Role of disulfide death in cancer (Review)
- Authors:
- Xue Li
- Danxia Zhu
-
Affiliations: Oncology Department, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China - Published online on: November 12, 2024 https://doi.org/10.3892/ol.2024.14801
- Article Number: 55
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Kerr JF, Wyllie AH and Currie AR: Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 26:239–257. 1972. View Article : Google Scholar : PubMed/NCBI | |
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al: Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25:486–541. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, et al: Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 375:1254–1261. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhuang L and Gan B: Disulfidptosis: Disulfide stress-induced cell death. Trends Cell Biol. 34:327–337. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ravilious GE and Jez JM: Structural biology of plant sulfur metabolism: from assimilation to biosynthesis. Nat Prod Rep. 29:1138–1152. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wanders D, Hobson K and Ji X: Methionine restriction and cancer biology. Nutrients. 12:6842020. View Article : Google Scholar : PubMed/NCBI | |
Kaplowitz N, Aw TY and Ookhtens M: The regulation of hepatic glutathione. Annu Rev Pharmacol Toxicol. 25:715–744. 1985. View Article : Google Scholar : PubMed/NCBI | |
Lu SC: Glutathione synthesis. Biochim Biophys Acta. 1830:3143–3153. 2013. View Article : Google Scholar : PubMed/NCBI | |
Diotallevi M, Checconi P, Palamara AT, Celestino I, Coppo L, Holmgren A, Abbas K, Peyrot F, Mengozzi M and Ghezzi P: Glutathione Fine-Tunes the Innate Immune Response toward Antiviral Pathways in a Macrophage Cell Line Independently of Its Antioxidant Properties. Front Immunol. 8:12392017. View Article : Google Scholar : PubMed/NCBI | |
Chen YJ, Lu CT, Lee TY and Chen YJ: dbGSH: A database of S-glutathionylation. Bioinformatics. 30:2386–2388. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lermant A and Murdoch CE: Cysteine Glutathionylation Acts as a Redox Switch in Endothelial Cells. Antioxidants (Basel). 8:3152019. View Article : Google Scholar : PubMed/NCBI | |
Kurniawan H, Franchina DG, Guerra L, Bonetti L, Baguet LS, Grusdat M, Schlicker L, Hunewald O, Dostert C, Merz MP, et al: Glutathione Restricts Serine Metabolism to Preserve Regulatory T Cell Function. Cell Metab. 31:920–936.e7. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gai X, Liu Y, Lan X, Chen L, Yuan T, Xu J, Li Y, Zheng Y, Yan Y, Yang L, et al: Oncogenic KRAS induces arginine auxotrophy and confers a therapeutic vulnerability to SLC7A1 inhibition in non-small cell lung cancer. Cancer Res. 84:1963–1977. 2024. View Article : Google Scholar : PubMed/NCBI | |
You S, Zhu X, Yang Y, Du X, Song K, Zheng Q, Zeng P and Yao Q: SLC7A1 overexpression is involved in energy metabolism reprogramming to induce tumor progression in epithelial ovarian cancer and is associated with immune-infiltrating cells. J Oncol. 2022:58648262022. View Article : Google Scholar : PubMed/NCBI | |
Shen C and Wang Y: Ferroptosis biomarkers for predicting prognosis and immunotherapy efficacy in adrenocortical carcinoma. Arch Med Res. 54:45–55. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lei S, Chen C, Han F, Deng J, Huang D, Qian L, Zhu M, Ma X, Lai M, Xu E and Zhang H: AMER1 deficiency promotes the distant metastasis of colorectal cancer by inhibiting SLC7A11- and FTL-mediated ferroptosis. Cell Rep. 42:1131102023. View Article : Google Scholar : PubMed/NCBI | |
Ouyang S, Li H, Lou L, Huang Q, Zhang Z, Mo J, Li M, Lu J, Zhu K, Chu Y, et al: Inhibition of STAT3-ferroptosis negative regulatory axis suppresses tumor growth and alleviates chemoresistance in gastric cancer. Redox Biol. 52:1023172022. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Zhou Y, Xie S, Wang J, Li Z, Chen L, Mao M, Chen C, Huang A, Chen Y, et al: Metformin induces Ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. J Exp Clin Cancer Res. 40:2062021. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Shen N, Wang Z, Yu L, Yang S, Wang Y, Liu Y, Han G and Zhang Q: TRIM3 facilitates ferroptosis in non-small cell lung cancer through promoting SLC7A11/xCT K11-linked ubiquitination and degradation. Cell Death Differ. 31:53–64. 2024. View Article : Google Scholar : PubMed/NCBI | |
Koppula P, Zhuang L and Gan B: Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 12:599–620. 2021. View Article : Google Scholar : PubMed/NCBI | |
Koppula P, Zhang Y, Zhuang L and Gan B: Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun (Lond). 38:122018.PubMed/NCBI | |
Wang L, Liu Y, Du T, Yang H, Lei L, Guo M, Ding HF, Zhang J, Wang H, Chen X and Yan C: ATF3 promotes erastin-induced ferroptosis by suppressing system Xc. Cell Death Differ. 27:662–675. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xiao H, Jedrychowski MP, Schweppe DK, Huttlin EL, Yu Q, Heppner DE, Li J, Long J, Mills EL, Szpyt J, et al: A Quantitative Tissue-Specific Landscape of Protein Redox Regulation during Aging. Cell. 180:968–983.e4. 2020. View Article : Google Scholar : PubMed/NCBI | |
Musaogullari A and Chai YC: Redox Regulation by Protein S-Glutathionylation: From Molecular Mechanisms to Implications in Health and Disease. Int J Mol Sci. 21:81132020. View Article : Google Scholar : PubMed/NCBI | |
Machesky LM: Deadly actin collapse by disulfidptosis. Nat Cell Biol. 25:375–376. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yan Y, Teng H, Hang Q, Kondiparthi L, Lei G, Horbath A, Liu X, Mao C, Wu S, Zhuang L, et al: SLC7A11 expression level dictates differential responses to oxidative stress in cancer cells. Nat Commun. 14:36732023. View Article : Google Scholar : PubMed/NCBI | |
Xia N, Guo X, Guo Q, Gupta N, Ji N, Shen B, Xiao L and Feng Y: Metabolic flexibilities and vulnerabilities in the pentose phosphate pathway of the zoonotic pathogen Toxoplasma gondii. PLoS Pathog. 18:e10108642022. View Article : Google Scholar : PubMed/NCBI | |
El Mjiyad N, Caro-Maldonado A, Ramírez-Peinado S and Muñoz-Pinedo C: Sugar-free approaches to cancer cell killing. Oncogene. 30:253–264. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Nie L, Zhang Y, Yan Y, Wang C, Colic M, Olszewski K, Horbath A, Chen X, Lei G, et al: Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat Cell Biol. 25:404–414. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Ma B, Yang Y, Wang B, Hao J and Zhou X: Disulfidptosis decoded: A journey through cell death mysteries, regulatory networks, disease paradigms and future directions. Biomark Res. 12:452024. View Article : Google Scholar : PubMed/NCBI | |
Fregoso FE, van Eeuwen T, Simanov G, Rebowski G, Boczkowska M, Zimmet A, Gautreau AM and Dominguez R: Molecular mechanism of Arp2/3 complex inhibition by Arpin. Nat Commun. 13:6282022. View Article : Google Scholar : PubMed/NCBI | |
Wicks EE and Semenza GL: Hypoxia-inducible factors: Cancer progression and clinical translation. J Clin Invest. 132:e1598392022. View Article : Google Scholar : PubMed/NCBI | |
Rozpedek W, Pytel D, Mucha B, Leszczynska H, Diehl JA and Majsterek I: The Role of the PERK/eIF2α/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress. Curr Mol Med. 16:533–544. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Lin C, Liu Z, Sun Y, Chen M, Guo Y, Liu W, Zhang C, Chen W, Sun J, et al: Cancer cells co-opt nociceptive nerves to thrive in nutrient-poor environments and upon nutrient-starvation therapies. Cell Metab. 34:1999–2017.e10. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Temkin SM, Hawkridge AM, Guo C, Wang W, Wang XY and Fang X: Fatty acid oxidation: An emerging facet of metabolic transformation in cancer. Cancer Lett. 435:92–100. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Cai H, Hu Y, Liu F, Huang S, Zhou Y, Yu J, Xu J and Wu F: A pharmacological probe identifies cystathionine β-synthase as a new negative regulator for ferroptosis. Cell Death Dis. 9:10052018. View Article : Google Scholar : PubMed/NCBI | |
Tang H, Kang R, Liu J and Tang D: ATF4 in cellular stress, ferroptosis, and cancer. Arch Toxicol. 98:1025–1041. 2024. View Article : Google Scholar : PubMed/NCBI | |
Jessen C, Kreß JKC, Baluapuri A, Hufnagel A, Schmitz W, Kneitz S, Roth S, Marquardt A, Appenzeller S, Ade CP, et al: The transcription factor NRF2 enhances melanoma malignancy by blocking differentiation and inducing COX2 expression. Oncogene. 39:6841–6855. 2020. View Article : Google Scholar : PubMed/NCBI | |
DeNicola GM, Chen PH, Mullarky E, Sudderth JA, Hu Z, Wu D, Tang H, Xie Y, Asara JM, Huffman KE, et al: NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat Genet. 47:1475–1481. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gwinn DM, Lee AG, Briones-Martin-Del-Campo M, Conn CS, Simpson DR, Scott AI, Le A, Cowan TM, Ruggero D and Sweet-Cordero EA: Oncogenic KRAS Regulates Amino Acid Homeostasis and Asparagine Biosynthesis via ATF4 and Alters Sensitivity to L-Asparaginase. Cancer Cell. 33:91–107.e6. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kreß JKC, Jessen C, Hufnagel A, Schmitz W, Xavier da Silva TN, Ferreira Dos Santos A, Mosteo L, Goding CR, Friedmann Angeli JP and Meierjohann S: The integrated stress response effector ATF4 is an obligatory metabolic activator of NRF2. Cell Rep. 42:1127242023. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Ali M, Zhang Q, Sun Q, Ren J, Wang W, Tang D and Wang D: ATF4 transcriptionally activates SHH to promote proliferation, invasion, and migration of gastric cancer cells. Cancers (Basel). 15:14292023. View Article : Google Scholar : PubMed/NCBI | |
Kang L, Wang D, Shen T, Liu X, Dai B, Zhou D, Shen H, Gong J, Li G, Hu Y, et al: PDIA4 confers resistance to ferroptosis via induction of ATF4/SLC7A11 in renal cell carcinoma. Cell Death Dis. 14:1932023. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Zhang H and Cheng Q: PDIA4: The basic characteristics, functions and its potential connection with cancer. Biomed Pharmacother. 122:1096882020. View Article : Google Scholar : PubMed/NCBI | |
Lee CH, Chiang CF, Lin FH, Kuo FC, Su SC, Huang CL, Li PF, Liu JS, Lu CH, Hsieh CH, et al: PDIA4, a new endoplasmic reticulum stress protein, modulates insulin resistance and inflammation in skeletal muscle. Front Endocrinol (Lausanne). 13:10538822022. View Article : Google Scholar : PubMed/NCBI | |
Gao R, Kalathur RKR, Coto-Llerena M, Ercan C, Buechel D, Shuang S, Piscuoglio S, Dill MT, Camargo FD, Christofori G and Tang F: YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Mol Med. 13:e143512021. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Fan Z, Rauh M, Buchfelder M, Eyupoglu IY and Savaskan N: ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. Oncogene. 36:5593–5608. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sasaki H, Sato H, Kuriyama-Matsumura K, Sato K, Maebara K, Wang H, Tamba M, Itoh K, Yamamoto M and Bannai S: Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression. J Biol Chem. 277:44765–44771. 2002. View Article : Google Scholar : PubMed/NCBI | |
Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, Thomas AG, Gleason CE, Tatonetti NP, Slusher BS and Stockwell BR: Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife. 3:e025232014. View Article : Google Scholar : PubMed/NCBI | |
Miki H, Suetsugu S and Takenawa T: WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J. 17:6932–6941. 1998. View Article : Google Scholar : PubMed/NCBI | |
Steffen A, Rottner K, Ehinger J, Innocenti M, Scita G, Wehland J and Stradal TE: Sra-1 and Nap1 link Rac to actin assembly driving lamellipodia formation. EMBO J. 23:749–759. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kage F, Döring H, Mietkowska M, Schaks M, Grüner F, Stahnke S, Steffen A, Müsken M, Stradal TEB and Rottner K: Lamellipodia-like actin networks in cells lacking WAVE regulatory complex. J Cell Sci. 135:jcs2603642022. View Article : Google Scholar : PubMed/NCBI | |
Rotty JD, Wu C and Bear JE: New insights into the regulation and cellular functions of the ARP2/3 complex. Nat Rev Mol Cell Biol. 14:7–12. 2013. View Article : Google Scholar : PubMed/NCBI | |
Alekhina O, Burstein E and Billadeau DD: Cellular functions of WASP family proteins at a glance. J Cell Sci. 130:2235–2241. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ibarra N, Pollitt A and Insall RH: Regulation of actin assembly by SCAR/WAVE proteins. Biochem Soc Trans. 33:1243–1246. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhu A, Zong Y, Wei S, Li Y, Fan Y, Liu S and Gao X: Pan-cancer Analysis of the Disulfidptosis-related Gene NCKAP1 and Its Prognostic Value for Lung Adenocarcinoma. J Cancer. 14:3351–3367. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tang H, Li A, Bi J, Veltman DM, Zech T, Spence HJ, Yu X, Timpson P, Insall RH, Frame MC and Machesky LM: Loss of Scar/WAVE complex promotes N-WASP- and FAK-dependent invasion. Curr Biol. 23:107–117. 2013. View Article : Google Scholar : PubMed/NCBI | |
Koppula P, Olszewski K, Zhang Y, Kondiparthi L, Liu X, Lei G, Das M, Fang B, Poyurovsky MV and Gan B: KEAP1 deficiency drives glucose dependency and sensitizes lung cancer cells and tumors to GLUT inhibition. iScience. 24:1026492021. View Article : Google Scholar : PubMed/NCBI | |
Xu K, Zhang Y, Yan Z, Wang Y, Li Y, Qiu Q, Du Y, Chen Z and Liu X: Identification of disulfidptosis related subtypes, characterization of tumor microenvironment infiltration, and development of DRG prognostic prediction model in RCC, in which MSH3 is a key gene during disulfidptosis. Front Immunol. 14:12052502023. View Article : Google Scholar : PubMed/NCBI | |
Sakellariou D, Bak ST, Isik E, Barroso SI, Porro A, Aguilera A, Bartek J, Janscak P and Peña-Diaz J: MutSβ regulates G4-associated telomeric R-loops to maintain telomere integrity in ALT cancer cells. Cell Rep. 39:1106022022. View Article : Google Scholar : PubMed/NCBI | |
Siebeneicher H, Cleve A, Rehwinkel H, Neuhaus R, Heisler I, Müller T, Bauser M and Buchmann B: Identification and optimization of the first highly selective GLUT1 Inhibitor BAY-876. ChemMedChem. 11:2261–2271. 2016. View Article : Google Scholar : PubMed/NCBI | |
Olszewski K, Barsotti A, Feng XJ, Momcilovic M, Liu KG, Kim JI, Morris K, Lamarque C, Gaffney J, Yu X, et al: Inhibition of glucose transport synergizes with chemical or genetic disruption of mitochondrial metabolism and suppresses TCA cycle-deficient tumors. Cell Chem Biol. 29:423–435.e10. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Tang M, Dang W, Zhu S and Wang Y: Identification of disulfidptosis-related subtypes, characterization of tumor microenvironment infiltration, and development of a prognosis model in colorectal cancer. J Cancer Res Clin Oncol. 149:13995–14014. 2023. View Article : Google Scholar : PubMed/NCBI | |
Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shriwas P, Roberts D, Li Y, Wang L, Qian Y, Bergmeier S, Hines J, Adhicary S, Nielsen C and Chen X: A small-molecule pan-class I glucose transporter inhibitor reduces cancer cell proliferation in vitro and tumor growth in vivo by targeting glucose-based metabolism. Cancer Metab. 9:142021. View Article : Google Scholar : PubMed/NCBI | |
Chang CK, Chiu PF, Yang HY, Juang YP, Lai YH, Lin TS, Hsu LC, Yu LC and Liang PH: Targeting colorectal cancer with conjugates of a glucose transporter inhibitor and 5-fluorouracil. J Med Chem. 64:4450–4461. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Koppula P and Gan B: Regulation of H2A ubiquitination and SLC7A11 expression by BAP1 and PRC1. Cell Cycle. 18:773–783. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Shi J, Liu X, Feng L, Gong Z, Koppula P, Sirohi K, Li X, Wei Y, Lee H, et al: BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol. 20:1181–1192. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao M, Xu C and Zhu H: Efficacy of glucose transporter inhibitors for the treatment of ERRα-overexpressed colorectal cancer. Acta Biochim Pol. 69:567–572. 2022.PubMed/NCBI | |
Qi C, Ma J, Sun J, Wu X and Ding J: The role of molecular subtypes and immune infiltration characteristics based on disulfidptosis-associated genes in lung adenocarcinoma. Aging (Albany NY). 15:5075–5095. 2023.PubMed/NCBI | |
Xia Q, Yan Q, Wang Z, Huang Q, Zheng X, Shen J, Du L, Li H and Duan S: Disulfidptosis-associated lncRNAs predict breast cancer subtypes. Sci Rep. 13:162682023. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Luo Z, Fu R, Zhou J, Chen S, Wang J, Chen D and Xie X: Disulfidptosis-related signatures for prognostic and immunotherapy reactivity evaluation in hepatocellular carcinoma. Eur J Med Res. 28:5712023. View Article : Google Scholar : PubMed/NCBI | |
Yang HC, Wu YH, Yen WC, Liu HY, Hwang TL, Stern A and Chiu DT: The Redox Role of G6PD in Cell Growth, Cell Death, and Cancer. Cells. 8:10552019. View Article : Google Scholar : PubMed/NCBI | |
Liberti MV and Locasale JW: The Warburg Effect: How does it benefit cancer cells? Trends Biochem Sci. 41:211–218. 2016. View Article : Google Scholar : PubMed/NCBI | |
Patra KC and Hay N: The pentose phosphate pathway and cancer. Trends Biochem Sci. 39:347–354. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hart GW, Housley MP and Slawson C: Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature. 446:1017–1022. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Zhang Z, Hoshino A, Zheng HD, Morley M, Arany Z and Rabinowitz JD: NADPH production by the oxidative pentose-phosphate pathway supports folate metabolism. Nat Metab. 1:404–415. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rao X, Duan X, Mao W, Li X, Li Z, Li Q, Zheng Z, Xu H, Chen M, Wang PG, et al: O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth. Nat Commun. 6:84682015. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhang Y, Zhuang L, Olszewski K and Gan B: NADPH debt drives redox bankruptcy: SLC7A11/xCT-mediated cystine uptake as a double-edged sword in cellular redox regulation. Genes Dis. 8:731–745. 2020. View Article : Google Scholar : PubMed/NCBI | |
Holm J, Eriksson L, Ploner A, Eriksson M, Rantalainen M, Li J, Hall P and Czene K: Assessment of breast cancer risk factors reveals subtype heterogeneity. Cancer Res. 77:3708–3717. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ni Y, Hagras MA, Konstantopoulou V, Mayr JA, Stuchebrukhov AA and Meierhofer D: Mutations in ndufs1 cause metabolic reprogramming and disruption of the electron transfer. Cells. 8:11492019. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Vinothkumar KR and Hirst J: Structure of mammalian respiratory complex I. Nature. 536:354–358. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cui J, Wang L, Ren X, Zhang Y and Zhang H: LRPPRC: A multifunctional protein involved in energy metabolism and human disease. Front Physiol. 10:5952019. View Article : Google Scholar : PubMed/NCBI | |
Song H, Zhang F, Bai X, Liang H, Niu J and Miao Y: Comprehensive analysis of disulfidptosis-related genes reveals the effect of disulfidptosis in ulcerative colitis. Sci Rep. 14:157052024. View Article : Google Scholar : PubMed/NCBI | |
Tilokani L, Nagashima S, Paupe V and Prudent J: Mitochondrial dynamics: Overview of molecular mechanisms. Essays Biochem. 62:341–360. 2018. View Article : Google Scholar : PubMed/NCBI | |
Youle RJ and van der Bliek AM: Mitochondrial fission, fusion, and stress. Science. 337:1062–1065. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wan S, Maitiabula G, Wang P, Zhang Y, Gao X, Zhang L, Gao T and Wang X: Down regulation of NDUFS1 is involved in the progression of parenteral-nutrition-associated liver disease by increasing Oxidative stress. J Nutr Biochem. 112:1092212023. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Yuan H, Zhao L, Guo S, Hu S, Tian M, Nie Y, Yu J, Zhou C, Niu J, et al: Targeting the miR-34a/LRPPRC/MDR1 axis collapse the chemoresistance in P53 inactive colorectal cancer. Cell Death Differ. 29:2177–2189. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wei WS, Wang N, Deng MH, Dong P, Liu JY, Xiang Z, Li XD, Li ZY, Liu ZH, Peng YL, et al: LRPPRC regulates redox homeostasis via the circANKHD1/FOXM1 axis to enhance bladder urothelial carcinoma tumorigenesis. Redox Biol. 48:1022012021. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Zhang W and Yan Y: Identification and characterization of a novel molecular classification based on disulfidptosis-related genes to predict prognosis and immunotherapy efficacy in hepatocellular carcinoma. Aging (Albany NY). 15:6135–6151. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zeng M, Wu B, Wei W, Jiang Z, Li P, Quan Y and Hu X: Disulfiram: A novel repurposed drug for cancer therapy. Chin Med J (Engl). 137:1389–1398. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li Q and Yin LK: Comprehensive analysis of disulfidptosis related genes and prognosis of gastric cancer. World J Clin Oncol. 14:373–399. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yan J, Fang Z, Shi M, Tu C, Zhang S, Jiang C, Li Q and Shao Y: Clinical Significance of Disulfidptosis-related Genes and Functional Analysis in Gastric Cancer. J Cancer. 15:1053–1066. 2024. View Article : Google Scholar : PubMed/NCBI | |
Whitelaw JA, Swaminathan K, Kage F and Machesky LM: The WAVE Regulatory Complex Is Required to Balance Protrusion and Adhesion in Migration. Cells. 9:16352020. View Article : Google Scholar : PubMed/NCBI | |
Drayna DT, McLean JW, Wion KL, Trent JM, Drabkin HA and Lawn RM: Human apolipoprotein D gene: Gene sequence, chromosome localization, and homology to the alpha 2u-globulin superfamily. DNA. 6:199–204. 1987. View Article : Google Scholar : PubMed/NCBI | |
Ren L, Yi J, Li W, Zheng X, Liu J, Wang J and Du G: Apolipoproteins and cancer. Cancer Med. 8:7032–7043. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cury SS, de Moraes D, Freire PP, de Oliveira G, Marques DVP, Fernandez GJ, Dal-Pai-Silva M, Hasimoto ÉN, Dos Reis PP, Rogatto SR and Carvalho RF: Tumor Transcriptome Reveals High Expression of IL-8 in Non-Small Cell Lung Cancer Patients with Low Pectoralis Muscle Area and Reduced Survival. Cancers (Basel). 11:12512019. View Article : Google Scholar : PubMed/NCBI | |
Hunter S, Young A, Olson J, Brat DJ, Bowers G, Wilcox JN, Jaye D, Mendrinos S and Neish A: Differential expression between pilocytic and anaplastic astrocytomas: Identification of apolipoprotein D as a marker for low-grade, non-infiltrating primary CNS neoplasms. J Neuropathol Exp Neurol. 61:275–281. 2002. View Article : Google Scholar : PubMed/NCBI | |
Porter D, Lahti-Domenici J, Keshaviah A, Bae YK, Argani P, Marks J, Richardson A, Cooper A, Strausberg R, Riggins GJ, et al: Molecular markers in ductal carcinoma in situ of the breast. Mol Cancer Res. 1:362–375. 2003.PubMed/NCBI | |
Jin D, El-Tanani M and Campbell FC: Identification of apolipoprotein D as a novel inhibitor of osteopontin-induced neoplastic transformation. Int J Oncol. 29:1591–1599. 2006.PubMed/NCBI | |
Jankovic-Karasoulos T, Bianco-Miotto T, Butler MS, Butler LM, McNeil CM, O'Toole SA, Millar EKA, Sakko AJ, Ruiz AI, Birrell SN, et al: Elevated levels of tumour apolipoprotein D independently predict poor outcome in breast cancer patients. Histopathology. 76:976–987. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Zhang Q, Wang M, Liang S, Huang H, Xie L, Cui C and Yu J: Comprehensive analysis of tumor mutation burden and immune microenvironment in gastric cancer. Biosci Rep. 41:BSR202033362021. View Article : Google Scholar : PubMed/NCBI | |
Guo X, Liang X, Wang Y, Cheng A, Zhang H, Qin C and Wang Z: Significance of Tumor Mutation Burden Combined With Immune Infiltrates in the Progression and Prognosis of Advanced Gastric Cancer. Front Genet. 12:6426082021. View Article : Google Scholar : PubMed/NCBI | |
Huo J, Wu L and Zang Y: Construction and Validation of a Universal Applicable Prognostic Signature for Gastric Cancer Based on Seven Immune-Related Gene Correlated With Tumor Associated Macrophages. Front Oncol. 11:6353242021. View Article : Google Scholar : PubMed/NCBI | |
Khan M, Lin J, Wang B, Chen C, Huang Z, Tian Y, Yuan Y and Bu J: A novel necroptosis-related gene index for predicting prognosis and a cold tumor immune microenvironment in stomach adenocarcinoma. Front Immunol. 13:9681652022. View Article : Google Scholar : PubMed/NCBI | |
Beemelmanns A, Zanuzzo FS, Xue X, Sandrelli RM, Rise ML and Gamperl AK: The transcriptomic responses of Atlantic salmon (Salmo salar) to high temperature stress alone, and in combination with moderate hypoxia. BMC Genomics. 22:2612021. View Article : Google Scholar : PubMed/NCBI | |
Shida M, Kitajima Y, Nakamura J, Yanagihara K, Baba K, Wakiyama K and Noshiro H: Impaired mitophagy activates mtROS/HIF-1α interplay and increases cancer aggressiveness in gastric cancer cells under hypoxia. Int J Oncol. 48:1379–1390. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Chen H, Sun L, Wang X, Xu Y, Tian S and Liu X: Uncovering the potential of APOD as a biomarker in gastric cancer: A retrospective and multi-center study. Comput Struct Biotechnol J. 23:1051–1064. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Yang J, Yang F and Mu K: The disulfidptosis-related signature predicts prognosis and immune features in glioma patients. Sci Rep. 13:179882023. View Article : Google Scholar : PubMed/NCBI | |
Ding J, Xu J, Deng Q, Ma W, Zhang R, He X, Liu S and Zhang L: Knockdown of Oligosaccharyltransferase Subunit Ribophorin 1 Induces Endoplasmic-Reticulum-Stress-Dependent Cell Apoptosis in Breast Cancer. Front Oncol. 11:7226242021. View Article : Google Scholar : PubMed/NCBI | |
Qin SY, Hu D, Matsumoto K, Takeda K, Matsumoto N, Yamaguchi Y and Yamamoto K: Malectin forms a complex with ribophorin I for enhanced association with misfolded glycoproteins. J Biol Chem. 287:38080–38089. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wilson CM, Roebuck Q and High S: Ribophorin I regulates substrate delivery to the oligosaccharyltransferase core. Proc Natl Acad Sci USA. 105:9534–9539. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Zhu HQ, Lin SM, Xia BY and Xu B: RPN1: A pan-cancer biomarker and disulfidptosis regulator. Transl Cancer Res. 13:2518–2534. 2024. View Article : Google Scholar : PubMed/NCBI | |
López-Ramos JC, Duran J, Gruart A, Guinovart JJ and Delgado-García JM: Role of brain glycogen in the response to hypoxia and in susceptibility to epilepsy. Front Cell Neurosci. 9:4312015. View Article : Google Scholar : PubMed/NCBI | |
Cameron JM, Levandovskiy V, MacKay N, Utgikar R, Ackerley C, Chiasson D, Halliday W, Raiman J and Robinson BH: Identification of a novel mutation in GYS1 (muscle-specific glycogen synthase) resulting in sudden cardiac death, that is diagnosable from skin fibroblasts. Mol Genet Metab. 98:378–382. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pederson BA, Chen H, Schroeder JM, Shou W, DePaoli-Roach AA and Roach PJ: Abnormal cardiac development in the absence of heart glycogen. Mol Cell Biol. 24:7179–7187. 2004. View Article : Google Scholar : PubMed/NCBI | |
Favaro E, Bensaad K, Chong MG, Tennant DA, Ferguson DJ, Snell C, Steers G, Turley H, Li JL, Günther UL, et al: Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells. Cell Metab. 16:751–764. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wigerup C, Påhlman S and Bexell D: Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther. 164:152–169. 2016. View Article : Google Scholar : PubMed/NCBI | |
de Heer EC, Zois CE, Bridges E, van der Vegt B, Sheldon H, Veldman WA, Zwager MC, van der Sluis T, Haider S, Morita T, et al: Glycogen synthase 1 targeting reveals a metabolic vulnerability in triple-negative breast cancer. J Exp Clin Cancer Res. 42:1432023. View Article : Google Scholar : PubMed/NCBI | |
Ma R, Ji T, Zhang H, Dong W, Chen X, Xu P, Chen D, Liang X, Yin X, Liu Y, et al: A Pck1-directed glycogen metabolic program regulates formation and maintenance of memory CD8(+) T cells. Nat Cell Biol. 20:21–27. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Yang W, Li Y, Ma L and Ji Z: Leveraging a disulfidptosis-based signature to improve the survival and drug sensitivity of bladder cancer patients. Front Immunol. 14:11988782023. View Article : Google Scholar : PubMed/NCBI | |
Zhang D, Zhang X, Liu Z, Han T, Zhao K, Xu X, Zhang X, Ren X and Qin C: An integrative multi-omics analysis based on disulfidptosis-related prognostic signature and distinct subtypes of clear cell renal cell carcinoma. Front Oncol. 13:12070682023. View Article : Google Scholar : PubMed/NCBI |