1
|
Klein AP: Pancreatic cancer epidemiology:
Understanding the role of lifestyle and inherited risk factors. Nat
Rev Gastroenterol Hepatol. 18:493–502. 2021. View Article : Google Scholar : PubMed/NCBI
|
2
|
Stoffel EM, Brand RE and Goggins M:
Pancreatic cancer: Changing epidemiology and new approaches to risk
assessment, early detection, and prevention. Gastroenterology.
164:752–765. 2023. View Article : Google Scholar : PubMed/NCBI
|
3
|
Cai J, Chen H, Lu M, Zhang Y, Lu B, You L,
Zhang T, Dai M and Zhao Y: Advances in the epidemiology of
pancreatic cancer: Trends, risk factors, screening, and prognosis.
Cancer Lett. 520:1–11. 2021. View Article : Google Scholar : PubMed/NCBI
|
4
|
Liu Z, Liu L, Weng S, Guo C, Dang Q, Xu H,
Wang L, Lu T, Zhang Y, Sun Z and Han X: Machine learning-based
integration develops an immune-derived lncRNA signature for
improving outcomes in colorectal cancer. Nat Commun. 13:8162022.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Chen S, Jiang L, Gao F, Zhang E, Wang T,
Zhang N, Wang X and Zheng J: Machine learning-based pathomics
signature could act as a novel prognostic marker for patients with
clear cell renal cell carcinoma. Br J Cancer. 126:771–777. 2022.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Roh JS and Sohn DH: Damage-associated
molecular patterns in inflammatory diseases. Immune Netw.
18:e272018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ashrafizadeh M, Farhood B, Eleojo Musa A,
Taeb S and Najafi M: Damage-associated molecular patterns in tumor
radiotherapy. Int Immunopharmacol. 86:1067612020. View Article : Google Scholar : PubMed/NCBI
|
8
|
Huang H, Tohme S, Al-Khafaji AB, Tai S,
Loughran P, Chen L, Wang S, Kim J, Billiar T, Wang Y and Tsung A:
Damage-associated molecular pattern-activated neutrophil
extracellular trap exacerbates sterile inflammatory liver injury.
Hepatology. 62:600–614. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ahmed A and Tait SWG: Targeting
immunogenic cell death in cancer. Mol Oncol. 14:2994–3006. 2020.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Li X, Kang J, Yue J, Xu D, Liao C, Zhang
H, Zhao J, Liu Q, Jiao J, Wang L and Li G: Identification and
validation of immunogenic cell death-related score in uveal
melanoma to improve prediction of prognosis and response to
immunotherapy. Aging (Albany NY). 15:3442–3464. 2023. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yanai H, Hangai S and Taniguchi T:
Damage-associated molecular patterns and Toll-like receptors in the
tumor immune microenvironment. Int Immunol. 33:841–846. 2021.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhang X, Liu Y, Zhang Z, Tan J, Zhang J,
Ou H, Li J and Song Z: Multi-omics analysis of anlotinib in
pancreatic cancer and development of an anlotinib-related
prognostic signature. Front Cell Dev Biol. 9:6492652021. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wilkerson MD and Hayes DN:
ConsensusClusterPlus: A class discovery tool with confidence
assessments and item tracking. Bioinformatics. 26:1572–1573. 2010.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Qu H, Zhao H, Zhang X, Liu Y, Li F, Sun L
and Song Z: Integrated analysis of the ETS family in melanoma
reveals a regulatory role of ETV7 in the immune microenvironment.
Front Immunol. 11:6127842020. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhu Z, Li G, Li Z, Wu Y, Yang Y, Wang M,
Zhang H, Qu H, Song Z and He Y: Core immune cell infiltration
signatures identify molecular subtypes and promote precise
checkpoint immunotherapy in cutaneous melanoma. Front Immunol.
13:9146122022. View Article : Google Scholar : PubMed/NCBI
|
16
|
Langfelder P and Horvath S: WGCNA: An R
package for weighted correlation network analysis. BMC
Bioinformatics. 9:5592008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tang J, Kong D, Cui Q, Wang K, Zhang D,
Gong Y and Wu G: Prognostic genes of breast cancer identified by
gene co-expression network analysis. Front Oncol. 8:3742018.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Jun Z: GseaVis: An Implement R Package to
Visualize GSEA Results. 2022.
|
19
|
Li G, Song Z, Wu C, Li X, Zhao L, Tong B,
Guo Z, Sun M, Zhao J, Zhang H, et al: Downregulation of NEDD4L by
EGFR signaling promotes the development of lung adenocarcinoma. J
Transl Med. 20:472022. View Article : Google Scholar : PubMed/NCBI
|
20
|
Song Z, Yu Z, Chen L, Zhou Z, Zou Q and
Liu Y: MicroRNA-1181 supports the growth of hepatocellular
carcinoma by repressing AXIN1. Biomed Pharmacother. 119:1093972019.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Garg AD, De Ruysscher D and Agostinis P:
Immunological metagene signatures derived from immunogenic cancer
cell death associate with improved survival of patients with lung,
breast or ovarian malignancies: A large-scale meta-analysis.
Oncoimmunology. 5:e10699382015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Xu M, Lu JH, Zhong YZ, Jiang J, Shen YZ,
Su JY and Lin SY: Immunogenic cell death-relevant damage-associated
molecular patterns and sensing receptors in triple-negative breast
cancer molecular subtypes and implications for immunotherapy. Front
Oncol. 12:8709142022. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bailey P, Chang DK, Nones K, Johns AL,
Patch AM, Gingras MC, Miller DK, Christ AN, Bruxner TJ, Quinn MC,
et al: Genomic analyses identify molecular subtypes of pancreatic
cancer. Nature. 531:47–52. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhang J, Chen M, Fang C and Luo P: A
cancer-associated fibroblast gene signature predicts prognosis and
therapy response in patients with pancreatic cancer. Front Oncol.
12:10521322022. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wei X, Zhou X, Zhao Y, He Y, Weng Z and Xu
C: A 14-gene gemcitabine resistance gene signature is significantly
associated with the prognosis of pancreatic cancer patients. Sci
Rep. 11:60872021. View Article : Google Scholar : PubMed/NCBI
|
26
|
Xiao M, Liang X, Yan Z, Chen J, Zhu Y, Xie
Y, Li Y, Li X, Gao Q, Feng F, et al: A DNA-methylation-driven genes
based prognostic signature reveals immune microenvironment in
pancreatic cancer. Front Immunol. 13:8039622022. View Article : Google Scholar : PubMed/NCBI
|
27
|
Tao S, Tian L, Wang X and Shou Y: A
pyroptosis-related gene signature for prognosis and immune
microenvironment of pancreatic cancer. Front Genet. 13:8179192022.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhuo Z, Lin H, Liang J, Ma P, Li J, Huang
L, Chen L, Yang H, Bai Y and Sha W: Mitophagy-related gene
signature for prediction prognosis, immune scenery, mutation, and
chemotherapy response in pancreatic cancer. Front Cell Dev Biol.
9:8025282022. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang C, Chen Y, Xinpeng Y, Xu R, Song J,
Ruze R, Xu Q and Zhao Y: Construction of immune-related signature
and identification of S100A14 determining immune-suppressive
microenvironment in pancreatic cancer. BMC Cancer. 22:8792022.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhang H, Pan YZ, Cheung M, Cao M, Yu C,
Chen L, Zhan L, He ZW and Sun CY: LAMB3 mediates apoptotic,
proliferative, invasive, and metastatic behaviors in pancreatic
cancer by regulating the PI3K/Akt signaling pathway. Cell Death
Dis. 10:2302019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Lin H, Yang P, Li B, Chang Y, Chen Y, Li
Y, Liu K, Liang X, Chen T, Dai Y, et al: S100A10 promotes
pancreatic ductal adenocarcinoma cells proliferation, migration and
adhesion through JNK/LAMB3-LAMC2 axis. Cancers (Basel). 15:2022022.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Erice O, Narayanan S, Feliu I,
Entrialgo-Cadierno R, Malinova A, Vicentini C, Guruceaga E, Delfino
P, Trajkovic-Arsic M, Moreno H, et al: LAMC2 regulates key
transcriptional and targetable effectors to support pancreatic
cancer growth. Clin Cancer Res. 29:1137–1154. 2023. View Article : Google Scholar : PubMed/NCBI
|
33
|
Borden EC: Interferons α and β in cancer:
Therapeutic opportunities from new insights. Nat Rev Drug Discov.
18:219–234. 2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ganapathy-Kanniappan S and Geschwind JF:
Tumor glycolysis as a target for cancer therapy: Progress and
prospects. Mol Cancer. 12:1522013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kepp O, Senovilla L, Vitale I, Vacchelli
E, Adjemian S, Agostinis P, Apetoh L, Aranda F, Barnaba V, Bloy N,
et al: Consensus guidelines for the detection of immunogenic cell
death. Oncoimmunology. 3:e9556912014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Antonioli L, Pacher P, Vizi ES and Haskó
G: CD39 and CD73 in immunity and inflammation. Trends Mol Med.
19:355–367. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Yu M, Wang H, Ding A, Golenbock DT, Latz
E, Czura CJ, Fenton MJ, Tracey KJ and Yang H: HMGB1 signals through
toll-like receptor (TLR) 4 and TLR2. Shock. 26:174–179. 2006.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Ghiringhelli F, Apetoh L, Tesniere A,
Aymeric L, Ma Y, Ortiz C, Vermaelen K, Panaretakis T, Mignot G,
Ullrich E, et al: Activation of the NLRP3 inflammasome in dendritic
cells induces IL-1beta-dependent adaptive immunity against tumors.
Nat Med. 15:1170–1178. 2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
Li G, Zhang H, Zhao J, Liu Q, Jiao J, Yang
M and Wu C: Machine learning-based construction of immunogenic cell
death-related score for improving prognosis and response to
immunotherapy in melanoma. Aging (Albany NY). 15:2667–2688. 2023.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Liu J, Shi Y and Zhang Y: Multi-omics
identification of an immunogenic cell death-related signature for
clear cell renal cell carcinoma in the context of 3P medicine and
based on a 101-combination machine learning computational
framework. EPMA J. 14:275–305. 2023. View Article : Google Scholar : PubMed/NCBI
|
41
|
Liu X, Yao S, Feng Y, Li P, Li Y and Xia
S: Construction of a novel damage-associated
molecular-pattern-related signature to assess lung adenocarcinoma's
prognosis and immune landscape. Biomolecules. 14:1082024.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Cai T, Yao W, Qiu L, Zhu AR, Shi Z and Du
Y: PLEK2 promotes the proliferation and migration of non-small cell
lung cancer cells in a BRD4-dependent manner. Mol Biol Rep.
49:3693–3704. 2022. View Article : Google Scholar : PubMed/NCBI
|
43
|
Shen H, He M, Lin R, Zhan M, Xu S, Huang
X, Xu C, Chen W, Yao Y, Mohan M and Wang J: PLEK2 promotes
gallbladder cancer invasion and metastasis through EGFR/CCL2
pathway. J Exp Clin Cancer Res. 38:2472019. View Article : Google Scholar : PubMed/NCBI
|
44
|
Mao D, Zhou Z, Chen H, Liu X, Li D, Chen
X, He Y, Liu M and Zhang C: Pleckstrin-2 promotes tumour immune
escape from NK cells by activating the MT1-MMP-MICA signalling axis
in gastric cancer. Cancer Lett. 572:2163512023. View Article : Google Scholar : PubMed/NCBI
|
45
|
Du B and Waxman DJ: Medium dose
intermittent cyclophosphamide induces immunogenic cell death and
cancer cell autonomous type I interferon production in glioma
models. Cancer Lett. 470:170–180. 2020. View Article : Google Scholar : PubMed/NCBI
|
46
|
Omori R, Eguchi J, Hiroishi K, Ishii S,
Hiraide A, Sakaki M, Doi H, Kajiwara A, Ito T, Kogo M and Imawari
M: Effects of interferon-alpha-transduced tumor cell vaccines and
blockade of programmed cell death-1 on the growth of established
tumors. Cancer Gene Ther. 19:637–643. 2012. View Article : Google Scholar : PubMed/NCBI
|
47
|
Paik S, Tang G, Shak S, Kim C, Baker J,
Kim W, Cronin M, Baehner FL, Watson D, Bryant J, et al: Gene
expression and benefit of chemotherapy in women with node-negative,
estrogen receptor-positive breast cancer. J Clin Oncol.
24:3726–3734. 2006. View Article : Google Scholar : PubMed/NCBI
|