Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
May-2025 Volume 29 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2025 Volume 29 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

ALDH1A1 in breast cancer: A prospective target to overcome therapy resistance (Review)

  • Authors:
    • Lokman Varisli
    • Panagiotis Zoumpourlis
    • Demetrios A. Spandidos
    • Vassilis Zoumpourlis
    • Spiros Vlahopoulos
  • View Affiliations / Copyright

    Affiliations: Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey, Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece, Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece, First Department of Pediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece
    Copyright: © Varisli et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 213
    |
    Published online on: March 4, 2025
       https://doi.org/10.3892/ol.2025.14959
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The expression of cytosolic aldehyde dehydrogenases (ALDHs), which mediate the last step in the pathway of the synthesis of all‑trans retinoic acid, is dysregulated in various types of human cancer, and has been associated with the development of cancer stem cells (CSCs) in solid tumors and hematological malignancies. CSCs are considered a minor fraction of cancer cells with the capacity to initiate neoplastic tumors. ALDH1A1 serves a crucial role in the emergence of the CSC phenotype, induces the malignant behavior of cancer cells and promotes treatment resistance. Notably, ALDH1A1‑induced therapy resistance is not exclusive to just one group of drugs, but affects diverse types of drugs that use different mechanisms to kill cells. This diversity of drug resistance‑inducing effects is associated with the stemness‑supporting functions of ALDH1A1. The inhibition of ALDH1A1 activity using chemicals or the depletion of ALDH1A1 via genetic approaches, such as the use of small interfering RNA, can overcome diverse pathways of therapy resistance. In the context of breast cancer, it is critical that only a fraction of malignant cells are expected to manifest stem‑like features, which include increased expression of ALDH1A1. From the angle of disease prognosis, the extent of the association of ALDH1A1 with increased malignant behavior and drug resistance remains to be determined through the application of cutting‑edge methods that detect the expression of tracked biomarkers within tumors.
View Figures

Figure 1

Figure 2

View References

1 

Brown G: Targeting the retinoic acid pathway to eradicate cancer stem cells. Int J Mol Sci. 24:23732023. View Article : Google Scholar : PubMed/NCBI

2 

Dick JE: Stem cell concepts renew cancer research. Blood. 112:4793–4807. 2008. View Article : Google Scholar : PubMed/NCBI

3 

Hassan G and Seno M: Blood and cancer: Cancer stem cells as origin of hematopoietic cells in solid tumor microenvironments. Cells. 9:12932020. View Article : Google Scholar : PubMed/NCBI

4 

Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu Y, Martin-Trevino R, Shang L, McDermott SP, Landis MD, et al: Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports. 2:78–91. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Li W, Ma H, Zhang J, Zhu L, Wang C and Yang Y: Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci Rep. 7:138562017. View Article : Google Scholar : PubMed/NCBI

6 

Kamalabadi Farahani M, Farjadmehr M, Atashi A, Momeni A and Behzadifard M: Concise review: Breast cancer stems cells and their role in metastases. Ann Med Surg (Lond). 86:5266–5275. 2024. View Article : Google Scholar : PubMed/NCBI

7 

Zhong Y, Shen S, Zhou Y, Mao F, Guan J, Lin Y, Xu Y and Sun Q: ALDH1 is a better clinical indicator for relapse of invasive ductal breast cancer than the CD44+/CD24-phenotype. Med Oncol. 31:8642014. View Article : Google Scholar : PubMed/NCBI

8 

Croker AK, Goodale D, Chu J, Postenka C, Hedley BD, Hess DA and Allan AL: High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med. 13:2236–2252. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Brugnoli F, Grassilli S, Al-Qassab Y, Capitani S and Bertagnolo V: CD133 in breast cancer cells: More than a stem cell marker. J Oncol. 2019:75126322019. View Article : Google Scholar : PubMed/NCBI

10 

Xanthis V, Mantso T, Dimtsi A, Pappa A and Fadouloglou VE: Human aldehyde dehydrogenases: A superfamily of similar yet different proteins highly related to cancer. Cancers (Basel). 15:44192023. View Article : Google Scholar : PubMed/NCBI

11 

Chen Y, Thompson DC, Koppaka V, Jester JV and Vasiliou V: Ocular aldehyde dehydrogenases: Protection against ultraviolet damage and maintenance of transparency for vision. Prog Retin Eye Res. 33:28–39. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Shortall K, Djeghader A, Magner E and Soulimane T: Insights into aldehyde dehydrogenase enzymes: A structural perspective. Front Mol Biosci. 8:6595502021. View Article : Google Scholar : PubMed/NCBI

13 

Sládek NE: Human aldehyde dehydrogenases: Potential pathological, pharmacological, and toxicological impact. J Biochem Mol Toxicol. 17:7–23. 2003. View Article : Google Scholar : PubMed/NCBI

14 

O'Brien PJ, Siraki AG and Shangari N: Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit Rev Toxicol. 35:609–662. 2005. View Article : Google Scholar : PubMed/NCBI

15 

Marchitti SA, Brocker C, Stagos D and Vasiliou V: Non-P450 aldehyde oxidizing enzymes: The aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol. 4:697–720. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Ayala A, Muñoz MF and Argüelles S: Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014:3604382014. View Article : Google Scholar : PubMed/NCBI

17 

Sinharoy P, McAllister SL, Vasu M and Gross ER: Environmental aldehyde sources and the health implications of exposure. Adv Exp Med Biol. 1193:35–52. 2019. View Article : Google Scholar : PubMed/NCBI

18 

Zanoni M, Bravaccini S, Fabbri F and Arienti C: Emerging roles of aldehyde dehydrogenase isoforms in anti-cancer therapy resistance. Front Med (Lausanne). 9:7957622022. View Article : Google Scholar : PubMed/NCBI

19 

Jackson B, Brocker C, Thompson DC, Black W, Vasiliou K, Nebert DW and Vasiliou V: Update on the aldehyde dehydrogenase gene (ALDH) superfamily. Hum Genomics. 5:283–303. 2011. View Article : Google Scholar : PubMed/NCBI

20 

Morgan CA, Parajuli B, Buchman CD, Dria K and Hurley TD: N,N-diethylaminobenzaldehyde (DEAB) as a substrate and mechanism-based inhibitor for human ALDH isoenzymes. Chem Biol Interact. 234:18–28. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Gomez-Salazar MA, Wang Y, Thottappillil N, Hardy RW, Alexandre M, Höller F, Martin N, Gonzalez-Galofre ZN, Stefancova D, Medici D, et al: Aldehyde dehydrogenase, a marker of normal and malignant stem cells, typifies mesenchymal progenitors in perivascular niches. Stem Cells Transl Med. 12:474–484. 2023. View Article : Google Scholar : PubMed/NCBI

22 

Ambroziak W, Izaguirre G and Pietruszko R: Metabolism of retinaldehyde and other aldehydes in soluble extracts of human liver and kidney. J Biol Chem. 274:33366–33373. 1999. View Article : Google Scholar : PubMed/NCBI

23 

Bui TBC, Nosaki S, Kokawa M, Xu Y, Kitamura Y, Tanokura M, Hachimura S and Miyakawa T: Evaluation of spice and herb as phyto-derived selective modulators of human retinaldehyde dehydrogenases using a simple in vitro method. Biosci Rep. 41:BSR202104912021. View Article : Google Scholar : PubMed/NCBI

24 

Vasiliou V, Pappa A and Estey T: Role of human aldehyde dehydrogenases in endobiotic and xenobiotic metabolism. Drug Metab Rev. 36:279–299. 2004. View Article : Google Scholar : PubMed/NCBI

25 

Egea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, et al: European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol. 13:94–162. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Dinavahi SS, Bazewicz CG, Gowda R and Robertson GP: Aldehyde dehydrogenase inhibitors for cancer therapeutics. Trends Pharmacol Sci. 40:774–789. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Xia J, Li S, Liu S and Zhang L: Aldehyde dehydrogenase in solid tumors and other diseases: Potential biomarkers and therapeutic targets. MedComm (2020). 4:e1952023. View Article : Google Scholar : PubMed/NCBI

28 

Lavudi K, Nuguri SM, Pandey P, Kokkanti RR and Wang QE: ALDH and cancer stem cells: Pathways, challenges, and future directions in targeted therapy. Life Sci. 356:1230332024. View Article : Google Scholar : PubMed/NCBI

29 

Al-Shamma SA, Zaher DM, Hersi F, Abu Jayab NN and Omar HA: Targeting aldehyde dehydrogenase enzymes in combination with chemotherapy and immunotherapy: An approach to tackle resistance in cancer cells. Life Sci. 320:1215412023. View Article : Google Scholar : PubMed/NCBI

30 

Stagos D, Chen Y, Cantore M, Jester JV and Vasiliou V: Corneal aldehyde dehydrogenases: multiple functions and novel nuclear localization. Brain Res Bull. 81:211–218. 2010. View Article : Google Scholar : PubMed/NCBI

31 

Zhou L, Sheng D, Wang D, Ma W, Deng Q, Deng L and Liu S: Identification of cancer-type specific expression patterns for active aldehyde dehydrogenase (ALDH) isoforms in ALDEFLUOR assay. Cell Biol Toxicol. 35:161–177. 2019. View Article : Google Scholar : PubMed/NCBI

32 

Maggio V, Cánovas V, Félix AJ, Gómez V, de Torres I, Semidey ME, Morote J, Noé V, Ciudad CJ and Paciucci R: A novel DNA-binding motif in prostate tumor overexpressed-1 (PTOV1) required for the expression of ALDH1A1 and CCNG2 in cancer cells. Cancer Lett. 452:158–167. 2019. View Article : Google Scholar : PubMed/NCBI

33 

Lei F, Zhang L, Li X, Lin X, Wu S, Li F and Liu J: Overexpression of prostate tumor overexpressed 1 correlates with tumor progression and predicts poor prognosis in breast cancer. BMC Cancer. 14:4572014. View Article : Google Scholar : PubMed/NCBI

34 

Qing L, Li Q and Dong Z: MUC1: An emerging target in cancer treatment and diagnosis. Bull Cancer. 109:1202–1216. 2022. View Article : Google Scholar : PubMed/NCBI

35 

Chen W, Zhang Z, Zhang S, Zhu P, Ko JK and Yung KK: MUC1: Structure, function, and clinic application in epithelial cancers. Int J Mol Sci. 22:65672021. View Article : Google Scholar : PubMed/NCBI

36 

Ren J, Agata N, Chen D, Li Y, Yu WH, Huang L, Raina D, Chen W, Kharbanda S and Kufe D: Human MUC1 carcinoma-associated protein confers resistance to genotoxic anticancer agents. Cancer Cell. 5:163–175. 2004. View Article : Google Scholar : PubMed/NCBI

37 

Alam M, Ahmad R, Rajabi H, Kharbanda A and Kufe D: MUC1-C oncoprotein activates ERK-C/EBPβ signaling and induction of aldehyde dehydrogenase 1A1 in breast cancer cells. J Biol Chem. 288:30892–30903. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Alam M, Rajabi H, Ahmad R, Jin C and Kufe D: Targeting the MUC1-C oncoprotein inhibits self-renewal capacity of breast cancer cells. Oncotarget. 5:2622–2634. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Jang GB, Hong IS, Kim RJ, Lee SY, Park SJ, Lee ES, Park JH, Yun CH, Chung JU, Lee KJ, et al: Wnt/β-Catenin Small-molecule inhibitor CWP232228 preferentially inhibits the growth of breast cancer Stem-like cells. Cancer Res. 75:1691–1702. 2015. View Article : Google Scholar : PubMed/NCBI

40 

King TD, Suto MJ and Li Y: The Wnt/β-catenin signaling pathway: A potential therapeutic target in the treatment of triple negative breast cancer. J Cell Biochem. 113:13–18. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Cojoc M, Peitzsch C, Kurth I, Trautmann F, Kunz-Schughart LA, Telegeev GD, Stakhovsky EA, Walker JR, Simin K, Lyle S, et al: Aldehyde dehydrogenase is regulated by β-Catenin/TCF and promotes radioresistance in prostate cancer progenitor cells. Cancer Res. 75:1482–1494. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Hoshino Y, Nishida J, Katsuno Y, Koinuma D, Aoki T, Kokudo N, Miyazono K and Ehata S: Smad4 decreases the population of pancreatic Cancer-initiating cells through transcriptional repression of ALDH1A1. Am J Pathol. 185:1457–1470. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Varisli L and Vlahopoulos S: Epithelial-Mesenchymal transition in acute leukemias. Int J Mol Sci. 25:21732024. View Article : Google Scholar : PubMed/NCBI

44 

Kuburich NA, Sabapathy T, Demestichas BR, Maddela JJ, den Hollander P and Mani SA: Proactive and reactive roles of TGF-β in cancer. Semin Cancer Biol. 95:120–139. 2023. View Article : Google Scholar : PubMed/NCBI

45 

Baba AB, Rah B, Bhat GR, Mushtaq I, Parveen S, Hassan R, Hameed Zargar M and Afroze D: Transforming growth Factor-Beta (TGF-β) signaling in Cancer-A betrayal within. Front Pharmacol. 13:7912722022. View Article : Google Scholar : PubMed/NCBI

46 

Varisli L, Tolan V, Cen JH, Vlahopoulos S and Cen O: Dissecting the effects of androgen deprivation therapy on cadherin switching in advanced prostate cancer: A molecular perspective. Oncol Res. 30:137–155. 2022. View Article : Google Scholar : PubMed/NCBI

47 

Yu Q, Biswas S, Ma G, Zhao P, Li B and Li J: Canonical NF-κB signaling maintains corneal epithelial integrity and prevents corneal aging via retinoic acid. Elife. 10:e673152021. View Article : Google Scholar : PubMed/NCBI

48 

Pavitra E, Kancharla J, Gupta VK, Prasad K, Sung JY, Kim J, Tej MB, Choi R, Lee JH, Han YK, et al: The role of NF-κB in breast cancer initiation, growth, metastasis, and resistance to chemotherapy. Biomed Pharmacother. 163:1148222023. View Article : Google Scholar : PubMed/NCBI

49 

Vlahopoulos SA, Cen O, Hengen N, Agan J, Moschovi M, Critselis E, Adamaki M, Bacopoulou F, Copland JA, Boldogh I, et al: Dynamic aberrant NF-κB spurs tumorigenesis: A new model encompassing the microenvironment. Cytokine Growth Factor Rev. 26:389–403. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Lambrou GI, Hatziagapiou K and Vlahopoulos S: Inflammation and tissue homeostasis: The NF-κB system in physiology and malignant progression. Mol Biol Rep. 47:4047–4063. 2020. View Article : Google Scholar : PubMed/NCBI

51 

Vlahopoulos SA: Divergent processing of cell stress signals as the basis of cancer progression: Licensing NFκB on chromatin. Int J Mol Sci. 25:86212024. View Article : Google Scholar : PubMed/NCBI

52 

Zhao D, Mo Y, Li MT, Zou SW, Cheng ZL, Sun YP, Xiong Y, Guan KL and Lei QY: NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells. J Clin Invest. 124:5453–5465. 2014. View Article : Google Scholar : PubMed/NCBI

53 

Wang J, Nikhil K, Viccaro K, Chang L, White J and Shah K: Phosphorylation-dependent regulation of ALDH1A1 by Aurora kinase A: Insights on their synergistic relationship in pancreatic cancer. BMC Biol. 15:102017. View Article : Google Scholar : PubMed/NCBI

54 

Ross AC and Moran NE: Our current dietary reference intakes for vitamin A-Now 20 years old. Curr Dev Nutr. 4:nzaa0962020. View Article : Google Scholar : PubMed/NCBI

55 

Surman SL, Penkert RR, Sealy RE, Jones BG, Marion TN, Vogel P and Hurwitz JL: Consequences of vitamin a deficiency: Immunoglobulin dysregulation, squamous cell metaplasia, infectious disease, and death. Int J Mol Sci. 21:55702020. View Article : Google Scholar : PubMed/NCBI

56 

Kedishvili NY: Enzymology of retinoic acid biosynthesis and degradation. J Lipid Res. 54:1744–1760. 2013. View Article : Google Scholar : PubMed/NCBI

57 

Belyaeva OV, Adams MK, Popov KM and Kedishvili NY: Generation of retinaldehyde for retinoic acid biosynthesis. Biomolecules. 10:52019. View Article : Google Scholar : PubMed/NCBI

58 

Giguère V and Evans RM: Chronicle of a discovery: The retinoic acid receptor. J Mol Endocrinol. 69:T1–T11. 2022. View Article : Google Scholar : PubMed/NCBI

59 

Bastien J and Rochette-Egly C: Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene. 328:1–16. 2004. View Article : Google Scholar : PubMed/NCBI

60 

Jin Y, Teh SS, Lau HLN, Xiao J and Mah SH: Retinoids as anti-cancer agents and their mechanisms of action. Am J Cancer Res. 12:938–960. 2022.PubMed/NCBI

61 

di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, Lo-Coco F, Ascenzi P and Nervi C: Retinoic acid receptors: From molecular mechanisms to cancer therapy. Mol Aspects Med. 41:1–115. 2015. View Article : Google Scholar : PubMed/NCBI

62 

Rastinejad F: Retinoic acid receptor structures: The journey from single domains to full-length complex. J Mol Endocrinol. 69:T25–T36. 2022. View Article : Google Scholar : PubMed/NCBI

63 

Wolf G: Retinoic acid as cause of cell proliferation or cell growth inhibition depending on activation of one of two different nuclear receptors. Nutr Rev. 66:55–59. 2008. View Article : Google Scholar : PubMed/NCBI

64 

Ross-Innes CS, Stark R, Holmes KA, Schmidt D, Spyrou C, Russell R, Massie CE, Vowler SL, Eldridge M and Carroll JS: Cooperative interaction between retinoic acid receptor-alpha and estrogen receptor in breast cancer. Genes Dev. 24:171–182. 2010. View Article : Google Scholar : PubMed/NCBI

65 

Piskunov A, Al Tanoury Z and Rochette-Egly C: Nuclear and extra-nuclear effects of retinoid acid receptors: How they are interconnected. Subcell Biochem. 70:103–127. 2014. View Article : Google Scholar : PubMed/NCBI

66 

Sharma S, Sharma P, Bailey T, Bhattarai S, Subedi U, Miller C, Ara H, Kidambi S, Sun H, Panchatcharam M and Miriyala S: Electrophilic aldehyde 4-Hydroxy-2-nonenal mediated signaling and mitochondrial dysfunction. Biomolecules. 12:15552022. View Article : Google Scholar : PubMed/NCBI

67 

Hu W, Feng Z, Eveleigh J, Iyer G, Pan J, Amin S, Chung FL and Tang MS: The major lipid peroxidation product, trans-4-hydroxy-2-nonenal, preferentially forms DNA adducts at codon 249 of human p53 gene, a unique mutational hotspot in hepatocellular carcinoma. Carcinogenesis. 23:1781–1789. 2002. View Article : Google Scholar : PubMed/NCBI

68 

Suman S, Kumar S, N'Gouemo P and Datta K: Increased DNA double-strand break was associated with downregulation of repair and upregulation of apoptotic factors in rat hippocampus after alcohol exposure. Alcohol. 54:45–50. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Zhang Y, Wang H, Wu K and Liu Z: Expression of 4-hydroxynonenal in esophageal squamous cell carcinoma. Oncol Lett. 14:35–40. 2017. View Article : Google Scholar : PubMed/NCBI

70 

Yang Y, Huycke MM, Herman TS and Wang X: Glutathione S-transferase alpha 4 induction by activator protein 1 in colorectal cancer. Oncogene. 35:5795–5806. 2016. View Article : Google Scholar : PubMed/NCBI

71 

Gęgotek A, Nikliński J, Žarković N, Žarković K, Waeg G, Łuczaj W, Charkiewicz R and Skrzydlewska E: Lipid mediators involved in the oxidative stress and antioxidant defence of human lung cancer cells. Redox Biol. 9:210–219. 2016. View Article : Google Scholar : PubMed/NCBI

72 

Fritz KS and Petersen DR: An overview of the chemistry and biology of reactive aldehydes. Free Radic Biol Med. 59:85–91. 2013. View Article : Google Scholar : PubMed/NCBI

73 

Sener DE, Gönenç A, Akinci M and Torun M: Lipid peroxidation and total antioxidant status in patients with breast cancer. Cell Biochem Funct. 25:377–382. 2007. View Article : Google Scholar : PubMed/NCBI

74 

Hassan W, Noreen H, Rehman S, Kamal MA and da Rocha JBT: Association of oxidative stress with neurological disorders. Curr Neuropharmacol. 20:1046–1072. 2022. View Article : Google Scholar : PubMed/NCBI

75 

Menon B, Ramalingam K and Kumar R: Evaluating the role of oxidative stress in acute ischemic stroke. J Neurosci Rural Pract. 11:156–159. 2020. View Article : Google Scholar : PubMed/NCBI

76 

Jové M, Mota-Martorell N, Pradas I, Martín-Gari M, Ayala V and Pamplona R: The advanced lipoxidation End-product Malondialdehyde-lysine in aging and longevity. Antioxidants (Basel). 9:11322020. View Article : Google Scholar : PubMed/NCBI

77 

Naudí A, Jové M, Ayala V, Cabré R, Portero-Otín M and Pamplona R: Non-enzymatic modification of aminophospholipids by carbonyl-amine reactions. Int J Mol Sci. 14:3285–3313. 2013. View Article : Google Scholar : PubMed/NCBI

78 

Plastaras JP, Dedon PC and Marnett LJ: Effects of DNA structure on oxopropenylation by the endogenous mutagens malondialdehyde and base propenal. Biochemistry. 41:5033–5042. 2002. View Article : Google Scholar : PubMed/NCBI

79 

Wauchope OR, Mitchener MM, Beavers WN, Galligan JJ, Camarillo JM, Sanders WD, Kingsley PJ, Shim HN, Blackwell T, Luong T, et al: Oxidative stress increases M1dG, a major peroxidation-derived DNA adduct, in mitochondrial DNA. Nucleic Acids Res. 46:3458–3467. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Feng Z, Hu W, Marnett LJ and Tang M: Malondialdehyde, a major endogenous lipid peroxidation product, sensitizes human cells to UV- and BPDE-induced killing and mutagenesis through inhibition of nucleotide excision repair. Mutat Res. 601:125–136. 2006. View Article : Google Scholar : PubMed/NCBI

81 

Ramana KV, Srivastava S and Singhal SS: Lipid peroxidation products in human health and disease 2016. Oxid Med Cell Longev. 2017:21632852017. View Article : Google Scholar : PubMed/NCBI

82 

Dancik GM, Varisli L and Vlahopoulos SA: The molecular context of oxidant stress response in cancer establishes ALDH1A1 as a critical target: What this means for acute myeloid leukemia. Int J Mol Sci. 24:93722023. View Article : Google Scholar : PubMed/NCBI

83 

Yue H, Hu Z, Hu R, Guo Z, Zheng Y, Wang Y and Zhou Y: ALDH1A1 in cancers: Bidirectional function, drug resistance, and regulatory mechanism. Front Oncol. 12:9187782022. View Article : Google Scholar : PubMed/NCBI

84 

Tomita H, Tanaka K, Tanaka T and Hara A: Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget. 7:11018–11032. 2016. View Article : Google Scholar : PubMed/NCBI

85 

Stromskaya TP, Rybalkina EY, Zabotina TN, Shishkin AA and Stavrovskaya AA: Influence of RARalpha gene on MDR1 expression and P-glycoprotein function in human leukemic cells. Cancer Cell Int. 5:152005. View Article : Google Scholar : PubMed/NCBI

86 

Poturnajova M, Kozovska Z and Matuskova M: Aldehyde dehydrogenase 1A1 and 1A3 isoforms-mechanism of activation and regulation in cancer. Cell Signal. 87:1101202021. View Article : Google Scholar : PubMed/NCBI

87 

Wei Y, Li Y, Chen Y, Liu P, Huang S, Zhang Y, Sun Y, Wu Z, Hu M, Wu Q, et al: ALDH1: A potential therapeutic target for cancer stem cells in solid tumors. Front Oncol. 12:10262782022. View Article : Google Scholar : PubMed/NCBI

88 

Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F and Cui H: Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 5:82020. View Article : Google Scholar : PubMed/NCBI

89 

Ciccone V, Morbidelli L, Ziche M and Donnini S: How to conjugate the stemness marker ALDH1A1 with tumor angiogenesis, progression, and drug resistance. Cancer Drug Resist. 3:26–37. 2020.PubMed/NCBI

90 

Zhou L, Jiang Y, Yan T, Di G, Shen Z, Shao Z and Lu J: The prognostic role of cancer stem cells in breast cancer: A meta-analysis of published literatures. Breast Cancer Res Treat. 122:795–801. 2010. View Article : Google Scholar : PubMed/NCBI

91 

Kim YS, Jung MJ, Ryu DW and Lee CH: Clinicopathologic characteristics of breast cancer stem cells identified on the basis of aldehyde dehydrogenase 1 expression. J Breast Cancer. 17:121–128. 2014. View Article : Google Scholar : PubMed/NCBI

92 

Miyoshi Y, Shien T, Ogiya A, Ishida N, Yamazaki K, Horii R, Horimoto Y, Masuda N, Yasojima H, Inao T, et al: Differences in expression of the cancer stem cell marker aldehyde dehydrogenase 1 among estrogen receptor-positive/human epidermal growth factor receptor type 2-negative breast cancer cases with early, late, and no recurrence. Breast Cancer Res. 18:732016. View Article : Google Scholar : PubMed/NCBI

93 

Li H, Ma F, Wang H, Lin C, Fan Y, Zhang X, Qian H and Xu B: Stem cell marker aldehyde dehydrogenase 1 (ALDH1)-expressing cells are enriched in triple-negative breast cancer. Int J Biol Markers. 28:e357–e364. 2013. View Article : Google Scholar : PubMed/NCBI

94 

Ma F, Li H, Li Y, Ding X, Wang H, Fan Y, Lin C, Qian H and Xu B: Aldehyde dehydrogenase 1 (ALDH1) expression is an independent prognostic factor in triple negative breast cancer (TNBC). Medicine (Baltimore). 96:e65612017. View Article : Google Scholar : PubMed/NCBI

95 

Liu Y, Lv DL, Duan JJ, Xu SL, Zhang JF, Yang XJ, Zhang X, Cui YH, Bian XW and Yu SC: ALDH1A1 expression correlates with clinicopathologic features and poor prognosis of breast cancer patients: A systematic review and meta-analysis. BMC Cancer. 14:4442014. View Article : Google Scholar : PubMed/NCBI

96 

Morimoto K, Kim SJ, Tanei T, Shimazu K, Tanji Y, Taguchi T, Tamaki Y, Terada N and Noguchi S: Stem cell marker aldehyde dehydrogenase 1-positive breast cancers are characterized by negative estrogen receptor, positive human epidermal growth factor receptor type 2, and high Ki67 expression. Cancer Sci. 100:1062–1068. 2009. View Article : Google Scholar : PubMed/NCBI

97 

Althobiti M, El Ansari R, Aleskandarany M, Joseph C, Toss MS, Green AR and Rakha EA: The prognostic significance of ALDH1A1 expression in early invasive breast cancer. Histopathology. 77:437–448. 2020. View Article : Google Scholar : PubMed/NCBI

98 

Kang EJ, Jung H, Woo OH, Park KH, Woo SU, Yang DS, Kim AR, Lee JB, Kim YH, Kim JS and Seo JH: Association of aldehyde dehydrogenase 1 expression and biologically aggressive features in breast cancer. Neoplasma. 61:352–362. 2014. View Article : Google Scholar : PubMed/NCBI

99 

Yao J, Jin Q, Wang XD, Zhu HJ and Ni QC: Aldehyde dehydrogenase 1 expression is correlated with poor prognosis in breast cancer. Medicine (Baltimore). 96:e71712017. View Article : Google Scholar : PubMed/NCBI

100 

Ohi Y, Umekita Y, Yoshioka T, Souda M, Rai Y, Sagara Y, Sagara Y, Sagara Y and Tanimoto A: Aldehyde dehydrogenase 1 expression predicts poor prognosis in triple-negative breast cancer. Histopathology. 59:776–780. 2011. View Article : Google Scholar : PubMed/NCBI

101 

Nogami T, Shien T, Tanaka T, Nishiyama K, Mizoo T, Iwamto T, Ikeda H, Taira N, Doihara H and Miyoshi S: Expression of ALDH1 in axillary lymph node metastases is a prognostic factor of poor clinical outcome in breast cancer patients with 1–3 lymph node metastases. Breast Cancer. 21:58–65. 2014. View Article : Google Scholar : PubMed/NCBI

102 

Dong Y, Bi LR, Xu N, Yang HM, Zhang HT, Ding Y, Shi AP and Fan ZM: The expression of aldehyde dehydrogenase 1 in invasive primary breast tumors and axillary lymph node metastases is associated with poor clinical prognosis. Pathol Res Pract. 209:555–561. 2013. View Article : Google Scholar : PubMed/NCBI

103 

Kong Y, Lyu N, Wu J, Tang H and Xie X, Yang L, Li X, Wei W and Xie X: Breast cancer stem cell markers CD44 and ALDH1A1 in serum: Distribution and prognostic value in patients with primary breast cancer. J Cancer. 9:3728–3735. 2018. View Article : Google Scholar : PubMed/NCBI

104 

Resetkova E, Reis-Filho JS, Jain RK, Mehta R, Thorat MA, Nakshatri H and Badve S: Prognostic impact of ALDH1 in breast cancer: A story of stem cells and tumor microenvironment. Breast Cancer Res Treat. 123:97–108. 2010. View Article : Google Scholar : PubMed/NCBI

105 

Honeth G, Lombardi S, Ginestier C, Hur M, Marlow R, Buchupalli B, Shinomiya I, Gazinska P, Bombelli S, Ramalingam V, et al: Aldehyde dehydrogenase and estrogen receptor define a hierarchy of cellular differentiation in the normal human mammary epithelium. Breast Cancer Res. 16:R522014. View Article : Google Scholar : PubMed/NCBI

106 

Sarmiento-Castro A, Caamaño-Gutiérrez E, Sims AH, Hull NJ, James MI, Santiago-Gómez A, Eyre R, Clark C, Brown ME, Brooks MD, et al: Increased expression of Interleukin-1 receptor characterizes Anti-estrogen-Resistant ALDH+ breast cancer stem cells. Stem Cell Reports. 15:307–316. 2020. View Article : Google Scholar : PubMed/NCBI

107 

Wang Q, Jiang J, Ying G, Xie XQ, Zhang X, Xu W, Zhang X, Song E, Bu H, Ping YF, et al: Tamoxifen enhances stemness and promotes metastasis of ERα36+ breast cancer by upregulating ALDH1A1 in cancer cells. Cell Res. 28:336–358. 2018. View Article : Google Scholar : PubMed/NCBI

108 

Varisli L, Dancik GM, Tolan V and Vlahopoulos S: Critical roles of SRC-3 in the development and progression of breast cancer, rendering it a prospective clinical target. Cancers (Basel). 15:52422023. View Article : Google Scholar : PubMed/NCBI

109 

Brown K, Chen Y, Underhill TM, Mymryk JS and Torchia J: The coactivator p/CIP/SRC-3 facilitates retinoic acid receptor signaling via recruitment of GCN5. J Biol Chem. 278:39402–39412. 2003. View Article : Google Scholar : PubMed/NCBI

110 

Ferry C, Gaouar S, Fischer B, Boeglin M, Paul N, Samarut E, Piskunov A, Pankotai-Bodo G, Brino L and Rochette-Egly C: Cullin 3 mediates SRC-3 ubiquitination and degradation to control the retinoic acid response. Proc Natl Acad Sci USA. 108:20603–20608. 2011. View Article : Google Scholar : PubMed/NCBI

111 

Giannì M, Parrella E, Raska I Jr, Gaillard E, Nigro EA, Gaudon C, Garattini E and Rochette-Egly C: P38MAPK-dependent phosphorylation and degradation of SRC-3/AIB1 and RARalpha-mediated transcription. EMBO J. 25:739–751. 2006. View Article : Google Scholar : PubMed/NCBI

112 

Rohira AD, Yan F, Wang L, Wang J, Zhou S, Lu A, Yu Y, Xu J, Lonard DM and O'Malley BW: Targeting SRC coactivators blocks the Tumor-initiating capacity of cancer stem-like cells. Cancer Res. 77:4293–4304. 2017. View Article : Google Scholar : PubMed/NCBI

113 

Fitzgerald P, Teng M, Chandraratna RA, Heyman RA and Allegretto EA: Retinoic acid receptor alpha expression correlates with retinoid-induced growth inhibition of human breast cancer cells regardless of estrogen receptor status. Cancer Res. 57:2642–2650. 1997.PubMed/NCBI

114 

Garattini E, Bolis M, Garattini SK, Fratelli M, Centritto F, Paroni G, Gianni' M, Zanetti A, Pagani A, Fisher JN, et al: Retinoids and breast cancer: From basic studies to the clinic and back again. Cancer Treat Rev. 40:739–749. 2014. View Article : Google Scholar : PubMed/NCBI

115 

Liu Y, Lee MO, Wang HG, Li Y, Hashimoto Y, Klaus M, Reed JC and Zhang X: Retinoic acid receptor beta mediates the growth-inhibitory effect of retinoic acid by promoting apoptosis in human breast cancer cells. Mol Cell Biol. 16:1138–1149. 1996. View Article : Google Scholar : PubMed/NCBI

116 

Centritto F, Paroni G, Bolis M, Garattini SK, Kurosaki M, Barzago MM, Zanetti A, Fisher JN, Scott MF, Pattini L, et al: Cellular and molecular determinants of all-trans retinoic acid sensitivity in breast cancer: Luminal phenotype and RARα expression. EMBO Mol Med. 7:950–972. 2015. View Article : Google Scholar : PubMed/NCBI

117 

Roman SD, Ormandy CJ, Manning DL, Blamey RW, Nicholson RI, Sutherland RL and Clarke CL: Estradiol induction of retinoic acid receptors in human breast cancer cells. Cancer Res. 53:5940–5945. 1993.PubMed/NCBI

118 

Hua S, Kittler R and White KP: Genomic antagonism between retinoic acid and estrogen signaling in breast cancer. Cell. 137:2009. View Article : Google Scholar

119 

Ombra MN, Di Santi A, Abbondanza C, Migliaccio A, Avvedimento EV and Perillo B: Retinoic acid impairs estrogen signaling in breast cancer cells by interfering with activation of LSD1 via PKA. Biochim Biophys Acta. 1829:480–486. 2013. View Article : Google Scholar : PubMed/NCBI

120 

Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, Esterni B, Houvenaeghel G, Extra JM, Bertucci F, Jacquemier J, et al: Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res. 16:45–55. 2010. View Article : Google Scholar : PubMed/NCBI

121 

Croker AK, Rodriguez-Torres M, Xia Y, Pardhan S, Leong HS, Lewis JD and Allan AL: Differential functional roles of ALDH1A1 and ALDH1A3 in mediating metastatic behavior and therapy resistance of human breast cancer cells. Int J Mol Sci. 18:20392017. View Article : Google Scholar : PubMed/NCBI

122 

Pan H, Wu N, Huang Y, Li Q, Liu C, Liang M, Zhou W, Liu X and Wang S: Aldehyde dehydrogenase 1 expression correlates with the invasion of breast cancer. Diagn Pathol. 10:662015. View Article : Google Scholar : PubMed/NCBI

123 

Sakakibara M, Fujimori T, Miyoshi T, Nagashima T, Fujimoto H, Suzuki HT, Ohki Y, Fushimi K, Yokomizo J, Nakatani Y and Miyazaki M: Aldehyde dehydrogenase 1-positive cells in axillary lymph node metastases after chemotherapy as a prognostic factor in patients with lymph node-positive breast cancer. Cancer. 118:3899–3910. 2012. View Article : Google Scholar : PubMed/NCBI

124 

Liang L and Kaufmann AM: The significance of cancer stem cells and Epithelial-Mesenchymal transition in metastasis and Anti-cancer therapy. Int J Mol Sci. 24:25552023. View Article : Google Scholar : PubMed/NCBI

125 

Papadaki MA, Stoupis G, Theodoropoulos PA, Mavroudis D, Georgoulias V and Agelaki S: Circulating tumor cells with stemness and Epithelial-to-Mesenchymal transition features are chemoresistant and predictive of poor outcome in metastatic breast cancer. Mol Cancer Ther. 18:437–447. 2019. View Article : Google Scholar : PubMed/NCBI

126 

Hashemi M, Arani HZ, Orouei S, Fallah S, Ghorbani A, Khaledabadi M, Kakavand A, Tavakolpournegari A, Saebfar H, Heidari H, et al: EMT mechanism in breast cancer metastasis and drug resistance: Revisiting molecular interactions and biological functions. Biomed Pharmacother. 155:1137742022. View Article : Google Scholar : PubMed/NCBI

127 

Francou A and Anderson KV: The Epithelial-to-Mesenchymal transition (EMT) in development and cancer. Annu Rev Cancer Biol. 4:197–220. 2020. View Article : Google Scholar : PubMed/NCBI

128 

Varisli L and Tolan V: Increased ROS alters E-/N-cadherin levels and promotes migration in prostate cancer cells. Bratisl Lek Listy. 123:752–757. 2022.PubMed/NCBI

129 

Raimondi C, Gradilone A, Naso G, Vincenzi B, Petracca A, Nicolazzo C, Palazzo A, Saltarelli R, Spremberg F, Cortesi E and Gazzaniga P: Epithelial-mesenchymal transition and stemness features in circulating tumor cells from breast cancer patients. Breast Cancer Res Treat. 130:449–455. 2011. View Article : Google Scholar : PubMed/NCBI

130 

Kallergi G, Papadaki MA, Politaki E, Mavroudis D, Georgoulias V and Agelaki S: Epithelial to mesenchymal transition markers expressed in circulating tumour cells of early and metastatic breast cancer patients. Breast Cancer Res. 13:R592011. View Article : Google Scholar : PubMed/NCBI

131 

Papadaki MA, Kallergi G, Zafeiriou Z, Manouras L, Theodoropoulos PA, Mavroudis D, Georgoulias V and Agelaki S: Co-expression of putative stemness and epithelial-to-mesenchymal transition markers on single circulating tumour cells from patients with early and metastatic breast cancer. BMC Cancer. 14:6512014. View Article : Google Scholar : PubMed/NCBI

132 

Vesuna F, Lisok A, Kimble B and Raman V: Twist modulates breast cancer stem cells by transcriptional regulation of CD24 expression. Neoplasia. 11:1318–1328. 2009. View Article : Google Scholar : PubMed/NCBI

133 

Ito M, Shien T, Omori M, Mizoo T, Iwamoto T, Nogami T, Motoki T, Taira N, Doihara H and Miyoshi S: Evaluation of aldehyde dehydrogenase 1 and transcription factors in both primary breast cancer and axillary lymph node metastases as a prognostic factor. Breast Cancer. 23:437–444. 2016. View Article : Google Scholar : PubMed/NCBI

134 

Ciccone V, Terzuoli E, Donnini S, Giachetti A, Morbidelli L and Ziche M: Stemness marker ALDH1A1 promotes tumor angiogenesis via retinoic acid/HIF-1α/VEGF signalling in MCF-7 breast cancer cells. J Exp Clin Cancer Res. 37:3112018. View Article : Google Scholar : PubMed/NCBI

135 

DA Cruz Paula A, Marques O, Sampaio R, Rosa A, Garcia J, Rêma A, DE Fátima Faria M, Silva P, Vizcaíno R and Lopes C: Characterization of CD44+ALDH1+Ki-67-Cells in Non-malignant and neoplastic lesions of the breast. Anticancer Res. 36:4629–4638. 2016. View Article : Google Scholar : PubMed/NCBI

136 

Walter D, Lier A, Geiselhart A, Thalheimer FB, Huntscha S, Sobotta MC, Moehrle B, Brocks D, Bayindir I, Kaschutnig P, et al: Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature. 520:549–552. 2015. View Article : Google Scholar : PubMed/NCBI

137 

Lynch J, Troadec E, Fung TK, Gladysz K, Virely C, Lau PNI, Cheung N, Zeisig B, Wong JWH, Lopes M, et al: Hematopoietic stem cell quiescence and DNA replication dynamics maintained by the resilient β-catenin/Hoxa9/Prmt1 axis. Blood. 143:1586–1598. 2024. View Article : Google Scholar : PubMed/NCBI

138 

Xu J, Fei P, Simon DW, Morowitz MJ, Mehta PA and Du W: Crosstalk between DNA damage repair and metabolic regulation in hematopoietic stem cells. Cells. 13:7332024. View Article : Google Scholar : PubMed/NCBI

139 

Becker F, Ouzin M, Liedtke S, Raba K and Kogler G: DNA damage response after treatment of cycling and quiescent cord blood hematopoietic stem cells with distinct genotoxic noxae. Stem Cells. 42:158–171. 2024. View Article : Google Scholar : PubMed/NCBI

140 

Pallis M, Burrows F, Whittall A, Boddy N, Seedhouse C and Russell N: Efficacy of RNA polymerase II inhibitors in targeting dormant leukaemia cells. BMC Pharmacol Toxicol. 14:322013. View Article : Google Scholar : PubMed/NCBI

141 

Min HY and Lee HY: Cellular dormancy in cancer: Mechanisms and potential targeting strategies. Cancer Res Treat. 55:720–736. 2023. View Article : Google Scholar : PubMed/NCBI

142 

Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, Banerjee A, Luo Y, Rogers D, Brooks AN, et al: Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 38:675–678. 2020. View Article : Google Scholar : PubMed/NCBI

143 

Vlahopoulos S, Pan L, Varisli L, Dancik GM, Karantanos T and Boldogh I: OGG1 as an epigenetic reader affects NFκB: What this means for cancer. Cancers (Basel). 16:1482023. View Article : Google Scholar : PubMed/NCBI

144 

Bidan N, Bailleul-Dubois J, Duval J, Winter M, Denoulet M, Hannebicque K, El-Sayed IY, Ginestier C, Forissier V, Charafe-Jauffret E, et al: Transcriptomic analysis of breast cancer stem cells and development of a pALDH1A1:mNeptune reporter system for live tracking. Proteomics. 19:e18004542019. View Article : Google Scholar : PubMed/NCBI

145 

Enikeev AD, Abramov PM, Elkin DS, Komelkov AV, Beliaeva AA, Silantieva DM and Tchevkina EM: Opposite effects of CRABP1 and CRABP2 homologs on proliferation of breast cancer cells and their sensitivity to retinoic acid. Biochemistry (Mosc). 88:2107–2124. 2023. View Article : Google Scholar : PubMed/NCBI

146 

Brown G: Deregulation of All-trans retinoic acid signaling and development in cancer. Int J Mol Sci. 24:120892023. View Article : Google Scholar : PubMed/NCBI

147 

Patel M, Lu L, Zander DS, Sreerama L, Coco D and Moreb JS: ALDH1A1 and ALDH3A1 expression in lung cancers: Correlation with histologic type and potential precursors. Lung Cancer. 59:340–349. 2008. View Article : Google Scholar : PubMed/NCBI

148 

Li Z, Xiang Y, Xiang L, Xiao Y, Li F and Hao P: ALDH maintains the stemness of lung adenoma stem cells by suppressing the Notch/CDK2/CCNE pathway. PLoS One. 9:e926692014. View Article : Google Scholar : PubMed/NCBI

149 

Yassin Fel-Z: Aldehyde dehyderogenase (ALDH1A1) delineating the normal and cancer stem cells in spectral lung lesions: An immunohistochemical appraisal. Pathol Res Pract. 212:398–409. 2016. View Article : Google Scholar : PubMed/NCBI

150 

Wei Y, Wu S, Xu W, Liang Y, Li Y, Zhao W and Wu J: Depleted aldehyde dehydrogenase 1A1 (ALDH1A1) reverses cisplatin resistance of human lung adenocarcinoma cell A549/DDP. Thorac Cancer. 8:26–32. 2017. View Article : Google Scholar : PubMed/NCBI

151 

Liu X, Wang L, Cui W, Yuan X, Lin L, Cao Q, Wang N, Li Y, Guo W, Zhang X, et al: Targeting ALDH1A1 by disulfiram/copper complex inhibits non-small cell lung cancer recurrence driven by ALDH-positive cancer stem cells. Oncotarget. 7:58516–58530. 2016. View Article : Google Scholar : PubMed/NCBI

152 

Gao F, Zhou B, Xu JC, Gao X, Li SX, Zhu GC, Zhang XG and Yang C: The role of LGR5 and ALDH1A1 in non-small cell lung cancer: Cancer progression and prognosis. Biochem Biophys Res Commun. 462:91–98. 2015. View Article : Google Scholar : PubMed/NCBI

153 

Alamgeer M, Ganju V, Szczepny A, Russell PA, Prodanovic Z, Kumar B, Wainer Z, Brown T, Schneider-Kolsky M, Conron M, et al: The prognostic significance of aldehyde dehydrogenase 1A1 (ALDH1A1) and CD133 expression in early stage non-small cell lung cancer. Thorax. 68:1095–1104. 2013. View Article : Google Scholar : PubMed/NCBI

154 

Li D, Cao Y, Luo CW, Zhang LP and Zou YB: The clinical significance and prognostic value of ALDH1 expression in non-small cell lung cancer: A systematic review and meta-analysis. Recent Pat Anticancer Drug Discov. 19:599–609. 2024. View Article : Google Scholar : PubMed/NCBI

155 

Biswas AK, Han S, Tai Y, Ma W, Coker C, Quinn SA, Shakri AR, Zhong TJ, Scholze H, Lagos GG, et al: Targeting S100A9-ALDH1A1-Retinoic acid signaling to suppress brain relapse in EGFR-mutant lung cancer. Cancer Discov. 12:1002–1021. 2022. View Article : Google Scholar : PubMed/NCBI

156 

Okudela K, Woo T, Mitsui H, Suzuki T, Tajiri M, Sakuma Y, Miyagi Y, Tateishi Y, Umeda S, Masuda M and Ohashi K: Downregulation of ALDH1A1 expression in non-small cell lung carcinomas-its clinicopathologic and biological significance. Int J Clin Exp Pathol. 6:1–12. 2013.PubMed/NCBI

157 

Yamashita N, So T, Miyata T, Yoshimatsu T, Nakano R, Oyama T, Matsunaga W and Gotoh A: Triple-negative expression (ALDH1A1-/CD133-/mutant p53-) cases in lung adenocarcinoma had a good prognosis. Sci Rep. 12:14732022. View Article : Google Scholar : PubMed/NCBI

158 

Pelos G, Riester M, Pal J, Myacheva K, Moneke I, Rotondo JC, Lübbert M and Diederichs S: Fast proliferating and slowly migrating non-small cell lung cancer cells are vulnerable to decitabine and retinoic acid combinatorial treatment. Int J Cancer. 154:1029–1042. 2024. View Article : Google Scholar : PubMed/NCBI

159 

Zito G, Naselli F, Saieva L, Raimondo S, Calabrese G, Guzzardo C, Forte S, Rolfo C, Parenti R and Alessandro R: Retinoic Acid affects Lung adenocarcinoma growth by inducing differentiation via GATA6 activation and EGFR and Wnt inhibition. Sci Rep. 7:47702017. View Article : Google Scholar : PubMed/NCBI

160 

Li D, Sun J, Liu W, Wang X, Bals R, Wu J, Quan W, Yao Y, Zhang Y, Zhou H and Wu K: Rig-G is a growth inhibitory factor of lung cancer cells that suppresses STAT3 and NF-κB. Oncotarget. 7:66032–66050. 2016. View Article : Google Scholar : PubMed/NCBI

161 

Rehó B, Fadel L, Brazda P, Benziane A, Hegedüs É, Sen P, Gadella TWJ, Tóth K, Nagy L and Vámosi G: Agonist-controlled competition of RAR and VDR nuclear receptors for heterodimerization with RXR is manifested in their DNA binding. J Biol Chem. 299:1028962023. View Article : Google Scholar : PubMed/NCBI

162 

López-Fandiño R, Molina E and Lozano-Ojalvo D: Intestinal factors promoting the development of RORγt+ cells and oral tolerance. Front Immunol. 14:12942922023. View Article : Google Scholar : PubMed/NCBI

163 

Le Magnen C, Bubendorf L, Rentsch CA, Mengus C, Gsponer J, Zellweger T, Rieken M, Thalmann GN, Cecchini MG, Germann M, et al: Characterization and clinical relevance of ALDHbright populations in prostate cancer. Clin Cancer Res. 19:5361–5371. 2013. View Article : Google Scholar : PubMed/NCBI

164 

Gorodetska I, Offermann A, Püschel J, Lukiyanchuk V, Gaete D, Kurzyukova A, Freytag V, Haider MT, Fjeldbo CS, Di Gaetano S, et al: ALDH1A1 drives prostate cancer metastases and radioresistance by interplay with AR- and RAR-dependent transcription. Theranostics. 14:714–737. 2024. View Article : Google Scholar : PubMed/NCBI

165 

Nastały P, Filipska M, Morrissey C, Eltze E, Semjonow A, Brandt B, Pantel K and Bednarz-Knoll N: ALDH1-positive intratumoral stromal cells indicate differentiated epithelial-like phenotype and good prognosis in prostate cancer. Transl Res. 203:49–56. 2019. View Article : Google Scholar : PubMed/NCBI

166 

Liu Z, Ren G, Shangguan C, Guo L, Dong Z, Li Y, Zhang W, Zhao L, Hou P, Zhang Y, et al: ATRA inhibits the proliferation of DU145 prostate cancer cells through reducing the methylation level of HOXB13 gene. PLoS One. 7:e409432012. View Article : Google Scholar : PubMed/NCBI

167 

Landen CN Jr, Goodman B, Katre AA, Steg AD, Nick AM, Stone RL, Miller LD, Mejia PV, Jennings NB, Gershenson DM, et al: Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Mol Cancer Ther. 9:3186–3199. 2010. View Article : Google Scholar : PubMed/NCBI

168 

Izycka N, Rucinski M, Andrzejewska M, Szubert S, Nowak-Markwitz E and Sterzynska K: The prognostic value of cancer stem cell markers (CSCs) Expression-ALDH1A1, CD133, CD44-For survival and long-term follow-up of ovarian cancer patients. Int J Mol Sci. 24:24002023. View Article : Google Scholar : PubMed/NCBI

169 

Meng E, Mitra A, Tripathi K, Finan MA, Scalici J, McClellan S, Madeira da Silva L, Reed E, Shevde LA, Palle K and Rocconi RP: ALDH1A1 maintains ovarian cancer stem cell-like properties by altered regulation of cell cycle checkpoint and DNA repair network signaling. PLoS One. 9:e1071422014. View Article : Google Scholar : PubMed/NCBI

170 

Kaipio K, Chen P, Roering P, Huhtinen K, Mikkonen P, Östling P, Lehtinen L, Mansuri N, Korpela T, Potdar S, et al: ALDH1A1-related stemness in high-grade serous ovarian cancer is a negative prognostic indicator but potentially targetable by EGFR/mTOR-PI3K/aurora kinase inhibitors. J Pathol. 250:159–169. 2020. View Article : Google Scholar : PubMed/NCBI

171 

Januchowski R, Wojtowicz K, Sterzyſska K, Sosiſska P, Andrzejewska M, Zawierucha P, Nowicki M and Zabel M: Inhibition of ALDH1A1 activity decreases expression of drug transporters and reduces chemotherapy resistance in ovarian cancer cell lines. Int J Biochem Cell Biol. 78:248–259. 2016. View Article : Google Scholar : PubMed/NCBI

172 

Nowacka M, Ginter-Matuszewska B, Świerczewska M, Sterzyńska K, Nowicki M and Januchowski R: Effect of ALDH1A1 gene knockout on drug resistance in paclitaxel and topotecan resistant human ovarian cancer cell lines in 2D and 3D model. Int J Mol Sci. 23:30362022. View Article : Google Scholar : PubMed/NCBI

173 

Muralikrishnan V, Fang F, Given TC, Podicheti R, Chtcherbinine M, Metcalfe TX, Sriramkumar S, O'Hagan HM, Hurley TD and Nephew KP: A novel ALDH1A1 inhibitor blocks platinum-induced senescence and stemness in ovarian cancer. Cancers (Basel). 14:34372022. View Article : Google Scholar : PubMed/NCBI

174 

Sharbatoghli M, Shamshiripour P, Fattahi F, Kalantari E, Habibi Shams Z, Panahi M, Totonchi M, Asadi-Lari Z, Madjd Z and Saeednejad Zanjani L: Co-expression of cancer stem cell markers, SALL4/ALDH1A1, is associated with tumor aggressiveness and poor survival in patients with serous ovarian carcinoma. J Ovarian Res. 15:172022. View Article : Google Scholar : PubMed/NCBI

175 

Dancik GM, Voutsas IF and Vlahopoulos S: Lower RNA expression of ALDH1A1 distinguishes the favorable risk group in acute myeloid leukemia. Mol Biol Rep. 49:3321–3331. 2022. View Article : Google Scholar : PubMed/NCBI

176 

Gasparetto M, Pei S, Minhajuddin M, Khan N, Pollyea DA, Myers JR, Ashton JM, Becker MW, Vasiliou V, Humphries KR, et al: Targeted therapy for a subset of acute myeloid leukemias that lack expression of aldehyde dehydrogenase 1A1. Haematologica. 102:1054–1065. 2017. View Article : Google Scholar : PubMed/NCBI

177 

Venton G, Pérez-Alea M, Baier C, Fournet G, Quash G, Labiad Y, Martin G, Sanderson F, Poullin P, Suchon P, et al: Aldehyde dehydrogenases inhibition eradicates leukemia stem cells while sparing normal progenitors. Blood Cancer J. 6:e4692016. View Article : Google Scholar : PubMed/NCBI

178 

Rebollido-Rios R, Venton G, Sánchez-Redondo S, Iglesias I, Felip C, Fournet G, González E, Romero Fernández W, Borroto Escuela DO, Di Stefano B, Penarroche-Díaz R, et al: Dual disruption of aldehyde dehydrogenases 1 and 3 promotes functional changes in the glutathione redox system and enhances chemosensitivity in nonsmall cell lung cancer. Oncogene. 39:2756–2771. 2020. View Article : Google Scholar : PubMed/NCBI

179 

Law R: Advanced BioDesign releases positive data from ODYSSEY AML study. Clinical Trials Arena. June 6–2024.

180 

Venton G, Colle J, Tichadou A, Quessada J, Baier C, Labiad Y, Perez M, De Lassus L, Loosveld M, Arnoux I, et al: Reactive oxygen species and aldehyde dehydrogenase 1A as prognosis and theragnostic biomarker in acute myeloid leukaemia patients. J Cell Mol Med. 28:e700112024. View Article : Google Scholar : PubMed/NCBI

181 

Yasgar A, Titus SA, Wang Y, Danchik C, Yang SM, Vasiliou V, Jadhav A, Maloney DJ, Simeonov A and Martinez NJ: A High-content assay enables the automated screening and identification of small molecules with specific ALDH1A1-inhibitory activity. PLoS One. 12:e01709372017. View Article : Google Scholar : PubMed/NCBI

182 

Xu B, Wang S, Li R, Chen K, He L, Deng M, Kannappan V, Zha J, Dong H and Wang W: Disulfiram/copper selectively eradicates AML leukemia stem cells in vitro and in vivo by simultaneous induction of ROS-JNK and inhibition of NF-κB and Nrf2. Cell Death Dis. 8:e27972017. View Article : Google Scholar : PubMed/NCBI

183 

Dancik GM, Voutsas IF and Vlahopoulos S: Aldehyde dehydrogenase enzyme functions in acute leukemia stem cells. Front Biosci (Schol Ed). 14:82022. View Article : Google Scholar : PubMed/NCBI

184 

Ghiaur G, Yegnasubramanian S, Perkins B, Gucwa JL, Gerber JM and Jones RJ: Regulation of human hematopoietic stem cell self-renewal by the microenvironment's control of retinoic acid signaling. Proc Natl Acad Sci USA. 110:16121–16126. 2013. View Article : Google Scholar : PubMed/NCBI

185 

Alonso S, Jones RJ and Ghiaur G: Retinoic acid, CYP26, and drug resistance in the stem cell niche. Exp Hematol. 54:17–25. 2017. View Article : Google Scholar : PubMed/NCBI

186 

Bunaciu RP, MacDonald RJ, Gao F, Johnson LM, Varner JD, Wang X, Nataraj S, Guzman ML and Yen A: Potential for subsets of wt-NPM1 primary AML blasts to respond to retinoic acid treatment. Oncotarget. 9:4134–4149. 2018. View Article : Google Scholar : PubMed/NCBI

187 

McGinn O, Riley D, Finlay-Schultz J, Paul KV, Kabos P and Sartorius CA: Cytokeratins 5 and 17 maintain an aggressive epithelial state in basal-like breast cancer. Mol Cancer Res. 20:1443–1455. 2022. View Article : Google Scholar : PubMed/NCBI

188 

Yang Y, Zhou W, Xia J, Gu Z, Wendlandt E, Zhan X, Janz S, Tricot G and Zhan F: NEK2 mediates ALDH1A1-dependent drug resistance in multiple myeloma. Oncotarget. 5:11986–11997. 2014. View Article : Google Scholar : PubMed/NCBI

189 

Xia J, He Y, Meng B, Chen S, Zhang J, Wu X, Zhu Y, Shen Y, Feng X, Guan Y, et al: NEK2 induces autophagy-mediated bortezomib resistance by stabilizing Beclin-1 in multiple myeloma. Mol Oncol. 14:763–778. 2020. View Article : Google Scholar : PubMed/NCBI

190 

Xing Z, Zhang M and Wang X, Liu J, Liu G, Feng K and Wang X: Silencing of Nek2 suppresses the proliferation, migration and invasion and induces apoptosis of breast cancer cells by regulating ERK/MAPK signaling. J Mol Histol. 52:809–821. 2021. View Article : Google Scholar : PubMed/NCBI

191 

Szafarowski T, Sierdziński J, Ludwig N, Głuszko A, Filipowska A and Szczepański MJ: Assessment of cancer stem cell marker expression in primary head and neck squamous cell carcinoma shows prognostic value for aldehyde dehydrogenase (ALDH1A1). Eur J Pharmacol. 867:1728372020. View Article : Google Scholar : PubMed/NCBI

192 

Gupta V, Maurya MK, Agarwal P, Kumar M, Sagar M, Raghuvanshi S and Gupta S: Expression of aldehyde dehydrogenase 1A1 in oral squamous cell carcinoma and its correlation with clinicopathological parameters. Natl J Maxillofac Surg. 13:208–215. 2022. View Article : Google Scholar : PubMed/NCBI

193 

Namekawa T, Ikeda K, Horie-Inoue K, Suzuki T, Okamoto K, Ichikawa T, Yano A, Kawakami S and Inoue S: ALDH1A1 in patient-derived bladder cancer spheroids activates retinoic acid signaling leading to TUBB3 overexpression and tumor progression. Int J Cancer. 146:1099–1113. 2020. View Article : Google Scholar : PubMed/NCBI

194 

Li X, Xu Q, Fu X and Luo W: ALDH1A1 overexpression is associated with the progression and prognosis in gastric cancer. BMC Cancer. 14:7052014. View Article : Google Scholar : PubMed/NCBI

195 

van der Waals LM, Borel Rinkes IHM and Kranenburg O: ALDH1A1 expression is associated with poor differentiation, ‘right-sidedness’ and poor survival in human colorectal cancer. PLoS One. 13:e02055362018. View Article : Google Scholar : PubMed/NCBI

196 

Yang L, Ren Y, Yu X, Qian F, Bian BS, Xiao HL, Wang WG, Xu SL, Yang J, Cui W, et al: ALDH1A1 defines invasive cancer stem-like cells and predicts poor prognosis in patients with esophageal squamous cell carcinoma. Mod Pathol. 27:775–783. 2014. View Article : Google Scholar : PubMed/NCBI

197 

Yehya A, Youssef J, Hachem S, Ismael J and Abou-Kheir W: Tissue-specific cancer stem/progenitor cells: Therapeutic implications. World J Stem Cells. 15:323–341. 2023. View Article : Google Scholar : PubMed/NCBI

198 

Sládek NE, Kollander R, Sreerama L and Kiang DT: Cellular levels of aldehyde dehydrogenases (ALDH1A1 and ALDH3A1) as predictors of therapeutic responses to cyclophosphamide-based chemotherapy of breast cancer: A retrospective study. Rational individualization of oxazaphosphorine-based cancer chemotherapeutic regimens. Cancer Chemother Pharmacol. 49:309–321. 2002. View Article : Google Scholar : PubMed/NCBI

199 

Khoury T, Ademuyiwa FO, Chandrasekhar R, Jabbour M, Deleo A, Ferrone S, Wang Y and Wang X: Aldehyde dehydrogenase 1A1 expression in breast cancer is associated with stage, triple negativity, and outcome to neoadjuvant chemotherapy. Mod Pathol. 25:388–397. 2012. View Article : Google Scholar : PubMed/NCBI

200 

Sun M, Zhao H, Xiao Q, Yu Z, Song Z, Yao W, Tang H, Guan S, Jin F and Wei M: Combined expression of aldehyde dehydrogenase 1A1 and β-catenin is associated with lymph node metastasis and poor survival in breast cancer patients following cyclophosphamide treatment. Oncol Rep. 34:3163–3173. 2015. View Article : Google Scholar : PubMed/NCBI

201 

Narendra G, Raju B, Verma H, Kumar M, Jain SK, Tung GK, Thakur S, Kaur R, Kaur S, Sapra B and Silakari O: Scaffold hopping based designing of selective ALDH1A1 inhibitors to overcome cyclophosphamide resistance: Synthesis and biological evaluation. RSC Med Chem. 15:309–321. 2024. View Article : Google Scholar : PubMed/NCBI

202 

Wang D and Wang H: Oxazaphosphorine bioactivation and detoxification The role of xenobiotic receptors. Acta Pharm Sin B. 2:10.1016/j.apsb.2012.02.004. 2012. View Article : Google Scholar

203 

Paul SK, Guendouzi A, Banerjee A, Guendouzi A and Haldar R: Identification of approved drugs with ALDH1A1 inhibitory potential aimed at enhancing chemotherapy sensitivity in cancer cells: An in-silico drug repurposing approach. J Biomol Struct Dyn. 1–15. 2024.doi: 10.1080/07391102.2023.2300127 (Epub ahead of print). View Article : Google Scholar

204 

Lu C, Li X, Ren Y and Zhang X: Disulfiram: A novel repurposed drug for cancer therapy. Cancer Chemother Pharmacol. 87:159–172. 2021. View Article : Google Scholar : PubMed/NCBI

205 

Yip NC, Fombon IS, Liu P, Brown S, Kannappan V, Armesilla AL, Xu B, Cassidy J, Darling JL and Wang W: Disulfiram modulated ROS-MAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties. Br J Cancer. 104:1564–1574. 2011. View Article : Google Scholar : PubMed/NCBI

206 

Kim JY, Cho Y, Oh E, Lee N, An H, Sung D, Cho TM and Seo JH: Disulfiram targets cancer stem-like properties and the HER2/Akt signaling pathway in HER2-positive breast cancer. Cancer Lett. 379:39–48. 2016. View Article : Google Scholar : PubMed/NCBI

207 

Kim YJ, Kim JY, Lee N, Oh E, Sung D, Cho TM and Seo JH: Disulfiram suppresses cancer stem-like properties and STAT3 signaling in triple-negative breast cancer cells. Biochem Biophys Res Commun. 486:1069–1076. 2017. View Article : Google Scholar : PubMed/NCBI

208 

Lin L, Hutzen B, Lee HF, Peng Z, Wang W, Zhao C, Lin HJ, Sun D, Li PK, Li C, et al: Evaluation of STAT3 signaling in ALDH+ and ALDH+/CD44+/CD24-subpopulations of breast cancer cells. PLoS One. 8:e828212013. View Article : Google Scholar : PubMed/NCBI

209 

Nourbakhsh M, Farzaneh S, Taghikhani A, Zarghi A and Noori S: The effect of a newly synthesized ferrocene derivative against MCF-7 breast cancer cells and spheroid stem cells through ROS production and inhibition of JAK2/STAT3 signaling pathway. Anticancer Agents Med Chem. 20:875–886. 2020. View Article : Google Scholar : PubMed/NCBI

210 

Tsao AN, Chuang YS, Lin YC, Su Y and Chao TC: Dinaciclib inhibits the stemness of two subtypes of human breast cancer cells by targeting the FoxM1 and Hedgehog signaling pathway. Oncol Rep. 47:1052022. View Article : Google Scholar : PubMed/NCBI

211 

Teng CJ, Cheng PT, Cheng YC, Tsai JR, Chen MC and Lin H: Dinaciclib inhibits the growth of acute myeloid leukemia cells through either cell cycle-related or ERK1/STAT3/MYC pathways. Toxicol In Vitro. 96:1057682024. View Article : Google Scholar : PubMed/NCBI

212 

Liu C, Dong L, Sun Z, Wang L, Wang Q, Li H, Zhang J and Wang X: Esculentoside A suppresses breast cancer stem cell growth through stemness attenuation and apoptosis induction by blocking IL-6/STAT3 signaling pathway. Phytother Res. 32:2299–2311. 2018. View Article : Google Scholar : PubMed/NCBI

213 

Simões BM, O'Brien CS, Eyre R, Silva A, Yu L, Sarmiento-Castro A, Alférez DG, Spence K, Santiago-Gómez A, Chemi F, et al: Anti-estrogen resistance in human breast tumors is driven by JAG1-NOTCH4-dependent cancer stem cell activity. Cell Rep. 12:1968–1977. 2015. View Article : Google Scholar : PubMed/NCBI

214 

Notas G, Pelekanou V, Kampa M, Alexakis K, Sfakianakis S, Laliotis A, Askoxilakis J, Tsentelierou E, Tzardi M, Tsapis A and Castanas E: Tamoxifen induces a pluripotency signature in breast cancer cells and human tumors. Mol Oncol. 9:1744–1759. 2015. View Article : Google Scholar : PubMed/NCBI

215 

Li J, Zhang B, Yang YF, Jin J and Liu YH: Aldehyde dehydrogenase 1 as a predictor of the neoadjuvant chemotherapy response in breast cancer: A meta-analysis. Medicine (Baltimore). 97:e120562018. View Article : Google Scholar : PubMed/NCBI

216 

Alamgeer M, Ganju V, Kumar B, Fox J, Hart S, White M, Harris M, Stuckey J, Prodanovic Z, Schneider-Kolsky ME and Watkins DN: Changes in aldehyde dehydrogenase-1 expression during neoadjuvant chemotherapy predict outcome in locally advanced breast cancer. Breast Cancer Res. 16:R442014. View Article : Google Scholar : PubMed/NCBI

217 

Lee A, Won KY, Lim SJ, Cho SY, Han SA, Park S and Song JY: ALDH1 and tumor infiltrating lymphocytes as predictors for neoadjuvant chemotherapy response in breast cancer. Pathol Res Pract. 214:619–624. 2018. View Article : Google Scholar : PubMed/NCBI

218 

Allison SE, Chen Y, Petrovic N, Zhang J, Bourget K, Mackenzie PI and Murray M: Activation of ALDH1A1 in MDA-MB-468 breast cancer cells that over-express CYP2J2 protects against paclitaxel-dependent cell death mediated by reactive oxygen species. Biochem Pharmacol. 143:79–89. 2017. View Article : Google Scholar : PubMed/NCBI

219 

Kakarala M, Brenner DE, Korkaya H, Cheng C, Tazi K, Ginestier C, Liu S, Dontu G and Wicha MS: Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res Treat. 122:777–785. 2010. View Article : Google Scholar : PubMed/NCBI

220 

Kesharwani RK, Srivastava V, Singh P, Rizvi SI, Adeppa K and Misra K: A novel approach for overcoming drug resistance in breast cancer chemotherapy by targeting new synthetic curcumin analogues against aldehyde dehydrogenase 1 (ALDH1A1) and glycogen synthase kinase-3 β (GSK-3β). Appl Biochem Biotechnol. 176:1996–2017. 2015. View Article : Google Scholar : PubMed/NCBI

221 

Li X, Wang X, Xie C, Zhu J, Meng Y, Chen Y, Li Y, Jiang Y, Yang X, Wang S, et al: Sonic hedgehog and Wnt/β-catenin pathways mediate curcumin inhibition of breast cancer stem cells. Anticancer Drugs. 29:208–215. 2018. View Article : Google Scholar : PubMed/NCBI

222 

Attia YM, El-Kersh DM, Ammar RA, Adel A, Khalil A, Walid H, Eskander K, Hamdy M, Reda N, Mohsen NE, et al: Inhibition of aldehyde dehydrogenase-1 and p-glycoprotein-mediated multidrug resistance by curcumin and vitamin D3 increases sensitivity to paclitaxel in breast cancer. Chem Biol Interact. 315:1088652020. View Article : Google Scholar : PubMed/NCBI

223 

Tanei T, Morimoto K, Shimazu K, Kim SJ, Tanji Y, Taguchi T, Tamaki Y and Noguchi S: Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res. 15:4234–4241. 2009. View Article : Google Scholar : PubMed/NCBI

224 

Wang R, Yang L, Li S, Ye D, Yang L, Liu Q, Zhao Z, Cai Q, Tan J and Li X: Quercetin inhibits breast cancer stem cells via downregulation of aldehyde dehydrogenase 1A1 (ALDH1A1), chemokine receptor type 4 (CXCR4), Mucin 1 (MUC1), and epithelial cell adhesion molecule (EpCAM). Med Sci Monit. 24:412–420. 2018. View Article : Google Scholar : PubMed/NCBI

225 

Castro NP, Rangel MC, Merchant AS, MacKinnon G, Cuttitta F, Salomon DS and Kim YS: Sulforaphane suppresses the growth of triple-negative breast cancer stem-like cells in vitro and in vivo. Cancer Prev Res (Phila). 12:147–158. 2019. View Article : Google Scholar : PubMed/NCBI

226 

Li Y, Zhang T, Korkaya H, Liu S, Lee HF, Newman B, Yu Y, Clouthier SG, Schwartz SJ, Wicha MS and Sun D: Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clin Cancer Res. 16:2580–2590. 2010. View Article : Google Scholar : PubMed/NCBI

227 

Leung HW, Ko CH, Yue GL, Herr I and Lau CS: The natural agent 4-vinylphenol targets metastasis and stemness features in breast cancer stem-like cells. Cancer Chemother Pharmacol. 82:185–197. 2018. View Article : Google Scholar : PubMed/NCBI

228 

Wang W, He S, Zhang R, Peng J, Guo D, Zhang J, Xiang B and Li L: ALDH1A1 maintains the cancer stem-like cells properties of esophageal squamous cell carcinoma by activating the AKT signal pathway and interacting with β-catenin. Biomed Pharmacother. 125:1099402020. View Article : Google Scholar : PubMed/NCBI

229 

Jiang Y, Song H, Jiang L, Qiao Y, Yang D, Wang D and Li J: Silybin prevents prostate cancer by inhibited the ALDH1A1 expression in the retinol metabolism pathway. Front Cell Dev Biol. 8:5743942020. View Article : Google Scholar : PubMed/NCBI

230 

Scambia G, De Vincenzo R, Ranelletti FO, Panici PB, Ferrandina G, D'Agostino G, Fattorossi A, Bombardelli E and Mancuso S: Antiproliferative effect of silybin on gynaecological malignancies: Synergism with cisplatin and doxorubicin. Eur J Cancer. 32A:877–882. 1996. View Article : Google Scholar : PubMed/NCBI

231 

Bhatia N, Zhao J, Wolf DM and Agarwal R: Inhibition of human carcinoma cell growth and DNA synthesis by silibinin, an active constituent of milk thistle: Comparison with silymarin. Cancer Lett. 147:77–84. 1999. View Article : Google Scholar : PubMed/NCBI

232 

Bian Y, Shan G, Bi G, Liang J, Hu Z, Sui Q, Shi H, Zheng Z, Yao G, Wang Q, et al: Targeting ALDH1A1 to enhance the efficacy of KRAS-targeted therapy through ferroptosis. Redox Biol. 77:1033612024. View Article : Google Scholar : PubMed/NCBI

233 

Galiè M: RAS as supporting actor in breast cancer. Front Oncol. 9:11992019. View Article : Google Scholar : PubMed/NCBI

234 

Tao S, Wang S, Moghaddam SJ, Ooi A, Chapman E, Wong PK and Zhang DD: Oncogenic KRAS confers chemoresistance by upregulating NRF2. Cancer Res. 74:7430–7441. 2014. View Article : Google Scholar : PubMed/NCBI

235 

Kim D, Choi BH, Ryoo IG and Kwak MK: High NRF2 level mediates cancer stem cell-like properties of aldehyde dehydrogenase (ALDH)-high ovarian cancer cells: Inhibitory role of all-trans retinoic acid in ALDH/NRF2 signaling. Cell Death Dis. 9:8962018. View Article : Google Scholar : PubMed/NCBI

236 

Piao S, Ojha R, Rebecca VW, Samanta A, Ma XH, Mcafee Q, Nicastri MC, Buckley M, Brown E, Winkler JD, et al: ALDH1A1 and HLTF modulate the activity of lysosomal autophagy inhibitors in cancer cells. Autophagy. 13:2056–2071. 2017. View Article : Google Scholar : PubMed/NCBI

237 

Varisli L, Cen O and Vlahopoulos S: Dissecting pharmacological effects of chloroquine in cancer treatment: Interference with inflammatory signaling pathways. Immunology. 159:257–278. 2020. View Article : Google Scholar : PubMed/NCBI

238 

Vlahopoulos S, Critselis E, Voutsas IF, Perez SA, Moschovi M, Baxevanis CN and Chrousos GP: New use for old drugs? Prospective targets of chloroquines in cancer therapy. Curr Drug Targets. 15:843–851. 2014. View Article : Google Scholar : PubMed/NCBI

239 

Liang DH, Choi DS, Ensor JE, Kaipparettu BA, Bass BL and Chang JC: The autophagy inhibitor chloroquine targets cancer stem cells in triple negative breast cancer by inducing mitochondrial damage and impairing DNA break repair. Cancer Lett. 376:249–258. 2016. View Article : Google Scholar : PubMed/NCBI

240 

Stagni V, Kaminari A, Sideratou Z, Sakellis E, Vlahopoulos SA and Tsiourvas D: Targeting breast cancer stem-like cells using chloroquine encapsulated by a triphenylphosphonium-functionalized hyperbranched polymer. Int J Pharm. 585:1194652020. View Article : Google Scholar : PubMed/NCBI

241 

Panagiotaki KN, Sideratou Z, Vlahopoulos SA, Paravatou-Petsotas M, Zachariadis M, Khoury N, Zoumpourlis V and Tsiourvas D: A Triphenylphosphonium-functionalized mitochondriotropic nanocarrier for efficient co-delivery of doxorubicin and chloroquine and enhanced antineoplastic activity. Pharmaceuticals (Basel). 10:912017. View Article : Google Scholar : PubMed/NCBI

242 

Visus C, Wang Y, Lozano-Leon A, Ferris RL, Silver S, Szczepanski MJ, Brand RE, Ferrone CR, Whiteside TL, Ferrone S, et al: Targeting ALDH(bright) human carcinoma-initiating cells with ALDH1A1-specific CD8+ T cells. Clin Cancer Res. 17:6174–6184. 2011. View Article : Google Scholar : PubMed/NCBI

243 

Liu C, Qiang J, Deng Q, Xia J, Deng L, Zhou L, Wang D, He X, Liu Y, Zhao B, et al: ALDH1A1 activity in tumor-initiating cells remodels myeloid-derived suppressor cells to promote breast cancer progression. Cancer Res. 81:5919–5934. 2021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Varisli L, Zoumpourlis P, Spandidos DA, Zoumpourlis V and Vlahopoulos S: ALDH1A1 in breast cancer: A prospective target to overcome therapy resistance (Review). Oncol Lett 29: 213, 2025.
APA
Varisli, L., Zoumpourlis, P., Spandidos, D.A., Zoumpourlis, V., & Vlahopoulos, S. (2025). ALDH1A1 in breast cancer: A prospective target to overcome therapy resistance (Review). Oncology Letters, 29, 213. https://doi.org/10.3892/ol.2025.14959
MLA
Varisli, L., Zoumpourlis, P., Spandidos, D. A., Zoumpourlis, V., Vlahopoulos, S."ALDH1A1 in breast cancer: A prospective target to overcome therapy resistance (Review)". Oncology Letters 29.5 (2025): 213.
Chicago
Varisli, L., Zoumpourlis, P., Spandidos, D. A., Zoumpourlis, V., Vlahopoulos, S."ALDH1A1 in breast cancer: A prospective target to overcome therapy resistance (Review)". Oncology Letters 29, no. 5 (2025): 213. https://doi.org/10.3892/ol.2025.14959
Copy and paste a formatted citation
x
Spandidos Publications style
Varisli L, Zoumpourlis P, Spandidos DA, Zoumpourlis V and Vlahopoulos S: ALDH1A1 in breast cancer: A prospective target to overcome therapy resistance (Review). Oncol Lett 29: 213, 2025.
APA
Varisli, L., Zoumpourlis, P., Spandidos, D.A., Zoumpourlis, V., & Vlahopoulos, S. (2025). ALDH1A1 in breast cancer: A prospective target to overcome therapy resistance (Review). Oncology Letters, 29, 213. https://doi.org/10.3892/ol.2025.14959
MLA
Varisli, L., Zoumpourlis, P., Spandidos, D. A., Zoumpourlis, V., Vlahopoulos, S."ALDH1A1 in breast cancer: A prospective target to overcome therapy resistance (Review)". Oncology Letters 29.5 (2025): 213.
Chicago
Varisli, L., Zoumpourlis, P., Spandidos, D. A., Zoumpourlis, V., Vlahopoulos, S."ALDH1A1 in breast cancer: A prospective target to overcome therapy resistance (Review)". Oncology Letters 29, no. 5 (2025): 213. https://doi.org/10.3892/ol.2025.14959
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team