|
1
|
Kerr JF, Wyllie AH and Currie AR:
Apoptosis: a basic biological phenomenon with wide-ranging
implications in tissue kinetics. Br J Cancer. 26:239–257. 1972.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Galluzzi L, Vitale I, Aaronson SA, Abrams
JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews
DW, et al: Molecular mechanisms of cell death: Recommendations of
the Nomenclature Committee on Cell Death 2018. Cell Death Differ.
25:486–541. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Jiang X, Stockwell BR and Conrad M:
Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol
Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Tsvetkov P, Coy S, Petrova B, Dreishpoon
M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R,
Spangler RD, et al: Copper induces cell death by targeting
lipoylated TCA cycle proteins. Science. 375:1254–1261. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Liu X, Zhuang L and Gan B: Disulfidptosis:
Disulfide stress-induced cell death. Trends Cell Biol. 34:327–337.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ravilious GE and Jez JM: Structural
biology of plant sulfur metabolism: from assimilation to
biosynthesis. Nat Prod Rep. 29:1138–1152. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Wanders D, Hobson K and Ji X: Methionine
restriction and cancer biology. Nutrients. 12:6842020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Kaplowitz N, Aw TY and Ookhtens M: The
regulation of hepatic glutathione. Annu Rev Pharmacol Toxicol.
25:715–744. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lu SC: Glutathione synthesis. Biochim
Biophys Acta. 1830:3143–3153. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Diotallevi M, Checconi P, Palamara AT,
Celestino I, Coppo L, Holmgren A, Abbas K, Peyrot F, Mengozzi M and
Ghezzi P: Glutathione Fine-Tunes the Innate Immune Response toward
Antiviral Pathways in a Macrophage Cell Line Independently of Its
Antioxidant Properties. Front Immunol. 8:12392017. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Chen YJ, Lu CT, Lee TY and Chen YJ: dbGSH:
A database of S-glutathionylation. Bioinformatics. 30:2386–2388.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Lermant A and Murdoch CE: Cysteine
Glutathionylation Acts as a Redox Switch in Endothelial Cells.
Antioxidants (Basel). 8:3152019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kurniawan H, Franchina DG, Guerra L,
Bonetti L, Baguet LS, Grusdat M, Schlicker L, Hunewald O, Dostert
C, Merz MP, et al: Glutathione Restricts Serine Metabolism to
Preserve Regulatory T Cell Function. Cell Metab. 31:920–936.e7.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Gai X, Liu Y, Lan X, Chen L, Yuan T, Xu J,
Li Y, Zheng Y, Yan Y, Yang L, et al: Oncogenic KRAS induces
arginine auxotrophy and confers a therapeutic vulnerability to
SLC7A1 inhibition in non-small cell lung cancer. Cancer Res.
84:1963–1977. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
You S, Zhu X, Yang Y, Du X, Song K, Zheng
Q, Zeng P and Yao Q: SLC7A1 overexpression is involved in energy
metabolism reprogramming to induce tumor progression in epithelial
ovarian cancer and is associated with immune-infiltrating cells. J
Oncol. 2022:58648262022. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Shen C and Wang Y: Ferroptosis biomarkers
for predicting prognosis and immunotherapy efficacy in
adrenocortical carcinoma. Arch Med Res. 54:45–55. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Lei S, Chen C, Han F, Deng J, Huang D,
Qian L, Zhu M, Ma X, Lai M, Xu E and Zhang H: AMER1 deficiency
promotes the distant metastasis of colorectal cancer by inhibiting
SLC7A11- and FTL-mediated ferroptosis. Cell Rep. 42:1131102023.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ouyang S, Li H, Lou L, Huang Q, Zhang Z,
Mo J, Li M, Lu J, Zhu K, Chu Y, et al: Inhibition of
STAT3-ferroptosis negative regulatory axis suppresses tumor growth
and alleviates chemoresistance in gastric cancer. Redox Biol.
52:1023172022. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Yang J, Zhou Y, Xie S, Wang J, Li Z, Chen
L, Mao M, Chen C, Huang A, Chen Y, et al: Metformin induces
Ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. J
Exp Clin Cancer Res. 40:2062021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Wang Z, Shen N, Wang Z, Yu L, Yang S, Wang
Y, Liu Y, Han G and Zhang Q: TRIM3 facilitates ferroptosis in
non-small cell lung cancer through promoting SLC7A11/xCT K11-linked
ubiquitination and degradation. Cell Death Differ. 31:53–64. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Koppula P, Zhuang L and Gan B: Cystine
transporter SLC7A11/xCT in cancer: ferroptosis, nutrient
dependency, and cancer therapy. Protein Cell. 12:599–620. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Koppula P, Zhang Y, Zhuang L and Gan B:
Amino acid transporter SLC7A11/xCT at the crossroads of regulating
redox homeostasis and nutrient dependency of cancer. Cancer Commun
(Lond). 38:122018.PubMed/NCBI
|
|
23
|
Wang L, Liu Y, Du T, Yang H, Lei L, Guo M,
Ding HF, Zhang J, Wang H, Chen X and Yan C: ATF3 promotes
erastin-induced ferroptosis by suppressing system Xc. Cell Death
Differ. 27:662–675. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Xiao H, Jedrychowski MP, Schweppe DK,
Huttlin EL, Yu Q, Heppner DE, Li J, Long J, Mills EL, Szpyt J, et
al: A Quantitative Tissue-Specific Landscape of Protein Redox
Regulation during Aging. Cell. 180:968–983.e4. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Musaogullari A and Chai YC: Redox
Regulation by Protein S-Glutathionylation: From Molecular
Mechanisms to Implications in Health and Disease. Int J Mol Sci.
21:81132020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Machesky LM: Deadly actin collapse by
disulfidptosis. Nat Cell Biol. 25:375–376. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Yan Y, Teng H, Hang Q, Kondiparthi L, Lei
G, Horbath A, Liu X, Mao C, Wu S, Zhuang L, et al: SLC7A11
expression level dictates differential responses to oxidative
stress in cancer cells. Nat Commun. 14:36732023. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Xia N, Guo X, Guo Q, Gupta N, Ji N, Shen
B, Xiao L and Feng Y: Metabolic flexibilities and vulnerabilities
in the pentose phosphate pathway of the zoonotic pathogen
Toxoplasma gondii. PLoS Pathog. 18:e10108642022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
El Mjiyad N, Caro-Maldonado A,
Ramírez-Peinado S and Muñoz-Pinedo C: Sugar-free approaches to
cancer cell killing. Oncogene. 30:253–264. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Liu X, Nie L, Zhang Y, Yan Y, Wang C,
Colic M, Olszewski K, Horbath A, Chen X, Lei G, et al: Actin
cytoskeleton vulnerability to disulfide stress mediates
disulfidptosis. Nat Cell Biol. 25:404–414. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Chen J, Ma B, Yang Y, Wang B, Hao J and
Zhou X: Disulfidptosis decoded: A journey through cell death
mysteries, regulatory networks, disease paradigms and future
directions. Biomark Res. 12:452024. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Fregoso FE, van Eeuwen T, Simanov G,
Rebowski G, Boczkowska M, Zimmet A, Gautreau AM and Dominguez R:
Molecular mechanism of Arp2/3 complex inhibition by Arpin. Nat
Commun. 13:6282022. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wicks EE and Semenza GL: Hypoxia-inducible
factors: Cancer progression and clinical translation. J Clin
Invest. 132:e1598392022. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Rozpedek W, Pytel D, Mucha B, Leszczynska
H, Diehl JA and Majsterek I: The Role of the PERK/eIF2α/ATF4/CHOP
signaling pathway in tumor progression during endoplasmic reticulum
stress. Curr Mol Med. 16:533–544. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhang Y, Lin C, Liu Z, Sun Y, Chen M, Guo
Y, Liu W, Zhang C, Chen W, Sun J, et al: Cancer cells co-opt
nociceptive nerves to thrive in nutrient-poor environments and upon
nutrient-starvation therapies. Cell Metab. 34:1999–2017.e10. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ma Y, Temkin SM, Hawkridge AM, Guo C, Wang
W, Wang XY and Fang X: Fatty acid oxidation: An emerging facet of
metabolic transformation in cancer. Cancer Lett. 435:92–100. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang L, Cai H, Hu Y, Liu F, Huang S, Zhou
Y, Yu J, Xu J and Wu F: A pharmacological probe identifies
cystathionine β-synthase as a new negative regulator for
ferroptosis. Cell Death Dis. 9:10052018. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Tang H, Kang R, Liu J and Tang D: ATF4 in
cellular stress, ferroptosis, and cancer. Arch Toxicol.
98:1025–1041. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Jessen C, Kreß JKC, Baluapuri A, Hufnagel
A, Schmitz W, Kneitz S, Roth S, Marquardt A, Appenzeller S, Ade CP,
et al: The transcription factor NRF2 enhances melanoma malignancy
by blocking differentiation and inducing COX2 expression. Oncogene.
39:6841–6855. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
DeNicola GM, Chen PH, Mullarky E, Sudderth
JA, Hu Z, Wu D, Tang H, Xie Y, Asara JM, Huffman KE, et al: NRF2
regulates serine biosynthesis in non-small cell lung cancer. Nat
Genet. 47:1475–1481. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Gwinn DM, Lee AG, Briones-Martin-Del-Campo
M, Conn CS, Simpson DR, Scott AI, Le A, Cowan TM, Ruggero D and
Sweet-Cordero EA: Oncogenic KRAS Regulates Amino Acid Homeostasis
and Asparagine Biosynthesis via ATF4 and Alters Sensitivity to
L-Asparaginase. Cancer Cell. 33:91–107.e6. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Kreß JKC, Jessen C, Hufnagel A, Schmitz W,
Xavier da Silva TN, Ferreira Dos Santos A, Mosteo L, Goding CR,
Friedmann Angeli JP and Meierjohann S: The integrated stress
response effector ATF4 is an obligatory metabolic activator of
NRF2. Cell Rep. 42:1127242023. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wang Y, Ali M, Zhang Q, Sun Q, Ren J, Wang
W, Tang D and Wang D: ATF4 transcriptionally activates SHH to
promote proliferation, invasion, and migration of gastric cancer
cells. Cancers (Basel). 15:14292023. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Kang L, Wang D, Shen T, Liu X, Dai B, Zhou
D, Shen H, Gong J, Li G, Hu Y, et al: PDIA4 confers resistance to
ferroptosis via induction of ATF4/SLC7A11 in renal cell carcinoma.
Cell Death Dis. 14:1932023. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Wang Z, Zhang H and Cheng Q: PDIA4: The
basic characteristics, functions and its potential connection with
cancer. Biomed Pharmacother. 122:1096882020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Lee CH, Chiang CF, Lin FH, Kuo FC, Su SC,
Huang CL, Li PF, Liu JS, Lu CH, Hsieh CH, et al: PDIA4, a new
endoplasmic reticulum stress protein, modulates insulin resistance
and inflammation in skeletal muscle. Front Endocrinol (Lausanne).
13:10538822022. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Gao R, Kalathur RKR, Coto-Llerena M, Ercan
C, Buechel D, Shuang S, Piscuoglio S, Dill MT, Camargo FD,
Christofori G and Tang F: YAP/TAZ and ATF4 drive resistance to
Sorafenib in hepatocellular carcinoma by preventing ferroptosis.
EMBO Mol Med. 13:e143512021. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Chen D, Fan Z, Rauh M, Buchfelder M,
Eyupoglu IY and Savaskan N: ATF4 promotes angiogenesis and neuronal
cell death and confers ferroptosis in a xCT-dependent manner.
Oncogene. 36:5593–5608. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Sasaki H, Sato H, Kuriyama-Matsumura K,
Sato K, Maebara K, Wang H, Tamba M, Itoh K, Yamamoto M and Bannai
S: Electrophile response element-mediated induction of the
cystine/glutamate exchange transporter gene expression. J Biol
Chem. 277:44765–44771. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Dixon SJ, Patel DN, Welsch M, Skouta R,
Lee ED, Hayano M, Thomas AG, Gleason CE, Tatonetti NP, Slusher BS
and Stockwell BR: Pharmacological inhibition of cystine-glutamate
exchange induces endoplasmic reticulum stress and ferroptosis.
Elife. 3:e025232014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Miki H, Suetsugu S and Takenawa T: WAVE, a
novel WASP-family protein involved in actin reorganization induced
by Rac. EMBO J. 17:6932–6941. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Steffen A, Rottner K, Ehinger J, Innocenti
M, Scita G, Wehland J and Stradal TE: Sra-1 and Nap1 link Rac to
actin assembly driving lamellipodia formation. EMBO J. 23:749–759.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Kage F, Döring H, Mietkowska M, Schaks M,
Grüner F, Stahnke S, Steffen A, Müsken M, Stradal TEB and Rottner
K: Lamellipodia-like actin networks in cells lacking WAVE
regulatory complex. J Cell Sci. 135:jcs2603642022. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Rotty JD, Wu C and Bear JE: New insights
into the regulation and cellular functions of the ARP2/3 complex.
Nat Rev Mol Cell Biol. 14:7–12. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Alekhina O, Burstein E and Billadeau DD:
Cellular functions of WASP family proteins at a glance. J Cell Sci.
130:2235–2241. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ibarra N, Pollitt A and Insall RH:
Regulation of actin assembly by SCAR/WAVE proteins. Biochem Soc
Trans. 33:1243–1246. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Zhu A, Zong Y, Wei S, Li Y, Fan Y, Liu S
and Gao X: Pan-cancer Analysis of the Disulfidptosis-related Gene
NCKAP1 and Its Prognostic Value for Lung Adenocarcinoma. J Cancer.
14:3351–3367. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Tang H, Li A, Bi J, Veltman DM, Zech T,
Spence HJ, Yu X, Timpson P, Insall RH, Frame MC and Machesky LM:
Loss of Scar/WAVE complex promotes N-WASP- and FAK-dependent
invasion. Curr Biol. 23:107–117. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Koppula P, Olszewski K, Zhang Y,
Kondiparthi L, Liu X, Lei G, Das M, Fang B, Poyurovsky MV and Gan
B: KEAP1 deficiency drives glucose dependency and sensitizes lung
cancer cells and tumors to GLUT inhibition. iScience.
24:1026492021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Xu K, Zhang Y, Yan Z, Wang Y, Li Y, Qiu Q,
Du Y, Chen Z and Liu X: Identification of disulfidptosis related
subtypes, characterization of tumor microenvironment infiltration,
and development of DRG prognostic prediction model in RCC, in which
MSH3 is a key gene during disulfidptosis. Front Immunol.
14:12052502023. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Sakellariou D, Bak ST, Isik E, Barroso SI,
Porro A, Aguilera A, Bartek J, Janscak P and Peña-Diaz J: MutSβ
regulates G4-associated telomeric R-loops to maintain telomere
integrity in ALT cancer cells. Cell Rep. 39:1106022022. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Siebeneicher H, Cleve A, Rehwinkel H,
Neuhaus R, Heisler I, Müller T, Bauser M and Buchmann B:
Identification and optimization of the first highly selective GLUT1
Inhibitor BAY-876. ChemMedChem. 11:2261–2271. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Olszewski K, Barsotti A, Feng XJ,
Momcilovic M, Liu KG, Kim JI, Morris K, Lamarque C, Gaffney J, Yu
X, et al: Inhibition of glucose transport synergizes with chemical
or genetic disruption of mitochondrial metabolism and suppresses
TCA cycle-deficient tumors. Cell Chem Biol. 29:423–435.e10. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Li Y, Tang M, Dang W, Zhu S and Wang Y:
Identification of disulfidptosis-related subtypes, characterization
of tumor microenvironment infiltration, and development of a
prognosis model in colorectal cancer. J Cancer Res Clin Oncol.
149:13995–14014. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Vander Heiden MG, Cantley LC and Thompson
CB: Understanding the Warburg effect: The metabolic requirements of
cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Shriwas P, Roberts D, Li Y, Wang L, Qian
Y, Bergmeier S, Hines J, Adhicary S, Nielsen C and Chen X: A
small-molecule pan-class I glucose transporter inhibitor reduces
cancer cell proliferation in vitro and tumor growth in vivo by
targeting glucose-based metabolism. Cancer Metab. 9:142021.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Chang CK, Chiu PF, Yang HY, Juang YP, Lai
YH, Lin TS, Hsu LC, Yu LC and Liang PH: Targeting colorectal cancer
with conjugates of a glucose transporter inhibitor and
5-fluorouracil. J Med Chem. 64:4450–4461. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhang Y, Koppula P and Gan B: Regulation
of H2A ubiquitination and SLC7A11 expression by BAP1 and PRC1. Cell
Cycle. 18:773–783. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhang Y, Shi J, Liu X, Feng L, Gong Z,
Koppula P, Sirohi K, Li X, Wei Y, Lee H, et al: BAP1 links
metabolic regulation of ferroptosis to tumour suppression. Nat Cell
Biol. 20:1181–1192. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhao M, Xu C and Zhu H: Efficacy of
glucose transporter inhibitors for the treatment of
ERRα-overexpressed colorectal cancer. Acta Biochim Pol. 69:567–572.
2022.PubMed/NCBI
|
|
71
|
Qi C, Ma J, Sun J, Wu X and Ding J: The
role of molecular subtypes and immune infiltration characteristics
based on disulfidptosis-associated genes in lung adenocarcinoma.
Aging (Albany NY). 15:5075–5095. 2023.PubMed/NCBI
|
|
72
|
Xia Q, Yan Q, Wang Z, Huang Q, Zheng X,
Shen J, Du L, Li H and Duan S: Disulfidptosis-associated lncRNAs
predict breast cancer subtypes. Sci Rep. 13:162682023. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhao J, Luo Z, Fu R, Zhou J, Chen S, Wang
J, Chen D and Xie X: Disulfidptosis-related signatures for
prognostic and immunotherapy reactivity evaluation in
hepatocellular carcinoma. Eur J Med Res. 28:5712023. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Yang HC, Wu YH, Yen WC, Liu HY, Hwang TL,
Stern A and Chiu DT: The Redox Role of G6PD in Cell Growth, Cell
Death, and Cancer. Cells. 8:10552019. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Liberti MV and Locasale JW: The Warburg
Effect: How does it benefit cancer cells? Trends Biochem Sci.
41:211–218. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Patra KC and Hay N: The pentose phosphate
pathway and cancer. Trends Biochem Sci. 39:347–354. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Hart GW, Housley MP and Slawson C: Cycling
of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins.
Nature. 446:1017–1022. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Chen L, Zhang Z, Hoshino A, Zheng HD,
Morley M, Arany Z and Rabinowitz JD: NADPH production by the
oxidative pentose-phosphate pathway supports folate metabolism. Nat
Metab. 1:404–415. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Rao X, Duan X, Mao W, Li X, Li Z, Li Q,
Zheng Z, Xu H, Chen M, Wang PG, et al: O-GlcNAcylation of G6PD
promotes the pentose phosphate pathway and tumor growth. Nat
Commun. 6:84682015. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Liu X, Zhang Y, Zhuang L, Olszewski K and
Gan B: NADPH debt drives redox bankruptcy: SLC7A11/xCT-mediated
cystine uptake as a double-edged sword in cellular redox
regulation. Genes Dis. 8:731–745. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Holm J, Eriksson L, Ploner A, Eriksson M,
Rantalainen M, Li J, Hall P and Czene K: Assessment of breast
cancer risk factors reveals subtype heterogeneity. Cancer Res.
77:3708–3717. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Ni Y, Hagras MA, Konstantopoulou V, Mayr
JA, Stuchebrukhov AA and Meierhofer D: Mutations in ndufs1 cause
metabolic reprogramming and disruption of the electron transfer.
Cells. 8:11492019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhu J, Vinothkumar KR and Hirst J:
Structure of mammalian respiratory complex I. Nature. 536:354–358.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Cui J, Wang L, Ren X, Zhang Y and Zhang H:
LRPPRC: A multifunctional protein involved in energy metabolism and
human disease. Front Physiol. 10:5952019. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Song H, Zhang F, Bai X, Liang H, Niu J and
Miao Y: Comprehensive analysis of disulfidptosis-related genes
reveals the effect of disulfidptosis in ulcerative colitis. Sci
Rep. 14:157052024. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Tilokani L, Nagashima S, Paupe V and
Prudent J: Mitochondrial dynamics: Overview of molecular
mechanisms. Essays Biochem. 62:341–360. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Youle RJ and van der Bliek AM:
Mitochondrial fission, fusion, and stress. Science. 337:1062–1065.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wan S, Maitiabula G, Wang P, Zhang Y, Gao
X, Zhang L, Gao T and Wang X: Down regulation of NDUFS1 is involved
in the progression of parenteral-nutrition-associated liver disease
by increasing Oxidative stress. J Nutr Biochem. 112:1092212023.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Yang Y, Yuan H, Zhao L, Guo S, Hu S, Tian
M, Nie Y, Yu J, Zhou C, Niu J, et al: Targeting the
miR-34a/LRPPRC/MDR1 axis collapse the chemoresistance in P53
inactive colorectal cancer. Cell Death Differ. 29:2177–2189. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Wei WS, Wang N, Deng MH, Dong P, Liu JY,
Xiang Z, Li XD, Li ZY, Liu ZH, Peng YL, et al: LRPPRC regulates
redox homeostasis via the circANKHD1/FOXM1 axis to enhance bladder
urothelial carcinoma tumorigenesis. Redox Biol. 48:1022012021.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Yang L, Zhang W and Yan Y: Identification
and characterization of a novel molecular classification based on
disulfidptosis-related genes to predict prognosis and immunotherapy
efficacy in hepatocellular carcinoma. Aging (Albany NY).
15:6135–6151. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Zeng M, Wu B, Wei W, Jiang Z, Li P, Quan Y
and Hu X: Disulfiram: A novel repurposed drug for cancer therapy.
Chin Med J (Engl). 137:1389–1398. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Li Q and Yin LK: Comprehensive analysis of
disulfidptosis related genes and prognosis of gastric cancer. World
J Clin Oncol. 14:373–399. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Yan J, Fang Z, Shi M, Tu C, Zhang S, Jiang
C, Li Q and Shao Y: Clinical Significance of Disulfidptosis-related
Genes and Functional Analysis in Gastric Cancer. J Cancer.
15:1053–1066. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Whitelaw JA, Swaminathan K, Kage F and
Machesky LM: The WAVE Regulatory Complex Is Required to Balance
Protrusion and Adhesion in Migration. Cells. 9:16352020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Drayna DT, McLean JW, Wion KL, Trent JM,
Drabkin HA and Lawn RM: Human apolipoprotein D gene: Gene sequence,
chromosome localization, and homology to the alpha 2u-globulin
superfamily. DNA. 6:199–204. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Ren L, Yi J, Li W, Zheng X, Liu J, Wang J
and Du G: Apolipoproteins and cancer. Cancer Med. 8:7032–7043.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Cury SS, de Moraes D, Freire PP, de
Oliveira G, Marques DVP, Fernandez GJ, Dal-Pai-Silva M, Hasimoto
ÉN, Dos Reis PP, Rogatto SR and Carvalho RF: Tumor Transcriptome
Reveals High Expression of IL-8 in Non-Small Cell Lung Cancer
Patients with Low Pectoralis Muscle Area and Reduced Survival.
Cancers (Basel). 11:12512019. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Hunter S, Young A, Olson J, Brat DJ,
Bowers G, Wilcox JN, Jaye D, Mendrinos S and Neish A: Differential
expression between pilocytic and anaplastic astrocytomas:
Identification of apolipoprotein D as a marker for low-grade,
non-infiltrating primary CNS neoplasms. J Neuropathol Exp Neurol.
61:275–281. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Porter D, Lahti-Domenici J, Keshaviah A,
Bae YK, Argani P, Marks J, Richardson A, Cooper A, Strausberg R,
Riggins GJ, et al: Molecular markers in ductal carcinoma in situ of
the breast. Mol Cancer Res. 1:362–375. 2003.PubMed/NCBI
|
|
101
|
Jin D, El-Tanani M and Campbell FC:
Identification of apolipoprotein D as a novel inhibitor of
osteopontin-induced neoplastic transformation. Int J Oncol.
29:1591–1599. 2006.PubMed/NCBI
|
|
102
|
Jankovic-Karasoulos T, Bianco-Miotto T,
Butler MS, Butler LM, McNeil CM, O'Toole SA, Millar EKA, Sakko AJ,
Ruiz AI, Birrell SN, et al: Elevated levels of tumour
apolipoprotein D independently predict poor outcome in breast
cancer patients. Histopathology. 76:976–987. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Yu J, Zhang Q, Wang M, Liang S, Huang H,
Xie L, Cui C and Yu J: Comprehensive analysis of tumor mutation
burden and immune microenvironment in gastric cancer. Biosci Rep.
41:BSR202033362021. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Guo X, Liang X, Wang Y, Cheng A, Zhang H,
Qin C and Wang Z: Significance of Tumor Mutation Burden Combined
With Immune Infiltrates in the Progression and Prognosis of
Advanced Gastric Cancer. Front Genet. 12:6426082021. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Huo J, Wu L and Zang Y: Construction and
Validation of a Universal Applicable Prognostic Signature for
Gastric Cancer Based on Seven Immune-Related Gene Correlated With
Tumor Associated Macrophages. Front Oncol. 11:6353242021.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Khan M, Lin J, Wang B, Chen C, Huang Z,
Tian Y, Yuan Y and Bu J: A novel necroptosis-related gene index for
predicting prognosis and a cold tumor immune microenvironment in
stomach adenocarcinoma. Front Immunol. 13:9681652022. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Beemelmanns A, Zanuzzo FS, Xue X,
Sandrelli RM, Rise ML and Gamperl AK: The transcriptomic responses
of Atlantic salmon (Salmo salar) to high temperature stress alone,
and in combination with moderate hypoxia. BMC Genomics. 22:2612021.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Shida M, Kitajima Y, Nakamura J,
Yanagihara K, Baba K, Wakiyama K and Noshiro H: Impaired mitophagy
activates mtROS/HIF-1α interplay and increases cancer
aggressiveness in gastric cancer cells under hypoxia. Int J Oncol.
48:1379–1390. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Wang Z, Chen H, Sun L, Wang X, Xu Y, Tian
S and Liu X: Uncovering the potential of APOD as a biomarker in
gastric cancer: A retrospective and multi-center study. Comput
Struct Biotechnol J. 23:1051–1064. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Wang X, Yang J, Yang F and Mu K: The
disulfidptosis-related signature predicts prognosis and immune
features in glioma patients. Sci Rep. 13:179882023. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Ding J, Xu J, Deng Q, Ma W, Zhang R, He X,
Liu S and Zhang L: Knockdown of Oligosaccharyltransferase Subunit
Ribophorin 1 Induces Endoplasmic-Reticulum-Stress-Dependent Cell
Apoptosis in Breast Cancer. Front Oncol. 11:7226242021. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Qin SY, Hu D, Matsumoto K, Takeda K,
Matsumoto N, Yamaguchi Y and Yamamoto K: Malectin forms a complex
with ribophorin I for enhanced association with misfolded
glycoproteins. J Biol Chem. 287:38080–38089. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Wilson CM, Roebuck Q and High S:
Ribophorin I regulates substrate delivery to the
oligosaccharyltransferase core. Proc Natl Acad Sci USA.
105:9534–9539. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Wang X, Zhu HQ, Lin SM, Xia BY and Xu B:
RPN1: A pan-cancer biomarker and disulfidptosis regulator. Transl
Cancer Res. 13:2518–2534. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
López-Ramos JC, Duran J, Gruart A,
Guinovart JJ and Delgado-García JM: Role of brain glycogen in the
response to hypoxia and in susceptibility to epilepsy. Front Cell
Neurosci. 9:4312015. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Cameron JM, Levandovskiy V, MacKay N,
Utgikar R, Ackerley C, Chiasson D, Halliday W, Raiman J and
Robinson BH: Identification of a novel mutation in GYS1
(muscle-specific glycogen synthase) resulting in sudden cardiac
death, that is diagnosable from skin fibroblasts. Mol Genet Metab.
98:378–382. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Pederson BA, Chen H, Schroeder JM, Shou W,
DePaoli-Roach AA and Roach PJ: Abnormal cardiac development in the
absence of heart glycogen. Mol Cell Biol. 24:7179–7187. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Favaro E, Bensaad K, Chong MG, Tennant DA,
Ferguson DJ, Snell C, Steers G, Turley H, Li JL, Günther UL, et al:
Glucose utilization via glycogen phosphorylase sustains
proliferation and prevents premature senescence in cancer cells.
Cell Metab. 16:751–764. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Wigerup C, Påhlman S and Bexell D:
Therapeutic targeting of hypoxia and hypoxia-inducible factors in
cancer. Pharmacol Ther. 164:152–169. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
de Heer EC, Zois CE, Bridges E, van der
Vegt B, Sheldon H, Veldman WA, Zwager MC, van der Sluis T, Haider
S, Morita T, et al: Glycogen synthase 1 targeting reveals a
metabolic vulnerability in triple-negative breast cancer. J Exp
Clin Cancer Res. 42:1432023. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Ma R, Ji T, Zhang H, Dong W, Chen X, Xu P,
Chen D, Liang X, Yin X, Liu Y, et al: A Pck1-directed glycogen
metabolic program regulates formation and maintenance of memory
CD8(+) T cells. Nat Cell Biol. 20:21–27. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Chen H, Yang W, Li Y, Ma L and Ji Z:
Leveraging a disulfidptosis-based signature to improve the survival
and drug sensitivity of bladder cancer patients. Front Immunol.
14:11988782023. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Zhang D, Zhang X, Liu Z, Han T, Zhao K, Xu
X, Zhang X, Ren X and Qin C: An integrative multi-omics analysis
based on disulfidptosis-related prognostic signature and distinct
subtypes of clear cell renal cell carcinoma. Front Oncol.
13:12070682023. View Article : Google Scholar : PubMed/NCBI
|