Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
May-2025 Volume 29 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2025 Volume 29 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Special Issue Open Access

Cancer metastasis to the bone: Mechanisms and animal models (Review)

This article is part of the special Issue: Bone invasion and/or metastasis by malignant tumors and its underlying mechanisms
  • Authors:
    • Meimei Deng
    • Hao Ding
    • Yuru Zhou
    • Guangying Qi
    • Jinfeng Gan
  • View Affiliations / Copyright

    Affiliations: Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi 541199, P.R. China, Department of Thoracic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
    Copyright: © Deng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 221
    |
    Published online on: March 6, 2025
       https://doi.org/10.3892/ol.2025.14967
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

 The majority of cancer‑related deaths result from tumor metastasis, with bone metastasis occurring in almost all types of malignant tumors. Understanding the mechanism by which tumors metastasize to bone is critical for the identification of novel therapeutic targets. A large amount of research has been carried out using animal models, and these models have been crucial in advancing the fundamental understanding of cancer. However, current models are limited; although they can mimic specific stages of the metastatic process, they are not able to replicate the entire process from tumorigenesis to bone metastasis. The present review describes the molecular changes that occur in the intraosseous microenvironment of bone metastases, including osteolytic and osteoblastic types, and summarizes advancements in animal models of bone metastasis.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Coleman RE, Croucher PI, Padhani AR, Clézardin P, Chow E, Fallon M, Guise T, Colangeli S, Capanna R and Costa L: Bone metastases. Nat Rev Dis Primers. 6:832020. View Article : Google Scholar : PubMed/NCBI

3 

Clézardin P, Coleman R, Puppo M, Ottewell P, Bonnelye E, Paycha F, Confavreux CB and Holen I: Bone metastasis: Mechanisms, therapies, and biomarkers. Physiol Rev. 101:797–855. 2021. View Article : Google Scholar : PubMed/NCBI

4 

Papalia GF, Brigato P, Sisca L, Maltese G, Faiella E, Santucci D, Pantano F, Vincenzi B, Tonini G, Papalia R and Denaro V: Artificial intelligence in detection, management, and prognosis of bone metastasis: A systematic review. Cancers (Basel). 16:27002024. View Article : Google Scholar : PubMed/NCBI

5 

Sousa S and Clézardin P: Bone-targeted therapies in Cancer-induced bone disease. Calcif Tissue Int. 102:227–250. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Zhang W, Bado IL, Hu J, Wan YW, Wu L, Wang H, Gao Y, Jeong HH, Xu Z, Hao X, et al: The bone microenvironment invigorates metastatic seeds for further dissemination. Cell. 184:2471–86.e20. 2021. View Article : Google Scholar : PubMed/NCBI

7 

Coleman R, Hadji P, Body JJ, Santini D, Chow E, Terpos E, Oudard S, Bruland Ø, Flamen P, Kurth A, et al: Bone health in cancer: ESMO Clinical Practice Guidelines. Ann Oncol. 31:1650–1663. 2020. View Article : Google Scholar : PubMed/NCBI

8 

Trompet D, Melis S, Chagin AS and Maes C: Skeletal stem and progenitor cells in bone development and repair. J Bone Miner Res. 39:633–654. 2024. View Article : Google Scholar : PubMed/NCBI

9 

Boyce BF: Advances in the regulation of osteoclasts and osteoclast functions. J Dent Res. 92:860–867. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Ikebuchi Y, Aoki S, Honma M, Hayashi M, Sugamori Y, Khan M, Kariya Y, Kato G, Tabata Y, Penninger JM, et al: Coupling of bone resorption and formation by RANKL reverse signalling. Nature. 561:195–200. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Yamagishi T, Kawashima H, Ogose A, Ariizumi T, Oike N, Sasaki T, Hatano H, Ohashi R, Umezu H, Ajioka Y and Endo N: Expression profiling of Receptor-activator of nuclear Factor-Kappa B ligand in soft tissue tumors. Tohoku J Exp Med. 248:87–97. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Gostage J, Kostenuik P, Goljanek-Whysall K, Bellantuono I, McCloskey E and Bonnet N: Extra-osseous roles of the RANK-RANKL-OPG axis with a focus on skeletal muscle. Curr Osteoporos Rep. 22:632–650. 2024. View Article : Google Scholar : PubMed/NCBI

13 

Nozawa K, Fujishiro M, Kawasaki M, Kaneko H, Iwabuchi K, Yanagida M, Suzuki F, Miyazawa K, Takasaki Y, Ogawa H, et al: Connective tissue growth factor promotes articular damage by increased osteoclastogenesis in patients with rheumatoid arthritis. Arthritis Res Ther. 11:R1742009. View Article : Google Scholar : PubMed/NCBI

14 

Aoyama E, Kubota S, Khattab HM, Nishida T and Takigawa M: CCN2 enhances RANKL-induced osteoclast differentiation via direct binding to RANK and OPG. Bone. 73:242–248. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Ren W, Sun X, Wang K, Feng H, Liu Y, Fei C, Wan S, Wang W, Luo J, Shi Q, et al: BMP9 inhibits the bone metastasis of breast cancer cells by downregulating CCN2 (connective tissue growth factor, CTGF) expression. Mol Biol Rep. 41:1373–1383. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Sims NA and Martin TJ: Coupling the activities of bone formation and resorption: A multitude of signals within the basic multicellular unit. Bonekey Rep. 3:4812014. View Article : Google Scholar : PubMed/NCBI

17 

Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR and de Crombrugghe B: The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 108:17–29. 2002. View Article : Google Scholar : PubMed/NCBI

18 

Garcia J and Delany AM: MicroRNAs regulating TGFβ and BMP signaling in the osteoblast lineage. Bone. 143:1157912021. View Article : Google Scholar : PubMed/NCBI

19 

Caetano-Lopes J, Canhão H and Fonseca JE: Osteoblasts and bone formation. Acta Reumatol Port. 32:103–110. 2007.PubMed/NCBI

20 

Abhishek Shah A, Chand D, Ahamad S, Porwal K, Chourasia MK, Mohanan K, Srivastava KR and Chattopadhyay N: Therapeutic targeting of Wnt antagonists by small molecules for treatment of osteoporosis. Biochem Pharmacol. 230:1165872024. View Article : Google Scholar : PubMed/NCBI

21 

van't Hof RJ and Ralston SH: Nitric oxide and bone. Immunology. 103:255–261. 2001. View Article : Google Scholar : PubMed/NCBI

22 

Danilchenko S, Kalinkevich A, Zhovner M, Kuznetsov V, Li H and Wang J: Anisotropic aspects of solubility behavior in the demineralization of cortical bone revealed by XRD analysis. J Biol Phys. 45:77–88. 2019. View Article : Google Scholar : PubMed/NCBI

23 

Kitcharanant N, Chattipakorn N and Chattipakorn SC: The effect of intermittent parathyroid hormone on bone lengthening: Current evidence to inform future effective interventions. Osteoporos Int. 34:1657–1675. 2023. View Article : Google Scholar : PubMed/NCBI

24 

Niwczyk O, Grymowicz M, Szczęsnowicz A, Hajbos M, Kostrzak A, Budzik M, Maciejewska-Jeske M, Bala G, Smolarczyk R and Męczekalski B: Bones and hormones: Interaction between hormones of the hypothalamus, pituitary, adipose tissue and bone. Int J Mol Sci. 24:68402023. View Article : Google Scholar : PubMed/NCBI

25 

Grigoryan S and Clines GA: Hormonal control of bone architecture throughout the lifespan: Implications for fracture prediction and prevention. Endocr Pract. 30:687–694. 2024. View Article : Google Scholar : PubMed/NCBI

26 

Nagy V and Penninger JM: The RANKL-RANK Story. Gerontology. 61:534–542. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Mastro AM, Gay CV and Welch DR: The skeleton as a unique environment for breast cancer cells. Clin Exp Metastasis. 20:275–284. 2003. View Article : Google Scholar : PubMed/NCBI

28 

Bussard KM, Gay CV and Mastro AM: The bone microenvironment in metastasis; what is special about bone? Cancer Metastasis Rev. 27:41–55. 2008. View Article : Google Scholar : PubMed/NCBI

29 

Sharma R, Sharma R, Khaket TP, Dutta C, Chakraborty B and Mukherjee TK: Breast cancer metastasis: Putative therapeutic role of vascular cell adhesion molecule-1. Cell Oncol (Dordr). 40:199–208. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Chen Q and Massagué J: Molecular pathways: VCAM-1 as a potential therapeutic target in metastasis. Clin Cancer Res. 18:5520–555. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Lipton A: Implications of bone metastases and the benefits of bone-targeted therapy. Semin Oncol. 37 (Suppl 2):S15–S29. 2010. View Article : Google Scholar : PubMed/NCBI

32 

De Leon-Oliva D, Barrena-Blázquez S, Jiménez-Álvarez L, Fraile-Martinez O, García-Montero C, López-González L, Torres-Carranza D, García-Puente LM, Carranza ST, Álvarez-Mon MÁ, et al: The RANK-RANKL-OPG System: A multifaceted regulator of homeostasis, immunity, and cancer. Medicina (Kaunas). 59:17522023. View Article : Google Scholar : PubMed/NCBI

33 

Wang Y, Liu Y, Huang Z, Chen X and Zhang B: The roles of osteoprotegerin in cancer, far beyond a bone player. Cell Death Discov. 8:2522022. View Article : Google Scholar : PubMed/NCBI

34 

Clézardin P: The role of RANK/RANKL/osteoprotegerin (OPG) triad in cancer-induced bone diseases: Physiopathology and clinical implications. Bull Cancer. 98:837–846. 2011.(In French). View Article : Google Scholar : PubMed/NCBI

35 

Roodman GD: Mechanisms of bone metastasis. N Engl J Med. 350:1655–1664. 2004. View Article : Google Scholar : PubMed/NCBI

36 

Susperregui AR, Viñals F, Ho PW, Gillespie MT, Martin TJ and Ventura F: BMP-2 regulation of PTHrP and osteoclastogenic factors during osteoblast differentiation of C2C12 cells. J Cell Physiol. 216:144–152. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Izawa T, Zou W, Chappel JC, Ashley JW, Feng X and Teitelbaum SL: c-Src links a RANK/αvβ3 integrin complex to the osteoclast cytoskeleton. Mol Cell Biol. 32:2943–2953. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Zhou S, Li J, Ying T, Wang Y, Wang Q, Li X and Zhao F: StemRegenin 1 attenuates the RANKL-induced osteoclastogenesis via inhibiting AhR-c-src-NF-κB/p-ERK MAPK-NFATc1 signaling pathway. iScience. 27:1096822024. View Article : Google Scholar : PubMed/NCBI

39 

Ibaragi S, Shimo T, Iwamoto M, Hassan NM, Kodama S, Isowa S and Sasaki A: Parathyroid hormone-related peptide regulates matrix metalloproteinase-13 gene expression in bone metastatic breast cancer cells. Anticancer Res. 30:5029–5036. 2010.PubMed/NCBI

40 

Giarratana AO, Prendergast CM, Salvatore MM and Capaccione KM: TGF-β signaling: Critical nexus of fibrogenesis and cancer. J Transl Med. 22:5942024. View Article : Google Scholar : PubMed/NCBI

41 

Juárez P and Guise TA: TGF-β in cancer and bone: Implications for treatment of bone metastases. Bone. 48:23–29. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Fan C, Wang Q, Kuipers TB, Cats D, Iyengar PV, Hagenaars SC, Mesker WE, Devilee P, Tollenaar RAEM, Mei H and Ten Dijke P: LncRNA LITATS1 suppresses TGF-β-induced EMT and cancer cell plasticity by potentiating TβRI degradation. EMBO J. 42:e1128062023. View Article : Google Scholar : PubMed/NCBI

43 

Li Y, Drabsch Y, Pujuguet P, Ren J, van Laar T, Zhang L, van Dam H, Clément-Lacroix P and Ten Dijke P: Genetic depletion and pharmacological targeting of αv integrin in breast cancer cells impairs metastasis in zebrafish and mouse xenograft models. Breast Cancer Res. 17:282015. View Article : Google Scholar : PubMed/NCBI

44 

Luis-Ravelo D, Antón I, Vicent S, Zandueta C, Martínez S, Valencia K, Ormazábal C and Lecanda F: Divergent effects of TGF-β inhibition in bone metastases in breast and lung cancer. Rev Osteoporos Metab Miner. 5:79–84. 2013. View Article : Google Scholar

45 

Zhu S, Chen W, Masson A and Li YP: Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov. 10:712024. View Article : Google Scholar : PubMed/NCBI

46 

Gkotzamanidou M, Dimopoulos MA, Kastritis E, Christoulas D, Moulopoulos LA and Terpos E: Sclerostin: A possible target for the management of cancer-induced bone disease. Expert Opin Ther Targets. 16:761–769. 2012. View Article : Google Scholar : PubMed/NCBI

47 

Pinzone JJ, Hall BM, Thudi NK, Vonau M, Qiang YW, Rosol TJ and Shaughnessy JD: The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood. 113:517–525. 2009. View Article : Google Scholar : PubMed/NCBI

48 

Irani S, Salajegheh A, Smith RA and Lam AK: A review of the profile of endothelin axis in cancer and its management. Crit Rev Oncol Hematol. 89:314–321. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Bagnato A, Loizidou M, Pflug BR, Curwen J and Growcott J: Role of the endothelin axis and its antagonists in the treatment of cancer. Br J Pharmacol. 163:220–233. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Xin Z, Qin L, Tang Y, Guo S, Li F, Fang Y, Li G, Yao Y, Zheng B, Zhang B, et al: Immune mediated support of metastasis: Implication for bone invasion. Cancer Commun (Lond). 44:967–991. 2024. View Article : Google Scholar : PubMed/NCBI

51 

Ma X and Yu J: Role of the bone microenvironment in bone metastasis of malignant tumors-therapeutic implications. Cell Oncol (Dordr). 43:751–761. 2020. View Article : Google Scholar : PubMed/NCBI

52 

Baldessari C, Pipitone S, Molinaro E, Cerma K, Fanelli M, Nasso C, Oltrecolli M, Pirola M, D'Agostino E, Pugliese G, et al: Bone metastases and health in prostate cancer: From pathophysiology to clinical implications. Cancers (Basel). 15:15182023. View Article : Google Scholar : PubMed/NCBI

53 

Zhang X, Jiang P and Wang C: The role of prostate-specific antigen in the osteoblastic bone metastasis of prostate cancer: A literature review. Front Oncol. 13:11276372023. View Article : Google Scholar : PubMed/NCBI

54 

Yonou H, Horiguchi Y, Ohno Y, Namiki K, Yoshioka K, Ohori M, Hatano T and Tachibana M: Prostate-specific antigen stimulates osteoprotegerin production and inhibits receptor activator of nuclear factor-kappaB ligand expression by human osteoblasts. Prostate. 67:840–848. 2007. View Article : Google Scholar : PubMed/NCBI

55 

Christoph F, König F, Lebentrau S, Jandrig B, Krause H, Strenziok R and Schostak M: RANKL/RANK/OPG cytokine receptor system: mRNA expression pattern in BPH, primary and metastatic prostate cancer disease. World J Urol. 36:187–192. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Kuchimaru T, Hoshino T, Aikawa T, Yasuda H, Kobayashi T, Kadonosono T and Kizaka-Kondoh S: Bone resorption facilitates osteoblastic bone metastatic colonization by cooperation of insulin-like growth factor and hypoxia. Cancer Sci. 105:553–559. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Jin R, Sterling JA, Edwards JR, DeGraff DJ, Lee C, Park SI and Matusik RJ: Activation of NF-kappa B signaling promotes growth of prostate cancer cells in bone. PLoS One. 8:e609832013. View Article : Google Scholar : PubMed/NCBI

58 

Choi SW, Sun AK, Cheung JP and Ho JC: Circulating tumour cells in the prediction of bone metastasis. Cancers (Basel). 16:2522024. View Article : Google Scholar : PubMed/NCBI

59 

Roth ES, Fetzer DT, Barron BJ, Joseph UA, Gayed IW and Wan DQ: Does colon cancer ever metastasize to bone first? a temporal analysis of colorectal cancer progression. BMC Cancer. 9:2742009. View Article : Google Scholar : PubMed/NCBI

60 

Uccella S, Morris JM, Bakkum-Gamez JN, Keeney GL, Podratz KC and Mariani A: Bone metastases in endometrial cancer: Report on 19 patients and review of the medical literature. Gynecol Oncol. 130:474–482. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Paget S: The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 8:98–101. 1989.PubMed/NCBI

62 

Elkin M and Vlodavsky I: Tail vein assay of cancer metastasis. Curr Protoc Cell Biol. Chapter 19:19.2.1-19.2.7.2001.doi: 10.1002/0471143030.cb1902s12. View Article : Google Scholar : PubMed/NCBI

63 

Kuchimaru T, Kataoka N, Nakagawa K, Isozaki T, Miyabara H, Minegishi M, Kadonosono T and Kizaka-Kondoh S: A reliable murine model of bone metastasis by injecting cancer cells through caudal arteries. Nat Commun. 9:29812018. View Article : Google Scholar : PubMed/NCBI

64 

Neudert M, Fischer C, Krempien B, Bauss F and Seibel MJ: Site-specific human breast cancer (MDA-MB-231) metastases in nude rats: Model characterisation and in vivo effects of ibandronate on tumour growth. Int J Cancer. 107:468–477. 2003. View Article : Google Scholar : PubMed/NCBI

65 

Hoffman RM: Patient-derived orthotopic xenografts: Better mimic of metastasis than subcutaneous xenografts. Nat Rev Cancer. 15:451–452. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Stribbling SM and Ryan AJ: The cell-line-derived subcutaneous tumor model in preclinical cancer research. Nat Protoc. 17:2108–2128. 2022. View Article : Google Scholar : PubMed/NCBI

67 

Farhoodi HP, Segaliny AI, Wagoner ZW, Cheng JL, Liu L and Zhao W: Optimization of a syngeneic murine model of bone metastasis. J Bone Oncol. 23:1002982020. View Article : Google Scholar : PubMed/NCBI

68 

Winnard PT Jr, Vesuna F, Bol GM, Gabrielson KL, Chenevix-Trench G, Ter Hoeve ND, van Diest PJ and Raman V: Targeting RNA helicase DDX3X with a small molecule inhibitor for breast cancer bone metastasis treatment. Cancer Lett. 604:2172602024. View Article : Google Scholar : PubMed/NCBI

69 

Han Y, Azuma K, Watanabe S, Semba K and Nakayama J: Metastatic profiling of HER2-positive breast cancer cell lines in xenograft models. Clin Exp Metastasis. 39:467–477. 2022. View Article : Google Scholar : PubMed/NCBI

70 

Ye X, Huang X, Fu X, Zhang X, Lin R, Zhang W, Zhang J and Lu Y: Myeloid-like tumor hybrid cells in bone marrow promote progression of prostate cancer bone metastasis. J Hematol Oncol. 16:462023. View Article : Google Scholar : PubMed/NCBI

71 

Zhong L, Miller HD, Zhang Y, Jin B, Ge D and You Z: Intra-arterial injection to create bone metastasis of prostate cancer in mice. Am J Clin Exp Urol. 8:93–100. 2020.PubMed/NCBI

72 

Simmons JK, Dirksen WP, Hildreth BE III, Dorr C, Williams C, Thomas R, Breen M, Toribio RE and Rosol TJ: Canine prostate cancer cell line (Probasco) produces osteoblastic metastases in vivo. Prostate. 74:1251–1265. 2014. View Article : Google Scholar : PubMed/NCBI

73 

Abou DS, Ulmert D, Doucet M, Hobbs RF, Riddle RC and Thorek DL: Whole-Body and microenvironmental localization of Radium-223 in naïve and mouse models of prostate cancer metastasis. J Natl Cancer Inst. 108:djv3802025. View Article : Google Scholar

74 

Pollard HB, Levine MA, Eidelman O and Pollard M: Pharmacological ascorbic acid suppresses syngeneic tumor growth and metastases in hormone-refractory prostate cancer. In Vivo. 24:249–255. 2010.PubMed/NCBI

75 

Wang N, Reeves KJ, Brown HK, Fowles AC, Docherty FE, Ottewell PD, Croucher PI, Holen I and Eaton CL: The frequency of osteolytic bone metastasis is determined by conditions of the soil, not the number of seeds; evidence from in vivo models of breast and prostate cancer. J Exp Clin Cancer Res. 34:1242015. View Article : Google Scholar : PubMed/NCBI

76 

Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF and Jones LW: Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol. 17:16–23. 1979.PubMed/NCBI

77 

Dai J, Hensel J, Wang N, Kruithof-de Julio M and Shiozawa Y: Mouse models for studying prostate cancer bone metastasis. Bonekey Rep. 5:7772016. View Article : Google Scholar : PubMed/NCBI

78 

Kozlowski JM, Fidler IJ, Campbell D, Xu ZL, Kaighn ME and Hart IR: Metastatic behavior of human tumor cell lines grown in the nude mouse. Cancer Res. 44:3522–3529. 1984.PubMed/NCBI

79 

Pettaway CA, Pathak S, Greene G, Ramirez E, Wilson MR, Killion JJ and Fidler IJ: Selection of highly metastatic variants of different human prostatic carcinomas using orthotopic implantation in nude mice. Clin Cancer Res. 2:1627–1636. 1996.PubMed/NCBI

80 

Stone KR, Mickey DD, Wunderli H, Mickey GH and Paulson DF: Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer. 21:274–281. 1978. View Article : Google Scholar : PubMed/NCBI

81 

Horoszewicz JS, Leong SS, Chu TM, Wajsman ZL, Friedman M, Papsidero L, Kim U, Chai LS, Kakati S, Arya SK and Sandberg AA: The LNCaP cell line-a new model for studies on human prostatic carcinoma. Prog Clin Biol Res. 37:115–132. 1980.PubMed/NCBI

82 

Thalmann GN, Anezinis PE, Chang SM, Zhau HE, Kim EE, Hopwood VL, Pathak S, von Eschenbach AC and Chung LW: Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res. 54:2577–2581. 1994.PubMed/NCBI

83 

Sobel RE and Sadar MD: Cell lines used in prostate cancer research: A compendium of old and new lines-part 1. J Urol. 173:342–359. 2005. View Article : Google Scholar : PubMed/NCBI

84 

Guo Q, Jin Y, Lin M, Zeng C and Zhang J: NF-κB signaling in therapy resistance of breast cancer: Mechanisms, approaches, and challenges. Life Sci. 348:1226842024. View Article : Google Scholar : PubMed/NCBI

85 

Zhou J and Ottewell PD: The role of IL-1B in breast cancer bone metastasis. J Bone Oncol. 46:1006082024. View Article : Google Scholar : PubMed/NCBI

86 

Weilbaecher KN, Guise TA and McCauley LK: Cancer to bone: A fatal attraction. Nat Rev Cancer. 11:411–425. 2011. View Article : Google Scholar : PubMed/NCBI

87 

Shu ST, Nadella MV, Dirksen WP, Fernandez SA, Thudi NK, Werbeck JL, Lairmore MD and Rosol TJ: A novel bioluminescent mouse model and effective therapy for adult T-cell leukemia/lymphoma. Cancer Res. 67:11859–11866. 2007. View Article : Google Scholar : PubMed/NCBI

88 

Isaacs JT, Heston WD, Weissman RM and Coffey DS: Animal models of the hormone-sensitive and -insensitive prostatic adenocarcinomas, Dunning R-3327-H, R-3327-HI, and R-3327-AT. Cancer Res. 38:4353–4359. 1978.PubMed/NCBI

89 

Padalecki SS and Guise TA: Actions of bisphosphonates in animal models of breast cancer. Breast Cancer Res. 4:35–41. 2002. View Article : Google Scholar : PubMed/NCBI

90 

Ooi LL, Zheng Y, Zhou H, Trivedi T, Conigrave AD, Seibel MJ and Dunstan CR: Vitamin D deficiency promotes growth of MCF-7 human breast cancer in a rodent model of osteosclerotic bone metastasis. Bone. 47:795–803. 2010. View Article : Google Scholar : PubMed/NCBI

91 

Yin JJ, Mohammad KS, Käkönen SM, Harris S, Wu-Wong JR, Wessale JL, Padley RJ, Garrett IR, Chirgwin JM and Guise TA: A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastases. Proc Natl Acad Sci USA. 100:10954–10959. 2003. View Article : Google Scholar : PubMed/NCBI

92 

Pulaski BA and Ostrand-Rosenberg S: Mouse 4T1 breast tumor model. Curr Protoc Immunol. Chapter 20: Unit 20.2. 2001.doi: 10.1002/0471142735.im2002s39. PubMed/NCBI

93 

Pulaski BA and Ostrand-Rosenberg S: Reduction of established spontaneous mammary carcinoma metastases following immunotherapy with major histocompatibility complex class II and B7.1 cell-based tumor vaccines. Cancer Res. 58:1486–1493. 1998.PubMed/NCBI

94 

Lelekakis M, Moseley JM, Martin TJ, Hards D, Williams E, Ho P, Lowen D, Javni J, Miller FR, Slavin J and Anderson RL: A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis. 17:163–170. 1999. View Article : Google Scholar : PubMed/NCBI

95 

Coleman RE: Metastatic bone disease: Clinical features, pathophysiology and treatment strategies. Cancer Treat Rev. 27:165–176. 2001. View Article : Google Scholar : PubMed/NCBI

96 

Feeley BT, Liu NQ, Conduah AH, Krenek L, Roth K, Dougall WC, Huard J, Dubinett S and Lieberman JR: Mixed metastatic lung cancer lesions in bone are inhibited by noggin overexpression and Rank:Fc administration. Bone Miner Res. 21:1571–1580. 2006. View Article : Google Scholar : PubMed/NCBI

97 

Miki T, Yano S, Hanibuchi M and Sone S: Bone metastasis model with multiorgan dissemination of human small-cell lung cancer (SBC-5) cells in natural killer cell-depleted SCID mice. Oncol Res. 12:209–127. 2000. View Article : Google Scholar : PubMed/NCBI

98 

Tannehill-Gregg SH, Levine AL, Nadella MV, Iguchi H and Rosol TJ: The effect of zoledronic acid and osteoprotegerin on growth of human lung cancer in the tibias of nude mice. Clin Exp Metastasis. 23:19–31. 2006. View Article : Google Scholar : PubMed/NCBI

99 

Taube T, Beneton MN, McCloskey EV, Rogers S, Greaves M and Kanis JA: Abnormal bone remodelling in patients with myelomatosis and normal biochemical indices of bone resorption. Eur J Haematol. 49:192–198. 1992. View Article : Google Scholar : PubMed/NCBI

100 

Nakano T, Shimizu K, Kawashima O, Kamiyoshihara M, Kakegawa S, Sugano M, Ibe T, Nagashima T, Kaira K, Sunaga N, et al: Establishment of a human lung cancer cell line with high metastatic potential to multiple organs: Gene expression associated with metastatic potential in human lung cancer. Oncol Rep. 28:1727–1735. 2012. View Article : Google Scholar : PubMed/NCBI

101 

Yang S, Dong Q, Yao M, Shi M, Ye J, Zhao L, Su J, Gu W, Xie W, Wang K, et al: Establishment of an experimental human lung adenocarcinoma cell line SPC-A-1BM with high bone metastases potency by (99m)Tc-MDP bone scintigraphy. Nucl Med Biol. 36:313–321. 2009. View Article : Google Scholar : PubMed/NCBI

102 

Gravina GL, Mancini A, Muzi P, Ventura L, Biordi L, Ricevuto E, Pompili S, Mattei C, Di Cesare E, Jannini EA and Festuccia C: CXCR4 pharmacogical inhibition reduces bone and soft tissue metastatic burden by affecting tumor growth and tumorigenic potential in prostate cancer preclinical models. Prostate. 75:1227–1246. 2015. View Article : Google Scholar : PubMed/NCBI

103 

Wu TT, Sikes RA, Cui Q, Thalmann GN, Kao C, Murphy CF, Yang H, Zhau HE, Balian G and Chung LW: Establishing human prostate cancer cell xenografts in bone: Induction of osteoblastic reaction by prostate-specific antigen-producing tumors in athymic and SCID/bg mice using LNCaP and lineage-derived metastatic sublines. Int J Cancer. 77:887–894. 1998. View Article : Google Scholar : PubMed/NCBI

104 

Shevrin DH, Kukreja SC, Ghosh L and Lad TE: Development of skeletal metastasis by human prostate cancer in athymic nude mice. Clin Exp Metastasis. 6:401–409. 1988. View Article : Google Scholar : PubMed/NCBI

105 

Havens AM, Pedersen EA, Shiozawa Y, Ying C, Jung Y, Sun Y, Neeley C, Wang J, Mehra R, Keller ET, et al: An in vivo mouse model for human prostate cancer metastasis. Neoplasia. 10:371–380. 2008. View Article : Google Scholar : PubMed/NCBI

106 

Yang M, Jiang P, Sun FX, Hasegawa S, Baranov E, Chishima T, Shimada H, Moossa AR and Hoffman RM: A fluorescent orthotopic bone metastasis model of human prostate cancer. Cancer Res. 59:781–786. 1999.PubMed/NCBI

107 

Fisher JL, Schmitt JF, Howard ML, Mackie PS, Choong PF and Risbridger GP: An in vivo model of prostate carcinoma growth and invasion in bone. Cell Tissue Res. 307:337–345. 2002. View Article : Google Scholar : PubMed/NCBI

108 

Bonfil RD, Dong Z, Trindade Filho JC, Sabbota A, Osenkowski P, Nabha S, Yamamoto H, Chinni SR, Zhao H, Mobashery S, et al: Prostate cancer-associated membrane type 1-matrix metalloproteinase: A pivotal role in bone response and intraosseous tumor growth. Am J Pathol. 170:2100–2111. 2007. View Article : Google Scholar : PubMed/NCBI

109 

Zou M, Jiao J, Zou Q, Xu Y, Cheng M, Xu J and Zhang Y: Multiple metastases in a novel LNCaP model of human prostate cancer. Oncol Rep. 30:615–622. 2013. View Article : Google Scholar : PubMed/NCBI

110 

Corey E, Quinn JE, Bladou F, Brown LG, Roudier MP, Brown JM, Buhler KR and Vessella RL: Establishment and characterization of osseous prostate cancer models: Intra-tibial injection of human prostate cancer cells. Prostate. 52:20–33. 2002. View Article : Google Scholar : PubMed/NCBI

111 

Jantscheff P, Ziroli V, Esser N, Graeser R, Kluth J, Sukolinskaya A, Taylor LA, Unger C and Massing U: Anti-metastatic effects of liposomal gemcitabine in a human orthotopic LNCaP prostate cancer xenograft model. Clin Exp Metastasis. 26:981–992. 2009. View Article : Google Scholar : PubMed/NCBI

112 

Wetterwald A, van der Pluijm G, Que I, Sijmons B, Buijs J, Karperien M, Löwik CW, Gautschi E, Thalmann GN and Cecchini MG: Optical imaging of cancer metastasis to bone marrow: A mouse model of minimal residual disease. Am J Pathol. 160:1143–1153. 2002. View Article : Google Scholar : PubMed/NCBI

113 

Sasaki SI, Zhang D, Iwabuchi S, Tanabe Y, Hashimoto S, Yamauchi A, Hayashi K, Tsuchiya H, Hayakawa Y, Baba T and Mukaida N: Crucial contribution of GPR56/ADGRG1, expressed by breast cancer cells, to bone metastasis formation. Cancer Sci. 112:4883–4893. 2021. View Article : Google Scholar : PubMed/NCBI

114 

Kim B, Kim H, Jung S, Moon A, Noh DY, Lee ZH, Kim HJ and Kim HH: A CTGF-RUNX2-RANKL axis in breast and prostate cancer cells promotes tumor progression in bone. J Bone Miner Res. 35:155–166. 2020. View Article : Google Scholar : PubMed/NCBI

115 

Yoneda T, Michigami T, Yi B, Williams PJ, Niewolna M and Hiraga T: Actions of bisphosphonate on bone metastasis in animal models of breast carcinoma. Cancer. 88:2979–2988. 2000. View Article : Google Scholar : PubMed/NCBI

116 

Yi B, Williams PJ, Niewolna M, Wang Y and Yoneda T: Tumor-derived platelet-derived growth factor-BB plays a critical role in osteosclerotic bone metastasis in an animal model of human breast cancer. Cancer Res. 62:917–923. 2002.PubMed/NCBI

117 

Sun J, Huang J, Lan J, Zhou K, Gao Y, Song Z, Deng Y, Liu L, Dong Y and Liu X: Overexpression of CENPF correlates with poor prognosis and tumor bone metastasis in breast cancer. Cancer Cell Int. 19:2642019. View Article : Google Scholar : PubMed/NCBI

118 

Hung JY, Horn D, Woodruff K, Prihoda T, LeSaux C, Peters J, Tio F and Abboud-Werner SL: Colony-stimulating factor 1 potentiates lung cancer bone metastasis. Lab Invest. 94:371–381. 2014. View Article : Google Scholar : PubMed/NCBI

119 

Liu H, Cheng Q, Xu DS, Wang W, Fang Z, Xue DD, Zheng Y, Chang AH and Lei YJ: Overexpression of CXCR7 accelerates tumor growth and metastasis of lung cancer cells. Respir Res. 21:2872020. View Article : Google Scholar : PubMed/NCBI

120 

Wang Q, Zhao B, Li J, Zhao J, Wang C, Li Q, Yang W, Xu L and Gong Y: Qilian formula inhibits tumor cell growth in a bone metastasis model of lung cancer. Integr Cancer Ther. 22:153473542312172742023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Deng M, Ding H, Zhou Y, Qi G and Gan J: Cancer metastasis to the bone: Mechanisms and animal models (Review). Oncol Lett 29: 221, 2025.
APA
Deng, M., Ding, H., Zhou, Y., Qi, G., & Gan, J. (2025). Cancer metastasis to the bone: Mechanisms and animal models (Review). Oncology Letters, 29, 221. https://doi.org/10.3892/ol.2025.14967
MLA
Deng, M., Ding, H., Zhou, Y., Qi, G., Gan, J."Cancer metastasis to the bone: Mechanisms and animal models (Review)". Oncology Letters 29.5 (2025): 221.
Chicago
Deng, M., Ding, H., Zhou, Y., Qi, G., Gan, J."Cancer metastasis to the bone: Mechanisms and animal models (Review)". Oncology Letters 29, no. 5 (2025): 221. https://doi.org/10.3892/ol.2025.14967
Copy and paste a formatted citation
x
Spandidos Publications style
Deng M, Ding H, Zhou Y, Qi G and Gan J: Cancer metastasis to the bone: Mechanisms and animal models (Review). Oncol Lett 29: 221, 2025.
APA
Deng, M., Ding, H., Zhou, Y., Qi, G., & Gan, J. (2025). Cancer metastasis to the bone: Mechanisms and animal models (Review). Oncology Letters, 29, 221. https://doi.org/10.3892/ol.2025.14967
MLA
Deng, M., Ding, H., Zhou, Y., Qi, G., Gan, J."Cancer metastasis to the bone: Mechanisms and animal models (Review)". Oncology Letters 29.5 (2025): 221.
Chicago
Deng, M., Ding, H., Zhou, Y., Qi, G., Gan, J."Cancer metastasis to the bone: Mechanisms and animal models (Review)". Oncology Letters 29, no. 5 (2025): 221. https://doi.org/10.3892/ol.2025.14967
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team