Barahman M and Mafakher L: Renal cell carcinoma: An overview of the epidemiology, diagnosis, and treatment. G Ital Nefrol. 39:2022–vol3. 2022.PubMed/NCBI

4 

Lenis AT, Lec PM, Chamie K and Mshs MD: Bladder Cancer: A Review. JAMA. 324:1980–1991. 2020. View Article : Google Scholar : PubMed/NCBI

5 

Gao H, Yin J, Ji C, Yu X, Xue J, Guan X, Zhang S, Liu X and Xing F: Targeting ubiquitin specific proteases (USPs) in cancer immunotherapy: From basic research to preclinical application. J Exp Clin Cancer Res. 42:2252023. View Article : Google Scholar : PubMed/NCBI

6 

Zheng LL, Wang LT, Pang YW, Sun LP and Shi L: Recent advances in the development of deubiquitinases inhibitors as antitumor agents. Eur J Med Chem. 266:1161612024. View Article : Google Scholar : PubMed/NCBI

7 

Popovic D, Vucic D and Dikic I: Ubiquitination in disease pathogenesis and treatment. Nat Med. 20:1242–1253. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Dagar G, Kumar R, Yadav KK, Singh M and Pandita TK: Ubiquitination and deubiquitination: Implications on cancer therapy. Biochim Biophys Acta Gene Regul Mech. 1866:1949792023. View Article : Google Scholar : PubMed/NCBI

9 

Han S, Wang R, Zhang Y, Li X, Gan Y, Gao F, Rong P, Wang W and Li W: The role of ubiquitination and deubiquitination in tumor invasion and metastasis. Int J Biol Sci. 18:2292–2303. 2022. View Article : Google Scholar : PubMed/NCBI

10 

Ye Z, Yang J, Jiang H and Zhan X: The roles of protein ubiquitination in tumorigenesis and targeted drug discovery in lung cancer. Front Endocrinol (Lausanne). 14:12201082023. View Article : Google Scholar : PubMed/NCBI

11 

Zhou Z, Zheng K, Zhou S, Yang Y, Chen J and Jin X: E3 ubiquitin ligases in nasopharyngeal carcinoma and implications for therapies. J Mol Med (Berl). 101:1543–1565. 2023. View Article : Google Scholar : PubMed/NCBI

12 

Dewson G, Eichhorn PJA and Komander D: Deubiquitinases in cancer. Nat Rev Cancer. 23:842–862. 2023. View Article : Google Scholar : PubMed/NCBI

13 

Coutte L, Dreyer C, Sablin MP, Faivre S and Raymond E: PI3K-AKT-mTOR pathway and cancer. Bull Cancer. 99:173–180. 2012.(In French). View Article : Google Scholar : PubMed/NCBI

14 

Cantley LC: The phosphoinositide 3-kinase pathway. Science. 296:1655–1657. 2002. View Article : Google Scholar : PubMed/NCBI

15 

Vanhaesebroeck B, Whitehead MA and Piñeiro R: Molecules in medicine mini-review: Isoforms of PI3K in biology and disease. J Mol Med (Berl). 94:5–11. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Gagliardi PA, Puliafito A and Primo L: PDK1: At the crossroad of cancer signaling pathways. Semin Cancer Biol. 48:27–35. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Tan AC: Targeting the PI3K/Akt/mTOR pathway in non-small cell lung cancer (NSCLC). Thorac Cancer. 11:511–518. 2020. View Article : Google Scholar : PubMed/NCBI

18 

Yu Z, Li H, Zhu J, Wang H and Jin X: The roles of E3 ligases in Hepatocellular carcinoma. Am J Cancer Res. 12:1179–1214. 2022.PubMed/NCBI

19 

Ngeow J and Eng C: PTEN in Hereditary and Sporadic Cancer. Cold Spring Harb Perspect Med. 10:a0360872020. View Article : Google Scholar : PubMed/NCBI

20 

Noorolyai S, Shajari N, Baghbani E, Sadreddini S and Baradaran B: The relation between PI3K/AKT signalling pathway and cancer. Gene. 698:120–128. 2019. View Article : Google Scholar : PubMed/NCBI

21 

Christine A, Park MK, Song SJ and Song MS: The equilibrium of tumor suppression: DUBs as active regulators of PTEN. Exp Mol Med. 54:1814–1821. 2022. View Article : Google Scholar : PubMed/NCBI

22 

Saha G, Roy S, Basu M and Ghosh MK: USP7-a crucial regulator of cancer hallmarks. Biochim Biophys Acta Rev Cancer. 1878:1889032023. View Article : Google Scholar : PubMed/NCBI

23 

Pozhidaeva A and Bezsonova I: USP7: Structure, substrate specificity, and inhibition. DNA Repair (Amst). 76:30–39. 2019. View Article : Google Scholar : PubMed/NCBI

24 

Song MS, Salmena L, Carracedo A, Egia A, Lo-Coco F, Teruya-Feldstein J and Pandolfi PP: The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature. 455:813–817. 2008. View Article : Google Scholar : PubMed/NCBI

25 

Wang Q, Sun Z, Xia W, Sun L, Du Y, Zhang Y and Jia Z: Role of USP13 in physiology and diseases. Front Mol Biosci. 9:9771222022. View Article : Google Scholar : PubMed/NCBI

26 

Jin J, He J, Li X, Ni X and Jin X: The role of ubiquitination and deubiquitination in PI3K/AKT/mTOR pathway: A potential target for cancer therapy. Gene. 889:1478072023. View Article : Google Scholar : PubMed/NCBI

27 

Cui X, Yu H, Yao J, Li J, Li Z and Jiang Z: ncRNA-mediated overexpression of ubiquitin-specific proteinase 13 contributes to the progression of prostate cancer via modulating AR signaling, DNA damage repair and immune infiltration. BMC Cancer. 22:13502022. View Article : Google Scholar : PubMed/NCBI

28 

Zhao Y, Zhang B, Lei Y, Sun J, Zhang Y, Yang S and Zhang X: Knockdown of USP39 induces cell cycle arrest and apoptosis in melanoma. Tumour Biol. 37:13167–13176. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Yuan J, Li X, Zhang G, Cheng W, Wang W, Lei Y, Ma Q and Song G: USP39 mediates p21-dependent proliferation and neoplasia of colon cancer cells by regulating the p53/p21/CDC2/cyclin B1 axis. Mol Carcinog. 60:265–278. 2021. View Article : Google Scholar : PubMed/NCBI

30 

Yuan X, Sun X, Shi X, Jiang C, Yu D, Zhang W, Guan W, Zhou J, Wu Y, Qiu Y and Ding Y: USP39 promotes the growth of human hepatocellular carcinoma in vitro and in vivo. Oncol Rep. 34:823–832. 2015. View Article : Google Scholar : PubMed/NCBI

31 

An Y, Yang S, Guo K, Ma B and Wang Y: Reduced USP39 expression inhibits malignant proliferation of medullary thyroid carcinoma in vitro. World J Surg Oncol. 13:2552015. View Article : Google Scholar : PubMed/NCBI

32 

Li KY, Zhang J, Jiang LC, Zhang B, Xia CP, Xu K, Chen HY, Yang QZ, Liu SW and Zhu H: Knockdown of USP39 by lentivirus-mediated RNA interference suppresses the growth of oral squamous cell carcinoma. Cancer Biomark. 16:137–144. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Xing Z, Sun F, He W, Wang Z, Song X and Zhang F: Downregulation of ubiquitin-specific peptidase 39 suppresses the proliferation and induces the apoptosis of human colorectal cancer cells. Oncol Lett. 15:5443–5450. 2018.PubMed/NCBI

34 

Xu Y, Zhu MR, Zhang JY, Si GM and Lv JJ: Knockdown of ubiquitin-specific peptidase 39 inhibits the malignant progression of human renal cell carcinoma. Mol Med Rep. 17:4729–4735. 2018.PubMed/NCBI

35 

Rolén U, Kobzeva V, Gasparjan N, Ovaa H, Winberg G, Kisseljov F and Masucci MG: Activity profiling of deubiquitinating enzymes in cervical carcinoma biopsies and cell lines. Mol Carcinog. 45:260–269. 2006. View Article : Google Scholar : PubMed/NCBI

36 

Chen Y, Fu D, Xi J, Ji Z, Liu T, Ma Y, Zhao Y, Dong L, Wang Q and Shen X: Expression and clinical significance of UCH37 in human esophageal squamous cell carcinoma. Dig Dis Sci. 57:2310–2317. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Wang L, Chen YJ, Xu K, Wang YY, Shen XZ and Tu RQ: High expression of UCH37 is significantly associated with poor prognosis in human epithelial ovarian cancer. Tumour Biol. 35:11427–11433. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Chen Z, Niu X, Li Z, Yu Y, Ye X, Lu S and Chen Z: Effect of ubiquitin carboxy-terminal hydrolase 37 on apoptotic in A549 cells. Cell Biochem Funct. 29:142–148. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Cutts AJ, Soond SM, Powell S and Chantry A: Early phase TGFβ receptor signalling dynamics stabilised by the deubiquitinase UCH37 promotes cell migratory responses. Int J Biochem Cell Biol. 43:604–612. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Cao Y, Yan X, Bai X, Tang F, Si P, Bai C, Tuoheti K, Guo L, Yisha Z and Liu T and Liu T: UCHL5 Promotes Proliferation and Migration of Bladder Cancer Cells by Activating c-Myc via AKT/mTOR Signaling. Cancers (Basel). 14:55382022. View Article : Google Scholar : PubMed/NCBI

41 

Oeckinghaus A, Hayden MS and Ghosh S: Crosstalk in NF-κB signaling pathways. Nat Immunol. 12:695–708. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Lawrence T: The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 1:a0016512009. View Article : Google Scholar : PubMed/NCBI

43 

Gilmore TD: Introduction to NF-kappaB: Players, pathways, perspectives. Oncogene. 25:6680–6684. 2006. View Article : Google Scholar : PubMed/NCBI

44 

Hayden MS and Ghosh S: Shared principles in NF-kappaB signaling. Cell. 132:344–362. 2008. View Article : Google Scholar : PubMed/NCBI

45 

Au PY and Yeh WC: Physiological roles and mechanisms of signaling by TRAF2 and TRAF5. Adv Exp Med Biol. 597:32–47. 2007. View Article : Google Scholar : PubMed/NCBI

46 

Zhang W, Zhang X, Wu XL, He LS, Zeng XF, Crammer AC and Lipsky PE: Competition between TRAF2 and TRAF6 regulates NF-kappaB activation in human B lymphocytes. Chin Med Sci J. 25:1–12. 2010. View Article : Google Scholar : PubMed/NCBI

47 

Liu H, Zeng L, Yang Y, Guo C and Wang H: Bcl-3: A Double-Edged Sword in Immune Cells and Inflammation. Front Immunol. 13:8476992022. View Article : Google Scholar : PubMed/NCBI

48 

Franzoso G, Bours V, Azarenko V, Park S, Tomita-Yamaguchi M, Kanno T, Brown K and Siebenlist U: The oncoprotein Bcl-3 can facilitate NF-kappa B-mediated transactivation by removing inhibiting p50 homodimers from select kappa B sites. EMBO J. 12:3893–3901. 1993. View Article : Google Scholar : PubMed/NCBI

49 

Fujita T, Nolan GP, Liou HC, Scott ML and Baltimore D: The candidate proto-oncogene bcl-3 encodes a transcriptional coactivator that activates through NF-kappa B p50 homodimers. Genes Dev. 7:1354–1363. 1993. View Article : Google Scholar : PubMed/NCBI

50 

Tang W, Wang H, Claudio E, Tassi I, Ha HL, Saret S and Siebenlist U: The oncoprotein and transcriptional regulator Bcl-3 governs plasticity and pathogenicity of autoimmune T cells. Immunity. 41:555–566. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Marín-Rubio JL, Raote I, Inns J, Dobson-Stone C and Rajan N: CYLD in health and disease. Dis Model Mech. 16:dmm0500932023. View Article : Google Scholar : PubMed/NCBI

52 

Mathis BJ, Lai Y, Qu C, Janicki JS and Cui T: CYLD-mediated signaling and diseases. Curr Drug Targets. 16:284–294. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Massoumi R: CYLD: A deubiquitination enzyme with multiple roles in cancer. Future Oncol. 7:285–297. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Sim MY, Yuen JSP and Go ML: Anti-survivin effect of the small molecule inhibitor YM155 in RCC cells is mediated by time-dependent inhibition of the NF-κB pathway. Sci Rep. 8:102892018. View Article : Google Scholar : PubMed/NCBI

55 

Yuan H, Wei S, Ren Z, Li F, Liu B, Liu R and Zhang X: KLHL21/CYLD signaling confers aggressiveness in bladder cancer through inactivating NF-κB signaling. Int Immunopharmacol. 114:1092022023. View Article : Google Scholar : PubMed/NCBI

56 

Man X, Piao C, Lin X, Kong C, Cui X and Jiang Y: USP13 functions as a tumor suppressor by blocking the NF-kB-mediated PTEN downregulation in human bladder cancer. J Exp Clin Cancer Res. 38:2592019. View Article : Google Scholar : PubMed/NCBI

57 

Man X, Piao C, Lin X, Kong C, Cui X and Jiang Y: Correction to: USP13 functions as a tumor suppressor by blocking the NF-kB-mediated PTEN downregulation in human bladder cancer. J Exp Clin Cancer Res. 40:3862021. View Article : Google Scholar : PubMed/NCBI

58 

Yang GF, Zhang X, Su YG, Zhao R and Wang YY: The role of the deubiquitinating enzyme DUB3/USP17 in cancer: A narrative review. Cancer Cell Int. 21:4552021. View Article : Google Scholar : PubMed/NCBI

59 

Han L, Yang J, Wang X, Wu Q, Yin S, Li Z, Zhang J, Xing Y, Chen Z, Tsun A, et al: The E3 deubiquitinase USP17 is a positive regulator of retinoic acid-related orphan nuclear receptor γt (RORγt) in Th17 cells. J Biol Chem. 289:25546–25555. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Haq S and Ramakrishna S: Deubiquitylation of deubiquitylases. Open Biol. 7:1700162017. View Article : Google Scholar : PubMed/NCBI

61 

Baohai X, Shi F and Yongqi F: Inhibition of ubiquitin specific protease 17 restrains prostate cancer proliferation by regulation of epithelial-to-mesenchymal transition (EMT) via ROS production. Biomed Pharmacother. 118:1089462019. View Article : Google Scholar : PubMed/NCBI

62 

Fang JY and Richardson BC: The MAPK signalling pathways and colorectal cancer. Lancet Oncol. 6:322–327. 2005. View Article : Google Scholar : PubMed/NCBI

63 

Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y and Hu LL: ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 19:1997–2007. 2020.PubMed/NCBI

64 

Santarpia L, Lippman SM and El-Naggar AK: Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets. 16:103–119. 2012. View Article : Google Scholar : PubMed/NCBI

65 

Wu PK, Becker A and Park JI: Growth Inhibitory Signaling of the Raf/MEK/ERK Pathway. Int J Mol Sci. 21:54362020. View Article : Google Scholar : PubMed/NCBI

66 

Maik-Rachline G, Hacohen-Lev-Ran A and Seger R: Nuclear ERK: Mechanism of Translocation, Substrates, and Role in Cancer. Int J Mol Sci. 20:11942019. View Article : Google Scholar : PubMed/NCBI

67 

Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, Dimitriadoy S, Liu DL, Kantheti HS, Saghafinia S, et al: Oncogenic signaling pathways in the cancer genome atlas. Cell. 173:321–337.e10. 2018. View Article : Google Scholar : PubMed/NCBI

68 

Zhang J, Wang J, Luan T, Zuo Y, Chen J, Zhang H, Ye Z, Wang H and Hai B: Deubiquitinase USP9X regulates the invasion of prostate cancer cells by regulating the ERK pathway and mitochondrial dynamics. Oncol Rep. 41:3292–3304. 2019.PubMed/NCBI

69 

Hu W, Su Y, Fei X, Wang X, Zhang G, Su C, Du T, Yang T, Wang G, Tang Z and Zhang J: Ubiquitin specific peptidase 19 is a prognostic biomarker and affect the proliferation and migration of clear cell renal cell carcinoma. Oncol Rep. 43:1964–1974. 2020.PubMed/NCBI

70 

Meng Y, Hong C, Yang S, Qin Z, Yang L and Huang Y: Roles of USP9X in cellular functions and tumorigenesis (Review). Oncol Lett. 26:5062023. View Article : Google Scholar : PubMed/NCBI

71 

Wan YF, Zhang CY, Cheng XW, Liu LS, Zhou T, Gao JK, Zhu HQ and Liu YH: USP9X expression is functionally related to laryngeal cancer. J Cancer. 14:591–599. 2023. View Article : Google Scholar : PubMed/NCBI

72 

Jaiswal A, Murakami K, Elia A, Shibahara Y, Done SJ, Wood SA, Donato NJ, Ohashi PS and Reedijk M: Therapeutic inhibition of USP9x-mediated Notch signaling in triple-negative breast cancer. Proc Natl Acad Sci USA. 118:e21015921182021. View Article : Google Scholar : PubMed/NCBI

73 

Jie X, Fong WP, Zhou R, Zhao Y, Zhao Y, Meng R, Zhang S, Dong X, Zhang T, Yang K, et al: USP9X-mediated KDM4C deubiquitination promotes lung cancer radioresistance by epigenetically inducing TGF-β2 transcription. Cell Death Differ. 28:2095–2111. 2021. View Article : Google Scholar : PubMed/NCBI

74 

Zhu Y, Gu L, Lin X, Zhou X, Lu B, Liu C, Lei C, Zhou F, Zhao Q, Prochownik EV and Li Y: USP19 exacerbates lipogenesis and colorectal carcinogenesis by stabilizing ME1. Cell Rep. 37:1101742021. View Article : Google Scholar : PubMed/NCBI

75 

Lee JG, Kim W, Gygi S and Ye Y: Characterization of the deubiquitinating activity of USP19 and its role in endoplasmic reticulum-associated degradation. J Biol Chem. 289:3510–3517. 2014. View Article : Google Scholar : PubMed/NCBI

76 

Dong Z, Guo S, Wang Y, Zhang J, Luo H, Zheng G, Yang D, Zhang T, Yan L, Song L, et al: USP19 Enhances MMP2/MMP9-Mediated tumorigenesis in gastric cancer. Onco Targets Ther. 13:8495–8510. 2020. View Article : Google Scholar : PubMed/NCBI

77 

Tyagi A, Karapurkar JK, Colaco JC, Sarodaya N, Antao AM, Kaushal K, Haq S, Chandrasekaran AP, Das S, Singh V, et al: USP19 Negatively Regulates p53 and promotes cervical cancer progression. Mol Biotechnol. 66:2032–2045. 2024. View Article : Google Scholar : PubMed/NCBI

78 

Li X, Yuan J, Song C, Lei Y, Xu J, Zhang G, Wang W and Song G: Deubiquitinase USP39 and E3 ligase TRIM26 balance the level of ZEB1 ubiquitination and thereby determine the progression of hepatocellular carcinoma. Cell Death Diffe. 28:2315–2332. 2021. View Article : Google Scholar : PubMed/NCBI

79 

Zhu X, Ma J, Lu M, Liu Z, Sun Y and Chen H: The Deubiquitinase USP39 promotes esophageal squamous cell carcinoma malignancy as a splicing factor. Genes (Basel). 13:8192022. View Article : Google Scholar : PubMed/NCBI

80 

Zhang Z, Liu W, Bao X, Sun T, Wang J, Li M and Liu C: USP39 facilitates breast cancer cell proliferation through stabilization of FOXM1. Am J Cancer Res. 12:3644–3661. 2022.PubMed/NCBI

81 

Yuan J, Li X, Zhang Y, Zhang G, Cheng W, Wang W, Lei Y and Song G: USP39 attenuates the antitumor activity of cisplatin on colon cancer cells dependent on p53. Cell Biol Toxicol. 39:1995–2010. 2023. View Article : Google Scholar : PubMed/NCBI

82 

Huang J: Current developments of targeting the p53 signaling pathway for cancer treatment. Pharmacol Ther. 220:1077202021. View Article : Google Scholar : PubMed/NCBI

83 

Joerger AC and Fersht AR: The p53 Pathway: Origins, inactivation in cancer, and emerging therapeutic approaches. Annu Rev Biochem. 85:375–404. 2016. View Article : Google Scholar : PubMed/NCBI

84 

Lahalle A, Lacroix M, De Blasio C, Cissé MY, Linares LK and Le Cam L: The p53 pathway and metabolism: The tree that hides the forest. Cancers (Basel). 13:1332021. View Article : Google Scholar : PubMed/NCBI

85 

Zhao Y, Yu H and Hu W: The regulation of MDM2 oncogene and its impact on human cancers. Acta Biochim Biophys Sin (Shanghai). 46:180–189. 2014. View Article : Google Scholar : PubMed/NCBI

86 

Kwon SK, Saindane M and Baek KH: p53 stability is regulated by diverse deubiquitinating enzymes. Biochim Biophys Acta Rev Cancer. 1868:404–411. 2017. View Article : Google Scholar : PubMed/NCBI

87 

Klein AM, de Queiroz RM, Venkatesh D and Prives C: The roles and regulation of MDM2 and MDMX: It is not just about p53. Genes Dev. 35:575–601. 2021. View Article : Google Scholar : PubMed/NCBI

88 

Ren Y, Zhao P, Liu J, Yuan Y, Cheng Q, Zuo Y, Qian L, Liu C, Guo T, Zhang L, et al: Deubiquitinase USP2a sustains interferons antiviral activity by restricting ubiquitination of activated STAT1 in the Nucleus. PLoS Pathog. 12:e10057642016. View Article : Google Scholar : PubMed/NCBI

89 

Li Y, He X, Wang S, Shu HB and Liu Y: USP2a positively regulates TCR-induced NF-κB activation by bridging MALT1-TRAF6. Protein Cell. 4:62–70. 2013. View Article : Google Scholar : PubMed/NCBI

90 

Allende-Vega N, Sparks A, Lane DP and Saville MK: MdmX is a substrate for the deubiquitinating enzyme USP2a. Oncogene. 29:432–441. 2010. View Article : Google Scholar : PubMed/NCBI

91 

Xiong B, Huang J, Liu Y, Zou M, Zhao Z, Gong J, Wu X and Qiu C: Ubiquitin-specific protease 2a promotes hepatocellular carcinoma progression via deubiquitination and stabilization of RAB1A. Cell Oncol (Dordr). 44:329–343. 2021. View Article : Google Scholar : PubMed/NCBI

92 

Selvendiran K, Ahmed S, Dayton A, Ravi Y, Kuppusamy ML, Bratasz A, Rivera BK, Kálai T, Hideg K and Kuppusamy P: HO-3867, a synthetic compound, inhibits the migration and invasion of ovarian carcinoma cells through downregulation of fatty acid synthase and focal adhesion kinase. Mol Cancer Res. 8:1188–1197. 2010. View Article : Google Scholar : PubMed/NCBI

93 

Kim J, Keay SK, You S, Loda M and Freeman MR: A synthetic form of frizzled 8-associated antiproliferative factor enhances p53 stability through USP2a and MDM2. PLoS One. 7:e503922012. View Article : Google Scholar : PubMed/NCBI

94 

Stevenson LF, Sparks A, Allende-Vega N, Xirodimas DP, Lane DP and Saville MK: The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J. 26:976–986. 2007. View Article : Google Scholar : PubMed/NCBI

95 

Ballar Kirmizibayrak P, Erbaykent-Tepedelen B, Gozen O and Erzurumlu Y: Divergent modulation of proteostasis in prostate cancer. Adv Exp Med Biol. 1233:117–151. 2020. View Article : Google Scholar : PubMed/NCBI

96 

Park SH, Fong KW, Kim J, Wang F, Lu X, Lee Y, Brea LT, Wadosky K, Guo C, Abdulkadir SA, et al: Posttranslational regulation of FOXA1 by Polycomb and BUB3/USP7 deubiquitin complex in prostate cancer. Sci Adv. 7:eabe22612021. View Article : Google Scholar : PubMed/NCBI

97 

Sun T, Lee GS, Oh WK, Pomerantz M, Yang M, Xie W, Freedman ML and Kantoff PW: Single-nucleotide polymorphisms in p53 pathway and aggressiveness of prostate cancer in a Caucasian population. Clin Cancer Res. 16:5244–5251. 2010. View Article : Google Scholar : PubMed/NCBI

98 

Ren X, Jiang M, Ding P, Zhang X, Zhou X, Shen J, Liu D, Yan X and Ma Z: Ubiquitin-specific protease 28: The decipherment of its dual roles in cancer development. Exp Hematol Oncol. 12:272023. View Article : Google Scholar : PubMed/NCBI

99 

Chen L, Xu Z, Li Q, Zheng C, Du Y, Yuan R and Peng X: USP28 facilitates pancreatic cancer progression through activation of Wnt/β-catenin pathway via stabilising FOXM1. Cell Death Dis. 12:8872021. View Article : Google Scholar : PubMed/NCBI

100 

Zhao LJ, Zhang T, Feng XJ, Chang J, Suo FZ, Ma JL, Liu YJ, Liu Y, Zheng YC and Liu HM: USP28 contributes to the proliferation and metastasis of gastric cancer. J Cell Biochem. 120:7657–7666. 2019. View Article : Google Scholar : PubMed/NCBI

101 

Wang H, Meng Q, Ding Y, Xiong M, Zhu M, Yang Y, Su H, Gu L, Xu Y, Shi L, et al: USP28 and USP25 are downregulated by Vismodegib in vitro and in colorectal cancer cell lines. FEBS J. 288:1325–1342. 2021. View Article : Google Scholar : PubMed/NCBI

102 

Devrim T, Ataç F, Devrim AK and Balcı M: The concomitant use of USP28 and p53 to predict the progression of urothelial carcinoma of the bladder. Pathol Res Pract. 216:1527742020. View Article : Google Scholar : PubMed/NCBI

103 

Fong CS, Mazo G, Das T, Goodman J, Kim M, O'Rourke BP, Izquierdo D and Tsou MF: 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis. Elife. 5:e162702016. View Article : Google Scholar : PubMed/NCBI

104 

Tzavlaki K and Moustakas A: TGF-β Signaling. Biomolecules. 10:4872020. View Article : Google Scholar : PubMed/NCBI

105 

Derynck R and Budi EH: Specificity, versatility, and control of TGF-β family signaling. Sci Signal. 12:eaav51832019. View Article : Google Scholar : PubMed/NCBI

106 

Hata A and Chen YG: TGF-β Signaling from Receptors to Smads. Cold Spring Harb Perspect Biol. 8:a0220612016. View Article : Google Scholar : PubMed/NCBI

107 

Peng D, Fu M, Wang M, Wei Y and Wei X: Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol Cancer. 21:1042022. View Article : Google Scholar : PubMed/NCBI

108 

Zhang Y, Alexander PB and Wang XF: TGF-β family signaling in the control of cell proliferation and survival. Cold Spring Harb Perspect Biol. 9:a0221452017. View Article : Google Scholar : PubMed/NCBI

109 

Haque S and Morris JC: Transforming growth factor-β: A therapeutic target for cancer. Hum Vaccin Immunother. 13:1741–1750. 2017. View Article : Google Scholar : PubMed/NCBI

110 

Sakai K, Ito C, Wakabayashi M, Kanzaki S, Ito T, Takada S, Toshimori K, Sekita Y and Kimura T: Usp26 mutation in mice leads to defective spermatogenesis depending on genetic background. Sci Rep. 9:137572019. View Article : Google Scholar : PubMed/NCBI

111 

Tang J, Luo Y and Xiao L: USP26 promotes anaplastic thyroid cancer progression by stabilizing TAZ. Cell Death Dis. 13:3262022. View Article : Google Scholar : PubMed/NCBI

112 

Ye Y, Li M, Pan Q, Fang X, Yang H, Dong B, Yang J, Zheng Y, Zhang R and Liao Z: Machine learning-based classification of deubiquitinase USP26 and its cell proliferation inhibition through stabilizing KLF6 in cervical cancer. Comput Biol Med. 168:1077452024. View Article : Google Scholar : PubMed/NCBI

113 

Li G, Qi HW, Dong HG, Bai P, Sun M and Liu HY: Targeting deubiquitinating enzyme USP26 by microRNA-203 regulates Snail1's pro-metastatic functions in esophageal cancer. Cancer Cell Int. 20:3552020. View Article : Google Scholar : PubMed/NCBI

114 

Wosnitzer MS, Mielnik A, Dabaja A, Robinson B, Schlegel PN and Paduch DA: Ubiquitin Specific Protease 26 (USP26) expression analysis in human testicular and extragonadal tissues indicates diverse action of USP26 in cell differentiation and tumorigenesis. PLoS One. 9:e986382014. View Article : Google Scholar : PubMed/NCBI

115 

Dirac AM and Bernards R: The deubiquitinating enzyme USP26 is a regulator of androgen receptor signaling. Mol Cancer Res. 8:844–854. 2010. View Article : Google Scholar : PubMed/NCBI

116 

Cai Q, Chen Y, Zhang D, Pan J, Xie Z, Ma S, Liu C, Zuo J, Zhou X, Quan C, et al: Loss of epithelial AR increase castration resistant stem-like prostate cancer cells and promotes cancer metastasis via TGF-β1/EMT pathway. Transl Androl Urol. 9:1013–1027. 2020. View Article : Google Scholar : PubMed/NCBI

117 

Allen-Petersen BL and Sears RC: Mission Possible: Advances in MYC Therapeutic Targeting in Cancer. BioDrugs. 33:539–553. 2019. View Article : Google Scholar : PubMed/NCBI

118 

Blackwood EM and Eisenman RN: Max: A helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science. 251:1211–1217. 1991. View Article : Google Scholar : PubMed/NCBI

119 

Blackwood EM, Lüscher B, Kretzner L and Eisenman RN: The Myc:Max protein complex and cell growth regulation. Cold Spring Harb Symp Quant Biol. 56:109–117. 1991. View Article : Google Scholar : PubMed/NCBI

120 

Helander S, Montecchio M, Pilstål R, Su Y, Kuruvilla J, Elvén M, Ziauddin JME, Anandapadamanaban M, Cristobal S, Lundström P, et al: Pre-anchoring of Pin1 to unphosphorylated c-Myc in a fuzzy complex regulates c-Myc activity. Structure. 23:2267–2279. 2015. View Article : Google Scholar : PubMed/NCBI

121 

Kato GJ, Barrett J, Villa-Garcia M and Dang CV: An amino-terminal c-myc domain required for neoplastic transformation activates transcription. Mol Cell Biol. 10:5914–5920. 1990. View Article : Google Scholar : PubMed/NCBI

122 

Prendergast GC and Ziff EB: Methylation-sensitive sequence-specific DNA binding by the c-Myc basic region. Science. 251:186–189. 1991. View Article : Google Scholar : PubMed/NCBI

123 

Ashrafizadeh M, Zarabi A, Hushmandi K, Moghadam ER, Hashemi F, Daneshi S, Hashemi F, Tavakol S, Mohammadinejad R, Najafi M, et al: C-Myc signaling pathway in treatment and prevention of brain tumors. Curr Cancer Drug Targets. 21:2–20. 2021. View Article : Google Scholar : PubMed/NCBI

124 

Park JH, Pyun WY and Park HW: Cancer Metabolism: Phenotype, signaling and therapeutic targets. Cells. 9:23082020. View Article : Google Scholar : PubMed/NCBI

125 

Chen H, Liu H and Qing G: Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct Target Ther. 3:52018. View Article : Google Scholar : PubMed/NCBI

126 

Yang S, Wang J, Guo S, Huang D, Lorigados IB, Nie X, Lou D, Li Y, Liu M, Kang Y, et al: Transcriptional activation of USP16 gene expression by NFκB signaling. Mol Brain. 12:1202019. View Article : Google Scholar : PubMed/NCBI

127 

Zheng J, Chen C, Guo C, Caba C, Tong Y and Wang H: The pleiotropic ubiquitin-specific peptidase 16 and its many substrates. Cells. 12:8862023. View Article : Google Scholar : PubMed/NCBI

128 

Liu S, Li H, Zhu Y, Ma X, Shao Z, Yang Z, Cai C, Wu Z, Li M, Gong W and Wu X: LncRNA MNX1-AS1 sustains inactivation of Hippo pathway through a positive feedback loop with USP16/IGF2BP3 axis in gallbladder cancer. Cancer Lett. 547:2158622022. View Article : Google Scholar : PubMed/NCBI

129 

Xu G, Yang Z, Ding Y, Liu Y, Zhang L, Wang B, Tang M, Jing T, Jiao K, Xu X, et al: The deubiquitinase USP16 functions as an oncogenic factor in K-RAS-driven lung tumorigenesis. Oncogene. 40:5482–5494. 2021. View Article : Google Scholar : PubMed/NCBI

130 

Li Y, Rao Y, Zhu H, Jiang B and Zhu M: USP16 regulates the stability and function of LDL receptor by Deubiquitination. Int Heart J. 61:1034–1040. 2020. View Article : Google Scholar : PubMed/NCBI

131 

Ge J, Yu W, Li J, Ma H, Wang P, Zhou Y, Wang Y, Zhang J and Shi G: USP16 regulates castration-resistant prostate cancer cell proliferation by deubiquitinating and stablizing c-Myc. J Exp Clin Cancer Res. 40:592021. View Article : Google Scholar : PubMed/NCBI

132 

He L, Liu X, Yang J, Li W, Liu S, Liu X, Yang Z, Ren J, Wang Y, Shan L, et al: Imbalance of the reciprocally inhibitory loop between the ubiquitin-specific protease USP43 and EGFR/PI3K/AKT drives breast carcinogenesis. Cell Res. 28:934–951. 2018. View Article : Google Scholar : PubMed/NCBI

133 

Ye DX, Wang SS, Huang Y, Wang XJ and Chi P: USP43 directly regulates ZEB1 protein, mediating proliferation and metastasis of colorectal cancer. J Cancer. 12:404–416. 2021. View Article : Google Scholar : PubMed/NCBI

134 

Xue Y, Li M, Hu J, Song Y, Guo W, Miao C, Ge D, Hou Y, Wang X, Huang X, et al: Ca(v)2.2-NFAT2-USP43 axis promotes invadopodia formation and breast cancer metastasis through cortactin stabilization. Cell Death Dis. 13:8122022. View Article : Google Scholar : PubMed/NCBI

135 

Sun Q, Zhang H, Zong L, Julaiti A, Jing X and Zhang L: Prognostic value and oncogenic effects of ubiquitin-specific protease 43 in lung squamous cell carcinoma. Tohoku J Exp Med. 257:135–145. 2022. View Article : Google Scholar : PubMed/NCBI

136 

Zhao Z, Lin Z, Guo X, Al-Danakh A, He H, Qin H, Ma C, Zhang N and Tan G: Ubiquitin-specific protease 43 impacts pancreatic ductal adenocarcinoma prognosis by altering its proliferation and infiltration of surrounding immune cells. J Immunol Res. 2023:43113882023. View Article : Google Scholar : PubMed/NCBI

137 

Lavaud M, Mullard M, Tesfaye R, Amiaud J, Legrand M, Danieau G, Brion R, Morice S, Regnier L, Dupuy M, et al: Overexpression of the Ubiquitin Specific Proteases USP43, USP41, USP27x and USP6 in Osteosarcoma Cell Lines: Inhibition of Osteosarcoma Tumor Growth and Lung Metastasis Development by the USP Antagonist PR619. Cells. 10:22682021. View Article : Google Scholar : PubMed/NCBI

138 

Li M, Yu J, Ju L, Wang Y, Jin W, Zhang R, Xiang W, Ji M, Du W, Wang G, et al: USP43 stabilizes c-Myc to promote glycolysis and metastasis in bladder cancer. Cell Death Dis. 15:442024. View Article : Google Scholar : PubMed/NCBI

139 

Nusse R and Varmus HE: Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 31:99–109. 1982. View Article : Google Scholar : PubMed/NCBI

140 

Zou G and Park JI: Wnt signaling in liver regeneration, disease, and cancer. Clin Mol Hepatol. 29:33–50. 2023. View Article : Google Scholar : PubMed/NCBI

141 

Clevers H and Nusse R: Wnt/β-catenin signaling and disease. Cell. 149:1192–1205. 2012. View Article : Google Scholar : PubMed/NCBI

142 

Steinhart Z and Angers S: Wnt signaling in development and tissue homeostasis. Development. 145:dev1465892018. View Article : Google Scholar : PubMed/NCBI

143 

Zhan T, Rindtorff N and Boutros M: Wnt signaling in cancer. Oncogene. 36:1461–1473. 2017. View Article : Google Scholar : PubMed/NCBI

144 

Hafez N, Modather El-Awadly Z and Arafa RK: UCH-L3 structure and function: Insights about a promising drug target. Eur J Med Chem. 227:1139702022. View Article : Google Scholar : PubMed/NCBI

145 

Zhu T, Xu L, Peng J, Chen M and Xu H: Molecular characteristics and immune function of ubiquitin C-terminal hydrolase-L3 in Macrobrachium nipponense. Fish Shellfish Immunol. 121:295–304. 2022. View Article : Google Scholar : PubMed/NCBI

146 

Ma Q, Lu Q, Lei X, Zhao J, Sun W, Wang J, Zhu Q and Huang D: UCHL3 promotes hepatocellular carcinoma cell migration by de-ubiquitinating and stabilizing Vimentin. Front Oncol. 13:10884752023. View Article : Google Scholar : PubMed/NCBI

147 

Zhang Y, Liu JB, Liu J, Liu M, Liu HL and Zhang J: UCHL3 promotes cervical cancer development and metastasis by stabilizing NRF2 via deubiquitination. Biochem Biophys Res Commun. 641:132–138. 2023. View Article : Google Scholar : PubMed/NCBI

148 

Li J, Zheng Y, Li X, Dong X, Chen W, Guan Z and Zhang C: UCHL3 promotes proliferation of colorectal cancer cells by regulating SOX12 via AKT/mTOR signaling pathway. Am J Transl Res. 12:6445–6454. 2020.PubMed/NCBI

149 

Moroney MR, Woodruff E, Qamar L, Bradford AP, Wolsky R, Bitler BG and Corr BR: Inhibiting Wnt/beta-catenin in CTNNB1-mutated endometrial cancer. Mol Carcinog. 60:511–523. 2021. View Article : Google Scholar : PubMed/NCBI

150 

Liu T, Fan MQ, Xie XX, Shu QP, Du XH, Qi LZ, Zhang XD, Zhang MH, Shan G, Du RL and Li SZ: Activation of CTNNB1 by deubiquitinase UCHL3-mediated stabilization facilitates bladder cancer progression. J Transl Med. 21:6562023. View Article : Google Scholar : PubMed/NCBI

151 

Zhou L, Qin B, Yassine DM, Luo M, Liu X, Wang F and Wang Y: Structure and function of the highly homologous deubiquitinases ubiquitin specific peptidase 25 and 28: Insights into their pathophysiological and therapeutic roles. Biochem Pharmacol. 213:1156242023. View Article : Google Scholar : PubMed/NCBI

152 

Zhong B, Liu X, Wang X, Liu X, Li H, Darnay BG, Lin X, Sun SC and Dong C: Ubiquitin-specific protease 25 regulates TLR4-dependent innate immune responses through deubiquitination of the adaptor protein TRAF3. Sci Signal. 6:ra352013. View Article : Google Scholar : PubMed/NCBI

153 

Liu B, Miao X, Shen J, Lou L, Chen K, Mei F, Chen M, Su X, Du X, Zhu Z, et al: USP25 ameliorates diabetic nephropathy by inhibiting TRAF6-mediated inflammatory responses. Int Immunopharmacol. 124((Pt A)): 1108772023. View Article : Google Scholar : PubMed/NCBI

154 

Ye B, Zhou H, Chen Y, Luo W, Lin W, Zhao Y, Han J, Han X, Huang W, Wu G, et al: USP25 Ameliorates Pathological Cardiac Hypertrophy by Stabilizing SERCA2a in Cardiomyocytes. Circ Res. 132:465–480. 2023. View Article : Google Scholar : PubMed/NCBI

155 

Zheng Q, Song B, Li G, Cai F, Wu M, Zhao Y, Jiang L, Guo T, Shen M, Hou H, et al: USP25 inhibition ameliorates Alzheimer's pathology through the regulation of APP processing and Aβ generation. J Clin Invest. 132:e1521702022. View Article : Google Scholar : PubMed/NCBI

156 

Cheng H, Li X, Wang C, Chen Y, Li S, Tan J, Tan B and He Y: Inhibition of tankyrase by a novel small molecule significantly attenuates prostate cancer cell proliferation. Cancer Lett. 443:80–90. 2019. View Article : Google Scholar : PubMed/NCBI

157 

Gu Z, Lin C, Hu J, Xia J, Wei S and Gao D: USP34 Regulated Human Pancreatic Cancer Cell Survival via AKT and PKC Pathways. Biol Pharm Bull. 42:573–579. 2019. View Article : Google Scholar : PubMed/NCBI

158 

Guo YC, Wang MY, Zhang SW, Wu YS, Zhou CC, Zheng RX, Shao B, Wang Y, Xie L, Liu WQ, et al: Ubiquitin-specific protease USP34 controls osteogenic differentiation and bone formation by regulating BMP2 signaling. EMBO J. 37:e993982018. View Article : Google Scholar : PubMed/NCBI

159 

Zhu Q, Liang P, Meng H, Li F, Miao W, Chu C, Wang W, Li D, Chen C, Shi Y, et al: Stabilization of Pin1 by USP34 promotes Ubc9 isomerization and protein sumoylation in glioma stem cells. Nat Commun. 15:402024. View Article : Google Scholar : PubMed/NCBI

160 

Lui TT, Lacroix C, Ahmed SM, Goldenberg SJ, Leach CA, Daulat AM and Angers S: The ubiquitin-specific protease USP34 regulates axin stability and Wnt/β-catenin signaling. Mol Cell Biol. 31:2053–2065. 2011. View Article : Google Scholar : PubMed/NCBI

161 

Zhao Y, Yan Y, Ma R, Lv X, Zhang L, Wang J, Zhu W, Zhao L, Jiang L, Zhao L, et al: Expression signature of six-snoRNA serves as novel non-invasive biomarker for diagnosis and prognosis prediction of renal clear cell carcinoma. J Cell Mol Med. 24:2215–2228. 2020. View Article : Google Scholar : PubMed/NCBI

162 

Ma S, Meng Z, Chen R and Guan KL: The Hippo Pathway: Biology and Pathophysiology. Annu Rev Biochem. 88:577–604. 2019. View Article : Google Scholar : PubMed/NCBI

163 

Lee U, Cho EY and Jho EH: Regulation of Hippo signaling by metabolic pathways in cancer. Biochim Biophys Acta Mol Cell Res. 1869:1192012022. View Article : Google Scholar : PubMed/NCBI

164 

Wu Z and Guan KL: Hippo Signaling in Embryogenesis and Development. Trends Biochem Sci. 46:51–63. 2021. View Article : Google Scholar : PubMed/NCBI

165 

Cao Z, An L, Han Y, Jiao S and Zhou Z: The Hippo signaling pathway in gastric cancer. Acta Biochim Biophys Sin (Shanghai). 55:893–903. 2023.PubMed/NCBI

166 

Zhu N, Yang R, Wang X, Yuan L, Li X, Wei F and Zhang L: The Hippo signaling pathway: From multiple signals to the hallmarks of cancers. Acta Biochim Biophys Sin (Shanghai). 55:904–913. 2023. View Article : Google Scholar : PubMed/NCBI

167 

Gu Y, Wu S, Fan J, Meng Z, Gao G, Liu T, Wang Q, Xia H, Wang X and Wu K: CYLD regulates cell ferroptosis through Hippo/YAP signaling in prostate cancer progression. Cell Death Dis. 15:792024. View Article : Google Scholar : PubMed/NCBI

168 

Abdul Rehman SA, Kristariyanto YA, Choi SY, Nkosi PJ, Weidlich S, Labib K, Hofmann K and Kulathu Y: MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes. Mol Cell. 63:146–155. 2016. View Article : Google Scholar : PubMed/NCBI

169 

Tang J, Luo Y, Long G and Zhou L: MINDY1 promotes breast cancer cell proliferation by stabilizing estrogen receptor α. Cell Death Dis. 12:9372021. View Article : Google Scholar : PubMed/NCBI

170 

Xia BL, Liu KW, Huang HX, Shen MM, Wang B and Gao J: Deubiquitinating enzyme MINDY1 is an independent risk factor for the maintenance of stemness and poor prognosis in liver cancer cells. Zhonghua Gan Zang Bing Za Zhi. 31:518–523. 2023.(In Chinese). PubMed/NCBI

171 

James C, Zhao TY, Rahim A, Saxena P, Muthalif NA, Uemura T, Tsuneyoshi N, Ong S, Igarashi K, Lim CY, et al: MINDY1 Is a Downstream Target of the Polyamines and Promotes Embryonic Stem Cell Self-Renewal. Stem Cells. 36:1170–1178. 2018. View Article : Google Scholar : PubMed/NCBI

172 

Luo Y, Zhou J, Tang J, Zhou F, He Z and Liu T and Liu T: MINDY1 promotes bladder cancer progression by stabilizing YAP. Cancer Cell Int. 21:3952021. View Article : Google Scholar : PubMed/NCBI

173 

Dai C, Heemers H and Sharifi N: Androgen signaling in prostate cancer. Cold Spring Harb Perspect Med. 7:a0304522017. View Article : Google Scholar : PubMed/NCBI

174 

Deng CC, Zhu DH, Chen YJ, Huang TY, Peng Y, Liu SY, Lu P, Xue YH, Xu YP, Yang B and Rong Z: TRAF4 Promotes Fibroblast Proliferation in Keloids by Destabilizing p53 via Interacting with the Deubiquitinase USP10. J Invest Dermatol. 139:1925–1935.e5. 2019. View Article : Google Scholar : PubMed/NCBI

175 

Zeng Z, Wu HX, Zhan N, Huang YB, Wang ZS, Yang GF, Wang P and Fu GH: Prognostic significance of USP10 as a tumor-associated marker in gastric carcinoma. Tumour Biol. 35:3845–3853. 2014. View Article : Google Scholar : PubMed/NCBI

176 

Lu C, Ning Z, Wang A, Chen D, Liu X, Xia T, Tekcham DS, Wang W, Li T, Liu X, et al: USP10 suppresses tumor progression by inhibiting mTOR activation in hepatocellular carcinoma. Cancer Lett. 436:139–148. 2018. View Article : Google Scholar : PubMed/NCBI

177 

Ye Z, Chen J, Huang P, Xuan Z and Zheng S: Ubiquitin-specific peptidase 10, a deubiquitinating enzyme: Assessing its role in tumor prognosis and immune response. Front Oncol. 12:9901952022. View Article : Google Scholar : PubMed/NCBI

178 

Kong L and Jin X: Dysregulation of deubiquitination in breast cancer. Gene. 902:1481752024. View Article : Google Scholar : PubMed/NCBI

179 

An T, Lu Y, Yan X and Hou J: Insights Into the Properties, Biological Functions, and Regulation of USP21. Front Pharmacol. 13:9440892022. View Article : Google Scholar : PubMed/NCBI

180 

Chen Y, Wang L, Jin J, Luan Y, Chen C, Li Y, Chu H, Wang X, Liao G, Yu Y, et al: p38 inhibition provides anti-DNA virus immunity by regulation of USP21 phosphorylation and STING activation. J Exp Med. 214:991–1010. 2017. View Article : Google Scholar : PubMed/NCBI

181 

Liu J, Kruswick A, Dang H, Tran AD, Kwon SM, Wang XW and Oberdoerffer P: Ubiquitin-specific protease 21 stabilizes BRCA2 to control DNA repair and tumor growth. Nat Commun. 8:1372017. View Article : Google Scholar : PubMed/NCBI

182 

Chen Y, Zhou B and Chen D: USP21 promotes cell proliferation and metastasis through suppressing EZH2 ubiquitination in bladder carcinoma. Onco Targets Ther. 10:681–689. 2017. View Article : Google Scholar : PubMed/NCBI

183 

Lin Z, Yang H, Kong Q, Li J, Lee SM, Gao B, Dong H, Wei J, Song J, Zhang DD and Fang D: USP22 antagonizes p53 transcriptional activation by deubiquitinating Sirt1 to suppress cell apoptosis and is required for mouse embryonic development. Mol Cell. 46:484–494. 2012. View Article : Google Scholar : PubMed/NCBI

184 

Feng T, Ling S, Xu C, Ying L, Su D and Xu X: Ubiquitin-specific peptidase 22 in cancer. Cancer Lett. 514:30–37. 2021. View Article : Google Scholar : PubMed/NCBI

185 

Zeng K, Xie W, Wang C, Wang S, Liu W, Su Y, Lin L, Zou R, Sun G, Zhou B, et al: USP22 upregulates ZEB1-mediated VEGFA transcription in hepatocellular carcinoma. Cell Death Dis. 14:1942023. View Article : Google Scholar : PubMed/NCBI

186 

Xu G, Cai J, Wang L, Jiang L, Huang J, Hu R and Ding F: MicroRNA-30e-5p suppresses non-small cell lung cancer tumorigenesis by regulating USP22-mediated Sirt1/JAK/STAT3 signaling. Exp Cell Res. 362:268–278. 2018. View Article : Google Scholar : PubMed/NCBI

187 

Yuan X, Wang H, Xu A, Zhu X, Zhan Y and Wang W: Ubiquitin-specific peptidase 22 promotes proliferation and metastasis in human colon cancer. Oncol Lett. 18:5567–5576. 2019.PubMed/NCBI

188 

Lv L, Xiao XY, Gu ZH, Zeng FQ, Huang LQ and Jiang GS: Silencing USP22 by asymmetric structure of interfering RNA inhibits proliferation and induces cell cycle arrest in bladder cancer cells. Mol Cell Biochem. 346:11–21. 2011. View Article : Google Scholar : PubMed/NCBI

189 

Guo J, Zhao J, Fu W, Xu Q and Huang D: Immune Evasion and Drug Resistance Mediated by USP22 in Cancer: Novel Targets and Mechanisms. Front Immunol. 13:9183142022. View Article : Google Scholar : PubMed/NCBI

190 

Nag N and Dutta S: Deubiquitination in prostate cancer progression: Role of USP22. J Cancer Metastasis Treat. 6:162020.PubMed/NCBI

191 

Li C, Zeng X, Qiu S, Gu Y and Zhang Y: Nanomedicine for urologic cancers: Diagnosis and management. Semin Cancer Biol. 86:463–475. 2022. View Article : Google Scholar : PubMed/NCBI

192 

Schauer NJ, Magin RS, Liu X, Doherty LM and Buhrlage SJ: Advances in Discovering Deubiquitinating Enzyme (DUB) Inhibitors. J Med Chem. 63:2731–2750. 2020. View Article : Google Scholar : PubMed/NCBI

193 

Lee JE, Park CM and Kim JH: USP7 deubiquitinates and stabilizes EZH2 in prostate cancer cells. Genet Mol Biol. 43:e201903382020. View Article : Google Scholar : PubMed/NCBI

194 

Zhang W, Zhang J, Xu C, Zhang S, Bian S, Jiang F, Ni W, Qu L, Lu C, Ni R, et al: Ubiquitin-specific protease 7 is a drug-able target that promotes hepatocellular carcinoma and chemoresistance. Cancer Cell Int. 20:282020. View Article : Google Scholar : PubMed/NCBI

195 

Chen H, Zhu X, Sun R, Ma P, Zhang E, Wang Z, Fan Y, Zhou G and Mao R: Ubiquitin-specific protease 7 is a druggable target that is essential for pancreatic cancer growth and chemoresistance. Invest New Drugs. 38:1707–1716. 2020. View Article : Google Scholar : PubMed/NCBI

196 

Wang S, Kollipara RK, Srivastava N, Li R, Ravindranathan P, Hernandez E, Freeman E, Humphries CG, Kapur P, Lotan Y, et al: Ablation of the oncogenic transcription factor ERG by deubiquitinase inhibition in prostate cancer. Proc Natl Acad Sci USA. 111:4251–4256. 2014. View Article : Google Scholar : PubMed/NCBI

197 

Stolte B, Iniguez AB, Dharia NV, Robichaud AL, Conway AS, Morgan AM, Alexe G, Schauer NJ, Liu X, Bird GH, et al: Genome-scale CRISPR-Cas9 screen identifies druggable dependencies in TP53 wild-type Ewing sarcoma. J Exp Med. 215:2137–2155. 2018. View Article : Google Scholar : PubMed/NCBI

198 

Turnbull AP, Ioannidis S, Krajewski WW, Pinto-Fernandez A, Heride C, Martin ACL, Tonkin LM, Townsend EC, Buker SM, Lancia DR, et al: Molecular basis of USP7 inhibition by selective small-molecule inhibitors. Nature. 550:481–486. 2017. View Article : Google Scholar : PubMed/NCBI

199 

Xu S, Adisetiyo H, Tamura S, Grande F, Garofalo A, Roy-Burman P and Neamati N: Dual inhibition of survivin and MAOA synergistically impairs growth of PTEN-negative prostate cancer. Br J Cancer. 113:242–251. 2015. View Article : Google Scholar : PubMed/NCBI

200 

Tolcher AW, Quinn DI, Ferrari A, Ahmann F, Giaccone G, Drake T, Keating A and de Bono JS: A phase II study of YM155, a novel small-molecule suppressor of survivin, in castration-resistant taxane-pretreated prostate cancer. Ann Oncol. 23:968–973. 2012. View Article : Google Scholar : PubMed/NCBI

201 

Chow PM, Dong JR, Chang YW, Kuo KL, Lin WC, Liu SH and Huang KH: The UCHL5 inhibitor b-AP15 overcomes cisplatin resistance via suppression of cancer stemness in urothelial carcinoma. Mol Ther Oncolytics. 26:387–398. 2022. View Article : Google Scholar : PubMed/NCBI

202 

Jamroze A, Chatta G and Tang DG: Androgen receptor (AR) heterogeneity in prostate cancer and therapy resistance. Cancer Lett. 518:1–9. 2021. View Article : Google Scholar : PubMed/NCBI

203 

He Y, Xu W, Xiao YT, Huang H, Gu D and Ren S: Targeting signaling pathways in prostate cancer: mechanisms and clinical trials. Signal Transduct Target Ther. 7:1982022. View Article : Google Scholar : PubMed/NCBI

204 

Schellhammer PF and Davis JW: An evaluation of bicalutamide in the treatment of prostate cancer. Clin Prostate Cancer. 2:213–219. 2004. View Article : Google Scholar : PubMed/NCBI

205 

Chi KN, Agarwal N, Bjartell A, Chung BH, Pereira de Santana Gomes AJ, Given R, Juárez Soto Á, Merseburger AS, Özgüroğlu M, Uemura H, et al: Apalutamide for metastatic, castration-sensitive prostate cancer. N Engl J Med. 381:13–24. 2019. View Article : Google Scholar : PubMed/NCBI

206 

Armstrong AJ, Szmulewitz RZ, Petrylak DP, Holzbeierlein J, Villers A, Azad A, Alcaraz A, Alekseev B, Iguchi T, Shore ND, et al: ARCHES: A Randomized, phase III study of androgen deprivation therapy with enzalutamide or placebo in men with metastatic hormone-sensitive prostate cancer. J Clin Oncol. 37:2974–2986. 2019. View Article : Google Scholar : PubMed/NCBI

207 

Fizazi K, Tran N, Fein L, Matsubara N, Rodriguez-Antolin A, Alekseev BY, Özgüroğlu M, Ye D, Feyerabend S, Protheroe A, et al: Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N Engl J Med. 377:352–360. 2017. View Article : Google Scholar : PubMed/NCBI

208 

Isaacsson Velho P and Antonarakis ES: PD-1/PD-L1 pathway inhibitors in advanced prostate cancer. Expert Rev Clin Pharmacol. 11:475–486. 2018. View Article : Google Scholar : PubMed/NCBI

209 

Wu X, Gu Z, Chen Y, Chen B, Chen W, Weng L and Liu X: Application of PD-1 Blockade in Cancer Immunotherapy. Comput Struct Biotechnol J. 17:661–674. 2019. View Article : Google Scholar : PubMed/NCBI

210 

Kuang Z, Liu X, Zhang N, Dong J, Sun C, Yin M, Wang Y, Liu L, Xiao D, Zhou X, et al: USP2 promotes tumor immune evasion via deubiquitination and stabilization of PD-L1. Cell Death Differ. 30:2249–2264. 2023. View Article : Google Scholar : PubMed/NCBI

211 

Sweeney PL, Suri Y, Basu A, Koshkin VS and Desai A: Mechanisms of tyrosine kinase inhibitor resistance in renal cell carcinoma. Cancer Drug Resist. 6:858–873. 2023. View Article : Google Scholar : PubMed/NCBI

212 

Ebrahimi N, Fardi E, Ghaderi H, Palizdar S, Khorram R, Vafadar R, Ghanaatian M, Rezaei-Tazangi F, Baziyar P, Ahmadi A, et al: Receptor tyrosine kinase inhibitors in cancer. Cell Mol Life Sci. 80:1042023. View Article : Google Scholar : PubMed/NCBI

213 

McCann AP, Smyth P, Cogo F, McDaid WJ, Jiang L, Lin J, Evergren E, Burden RE, Van Schaeybroeck S, Scott CJ and Burrows JF: USP17 is required for trafficking and oncogenic signaling of mutant EGFR in NSCLC cells. Cell Commun Signal. 16:772018. View Article : Google Scholar : PubMed/NCBI

214 

Popova NV and Jücker M: The Role of mTOR signaling as a therapeutic target in cancer. Int J Mol Sci. 22:17432021. View Article : Google Scholar : PubMed/NCBI

215 

Hasskarl J: Everolimus. Recent Results Cancer Res. 211:101–123. 2018. View Article : Google Scholar : PubMed/NCBI

216 

Stock C, Zaccagnini M, Schulze M, Teber D and Rassweiler JJ: Temsirolimus. Recent Results Cancer Res. 184:189–197. 2010. View Article : Google Scholar : PubMed/NCBI

217 

Porta C, Calvo E, Climent MA, Vaishampayan U, Osanto S, Ravaud A, Bracarda S, Hutson TE, Escudier B, Grünwald V, et al: Efficacy and safety of everolimus in elderly patients with metastatic renal cell carcinoma: an exploratory analysis of the outcomes of elderly patients in the RECORD-1 Trial. Eur Urol. 61:826–833. 2012. View Article : Google Scholar : PubMed/NCBI

218 

Roldán-Romero JM, Valdivia C, Santos M, Lanillos J, Maroto P, Anguera G, Calsina B, Martinez-Montes A, Monteagudo M, Mellid S, et al: Deubiquitinase USP9X loss sensitizes renal cancer cells to mTOR inhibition. Int J Cancer. 153:1300–1312. 2023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wu L, Wang J, Chai L, Chen J and Jin X: Roles of deubiquitinases in urologic cancers (Review). Oncol Lett 28: 609, 2024.
APA
Wu, L., Wang, J., Chai, L., Chen, J., & Jin, X. (2024). Roles of deubiquitinases in urologic cancers (Review). Oncology Letters, 28, 609. https://doi.org/10.3892/ol.2024.14743
MLA
Wu, L., Wang, J., Chai, L., Chen, J., Jin, X."Roles of deubiquitinases in urologic cancers (Review)". Oncology Letters 28.6 (2024): 609.
Chicago
Wu, L., Wang, J., Chai, L., Chen, J., Jin, X."Roles of deubiquitinases in urologic cancers (Review)". Oncology Letters 28, no. 6 (2024): 609. https://doi.org/10.3892/ol.2024.14743
Copy and paste a formatted citation
x
Spandidos Publications style
Wu L, Wang J, Chai L, Chen J and Jin X: Roles of deubiquitinases in urologic cancers (Review). Oncol Lett 28: 609, 2024.
APA
Wu, L., Wang, J., Chai, L., Chen, J., & Jin, X. (2024). Roles of deubiquitinases in urologic cancers (Review). Oncology Letters, 28, 609. https://doi.org/10.3892/ol.2024.14743
MLA
Wu, L., Wang, J., Chai, L., Chen, J., Jin, X."Roles of deubiquitinases in urologic cancers (Review)". Oncology Letters 28.6 (2024): 609.
Chicago
Wu, L., Wang, J., Chai, L., Chen, J., Jin, X."Roles of deubiquitinases in urologic cancers (Review)". Oncology Letters 28, no. 6 (2024): 609. https://doi.org/10.3892/ol.2024.14743
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team