Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
June-2025 Volume 29 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2025 Volume 29 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Mitochondrial function changes in T cell subsets during radiotherapy for patients with nasopharyngeal carcinoma

  • Authors:
    • Quan Wang
    • Xiangzhi Yin
    • Hongbo Liu
    • Qing Wang
    • Lu Zhang
    • Yifan Wang
    • Haijun Lu
  • View Affiliations / Copyright

    Affiliations: Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266035, P.R. China, Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266035, P.R. China, Department of Clinical Laboratory, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266035, P.R. China, Department of Radiation Oncology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China, Department of Emergency, Laizhou People's Hospital, Yantai, Shandong 261400, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 273
    |
    Published online on: April 7, 2025
       https://doi.org/10.3892/ol.2025.15019
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Mitochondrial dysfunction‑mediated T cell exhaustion is associated with the efficacy of tumor therapy; however, the effect of radiotherapy (RT) on the mitochondrial function of peripheral blood immune cells remains still unclear. Therefore, the current study aimed to determine mitochondrial function indicators in immune cells, in particular mitochondrial mass (MM) and mitochondrial membrane potential (MMP), to assess the dynamic changes of immune status in patients with nasopharyngeal carcinoma (NPC) during RT. Peripheral venous blood was collected from patients with locally advanced NPC at day 1 pre‑RT, at the 10th fraction of RT and within 2 days after RT. Based on a novel immunofluorescence technique, flow cytometry was used to assess the proportion of lymphocytes and their subsets in peripheral blood and the mitochondrial indexes, MM and low MMP (MMPlow). Univariate and multivariate logistic regression analyses were performed to evaluate the clinical factors associated with the efficacy of RT. A total of 27 patients were enrolled. After RT, lymphocyte count (P<0.05) and the proportion of CD4+ T cells (P<0.05) demonstrated a downward trend. In addition, the proportion of CD4+ memory‑effector T (Tem; P<0.05) cells and CD8+ Tem cells (P=0.005) significantly increased during RT. No significant changes were demonstrated for MM in CD4+ effector T (Te) cells, whilst MMPlow was significantly reduced (P=0.047). However, the mitochondrial function of CD8+ T cells did not significantly change. Multivariate logistic regression analysis revealed that lymphocyte count [odds ratio (OR), 47.317; 95% confidence interval (CI), 1.240‑1806.065] and MMPlow in CD4+ Te cells (OR, 0.889; 95% CI, 0.792‑0.997) were independent factors that could affect clinical efficacy. Receiver operating characteristic curve analysis demonstrated that the area under the curve values for MMPlow in CD4+ T cells, lymphocyte count and their combination were 0.72 (P=0.13), 0.69 (P=0.19) and 0.89 (P=0.0073), respectively. These findings suggest that RT could inhibit immune cells in peripheral blood. However, this treatment approach could activate the memory cell subsets of immune cells and enhance the MMP of effector CD4+ T cells. Therefore, the evaluation of mitochondrial function in lymphocytes could be used as a predictor of RT efficacy in patients with locally advanced NPC.
View Figures

Figure 1

Figure 2

View References

1 

Chang ET, Ye W, Zeng YX and Adami HO: The evolving epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev. 30:1035–1047. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Chen YP, Chan ATC, Le QT, Blanchard P, Sun Y and Ma J: Nasopharyngeal carcinoma. Lancet. 394:64–80. 2019. View Article : Google Scholar : PubMed/NCBI

3 

Caudell JJ, Gillison ML, Maghami E, Spencer S, Pfister DG, Adkins D, Birkeland AC, Brizel DM, Busse PM, Cmelak AJ, et al: NCCN Guidelines® insights: Head and neck cancers, version 1.2022. J Natl Compr Canc Netw. 20:224–234. 2022. View Article : Google Scholar : PubMed/NCBI

4 

Lechner M, Schartinger VH, Steele CD, Nei WL, Ooft ML, Schreiber LM, Pipinikas CP, Chung GT, Chan YY, Wu F, et al: Somatostatin receptor 2 expression in nasopharyngeal cancer is induced by Epstein Barr virus infection: Impact on prognosis, imaging and therapy. Nat Commun. 12:1172021. View Article : Google Scholar : PubMed/NCBI

5 

Zhang Y, Rumgay H, Li M, Cao S and Chen W: Nasopharyngeal cancer incidence and mortality in 185 countries in 2020 and the projected burden in 2040: Population-based global epidemiological profiling. JMIR Public Health Surveill. 9:e499682023. View Article : Google Scholar : PubMed/NCBI

6 

Ma J, Sun Y, Liu X, Yang KY, Zhang N, Jin F, Zou G and Chen YP: PD-1 blockade with sintilimab plus induction chemotherapy and concurrent chemoradiotherapy (IC-CCRT) versus IC-CCRT in locoregionally-advanced nasopharyngeal carcinoma (LANPC): A multicenter, phase 3, randomized controlled trial (CONTINUUM). Head And Neck. 41 (Suppl 17):LBA60022023.

7 

Schwartz JL, Mustafi R, Beckett MA and Weichselbaum RR: DNA double-strand break rejoining rates, inherent radiation sensitivity and human tumour response to radiotherapy. Br J Cancer. 74:37–42. 1996. View Article : Google Scholar : PubMed/NCBI

8 

Heylmann D, Rödel F, Kindler T and Kaina B: Radiation sensitivity of human and murine peripheral blood lymphocytes, stem and progenitor cells. Biochim Biophys Acta. 1846:121–129. 2014.PubMed/NCBI

9 

Trowell OA: The sensitivity of lymphocytes to ionising radiation. J Pathol Bacteriol. 64:687–704. 1952. View Article : Google Scholar : PubMed/NCBI

10 

Marciscano AE, Ghasemzadeh A, Nirschl TR, Theodros D, Kochel CM, Francica BJ, Muroyama Y, Anders RA, Sharabi AB, Velarde E, et al: Elective nodal irradiation attenuates the combinatorial efficacy of stereotactic radiation therapy and immunotherapy. Clin Cancer Res. 24:5058–5071. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Karapetyan L, Iheagwara UK, Olson AC, Chmura SJ, Skinner HK and Luke JJ: Radiation dose, schedule, and novel systemic targets for radio-immunotherapy combinations. J Natl Cancer Inst. 115:1278–1293. 2023. View Article : Google Scholar : PubMed/NCBI

12 

Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A, Li XD, Mauceri H, Beckett M, Darga T, et al: STING-Dependent cytosolic DNA sensing promotes radiation-induced type i interferon-dependent antitumor immunity in immunogenic tumors. Immunity. 41:843–852. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Sen T, Rodriguez BL, Chen L, Corte CMD, Morikawa N, Fujimoto J, Cristea S, Nguyen T, Diao L, Li L, et al: Targeting DNA damage response promotes antitumor immunity through STING-mediated T-cell activation in small cell lung cancer. Cancer Discov. 9:646–661. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Du SS, Chen GW, Yang P, Chen YX, Hu Y, Zhao QQ, Zhang Y, Liu R, Zheng DX, Zhou J, et al: Radiation therapy promotes hepatocellular carcinoma immune cloaking via PD-L1 upregulation induced by cGAS-STING activation. Int J Radiat Oncol Biol Phys. 112:1243–1255. 2022. View Article : Google Scholar : PubMed/NCBI

15 

Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK, Camphausen K, Luiten RM, de Ru AH, Neijssen J, et al: Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med. 203:1259–1271. 2006. View Article : Google Scholar : PubMed/NCBI

16 

Parikh F, Duluc D, Imai N, Clark A, Misiukiewicz K, Bonomi M, Gupta V, Patsias A, Parides M, Demicco EG, et al: Chemoradiotherapy-induced upregulation of PD-1 antagonizes immunity to HPV-related oropharyngeal cancer. Cancer Res. 74:7205–7216. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Vanpouille-Box C, Diamond JM, Pilones KA, Zavadil J, Babb JS, Formenti SC, Barcellos-Hoff MH and Demaria S: TGFβ is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res. 75:2232–2242. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Filatenkov A, Baker J, Mueller AM, Kenkel J, Ahn GO, Dutt S, Zhang N, Kohrt H, Jensen K, Dejbakhsh-Jones S, et al: Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions. Clin Cancer Res. 21:3727–3739. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Galluzzi L, Humeau J, Buqué A, Zitvogel L and Kroemer G: Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat Rev Clin Oncol. 17:725–741. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Zhang L, Zhang W, Li Z, Lin S, Zheng T, Hao B, Hou Y, Zhang Y, Wang K, Qin C, et al: Mitochondria dysfunction in CD8+ T cells as an important contributing factor for cancer development and a potential target for cancer treatment: A review. J Exp Clin Cancer Res. 41:2272022. View Article : Google Scholar : PubMed/NCBI

21 

Krishna S, Lowery FJ, Copeland AR, Bahadiroglu E, Mukherjee R, Jia L, Anibal JT, Sachs A, Adebola SO, Gurusamy D, et al: Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science. 370:1328–1334. 2020. View Article : Google Scholar : PubMed/NCBI

22 

Kagamu H, Kitano S, Yamaguchi O, Yoshimura K, Horimoto K, Kitazawa M, Fukui K, Shiono A, Mouri A, Nishihara F, et al: CD4(+) T-cell immunity in the peripheral blood correlates with response to anti-pd-1 therapy. Cancer Immunol Res. 8:334–344. 2020. View Article : Google Scholar : PubMed/NCBI

23 

Scharping NE, Menk AV, Moreci RS, Whetstone RD, Dadey RE, Watkins SC, Ferris RL and Delgoffe GM: The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity. 45:374–388. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Wu H, Zhao X, Hochrein SM, Eckstein M, Gubert GF, Knöpper K, Mansilla AM, Öner A, Doucet-Ladevèze R, Schmitz W, et al: Mitochondrial dysfunction promotes the transition of precursor to terminally exhausted T cells through HIF-1α-mediated glycolytic reprogramming. Nat Commun. 14:68582023. View Article : Google Scholar : PubMed/NCBI

25 

Zhong X, Wu H, Ouyang C, Zhang W, Shi Y, Wang YC, Ann DK, Gwack Y, Shang W and Sun Z: Ncoa2 Promotes CD8+ T cell-mediated antitumor immunity by stimulating T-cell activation via upregulation of PGC-1α critical for mitochondrial function. Cancer Immunol Res. 11:1414–1431. 2023. View Article : Google Scholar : PubMed/NCBI

26 

Dyikanov D, Zaitsev A, Vasileva T, Wang I, Sokolov AA, Bolshakov ES, Frank A, Turova P, Golubeva O, Gantseva A, et al: Comprehensive peripheral blood immunoprofiling reveals five immunotypes with immunotherapy response characteristics in patients with cancer. Cancer Cell. 42:759–779.e12. 2024. View Article : Google Scholar : PubMed/NCBI

27 

Menk AV, Scharping NE, Rivadeneira DB, Calderon MJ, Watson MJ, Dunstane D, Watkins SC and Delgoffe GM: 4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses. J Exp Med. 215:1091–1100. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Fischer M, Bantug GR, Dimeloe S, Gubser PM, Burgener AV, Grählert J, Balmer ML, Develioglu L, Steiner R, Unterstab G, et al: Early effector maturation of naïve human CD8(+) T cells requires mitochondrial biogenesis. Eur J Immunol. 48:1632–1643. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Sukumar M, Liu J, Mehta GU, Patel SJ, Roychoudhuri R, Crompton JG, Klebanoff CA, Ji Y, Li P, Yu Z, et al: Mitochondrial membrane potential identifies cells with enhanced stemness for cellular therapy. Cell Metab. 23:63–76. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, Meyer L, Gress DM, Byrd DR and Winchester DP: The eighth edition AJCC cancer staging manual: Continuing to build a bridge from a population-based to a more ‘personalized’ approach to cancer staging. CA Cancer J Clin. 67:93–99. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Lee AW, Ng WT, Pan JJ, Poh SS, Ahn YC, AlHussain H, Corry J, Grau C, Grégoire V, Harrington KJ, et al: International guideline for the delineation of the clinical target volumes (CTV) for nasopharyngeal carcinoma. Radiother Oncol. 126:25–36. 2018. View Article : Google Scholar : PubMed/NCBI

32 

International Commission on Radiation Units and Measurements, . Prescribing, recording, and reporting photon beam therapy. ICRU Report 50. ICRU; Bethesda, MD: 1993

33 

International Commission on Radiation Units and Measurements, . Prescribing, recording, and reporting photon beam therapy (Supplement to ICRU Report 50). ICRU Report 62. ICRU; Bethesda, MD: 1999

34 

Schwartz LH, Litière S, de Vries E, Ford R, Gwyther S, Mandrekar S, Shankar L, Bogaerts J, Chen A, Dancey J, et al: RECIST 1.1-Update and clarification: From the RECIST committee. Eur J Cancer. 62:132–137. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Maecker HT, McCoy JP and Nussenblatt R: Standardizing immunophenotyping for the human immunology project. Nat Rev Immunol. 12:191–200. 2012. View Article : Google Scholar : PubMed/NCBI

36 

Wang B, Chen Z, Huang Y, Ding J, Lin Y, Wang M and Li X: Mitochondrial mass of circulating NK cells as a novel biomarker in severe SARS-CoV-2 infection. Int Immunopharmacol. 124:1108392023. View Article : Google Scholar : PubMed/NCBI

37 

Liao R, Wu Y, Qin L, Jiang Z, Gou S, Zhou L, Hong Q, Li Y, Shi J, Yao Y, et al: BCL11B and the NuRD complex cooperatively guard T-cell fate and inhibit OPA1-mediated mitochondrial fusion in T cells. EMBO J. 42:e1134482023. View Article : Google Scholar : PubMed/NCBI

38 

Scharping NE, Rivadeneira DB, Menk AV, Vignali PDA, Ford BR, Rittenhouse NL, Peralta R, Wang Y, Wang Y, DePeaux K, et al: Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat Immunol. 22:205–215. 2021. View Article : Google Scholar : PubMed/NCBI

39 

Dong Y, Li X, Zhang L, Zhu Q, Chen C, Bao J and Chen Y: CD4(+) T cell exhaustion revealed by high PD-1 and LAG-3 expression and the loss of helper T cell function in chronic hepatitis B. BMC Immunol. 20:272019. View Article : Google Scholar : PubMed/NCBI

40 

Pandit M, Kil YS, Ahn JH, Pokhrel RH, Gu Y, Mishra S, Han Y, Ouh YT, Kang B, Jeong MS, et al: Methionine consumption by cancer cells drives a progressive upregulation of PD-1 expression in CD4 T cells. Nat Commun. 14:25932023. View Article : Google Scholar : PubMed/NCBI

41 

Liu X, Zhang Y, Yang KY, Zhang N, Jin F, Zou GR, Zhu XD, Xie FY, Liang XY, Li WF, et al: Induction-concurrent chemoradiotherapy with or without sintilimab in patients with locoregionally advanced nasopharyngeal carcinoma in China (CONTINUUM): A multicentre, open-label, parallel-group, randomised, controlled, phase 3 trial. Lancet. 403:2720–2731. 2024. View Article : Google Scholar : PubMed/NCBI

42 

Liu H, Zhao Q, Tan L, Wu X, Huang R, Zuo Y, Chen L, Yang J, Zhang ZX, Ruan W, et al: Neutralizing IL-8 potentiates immune checkpoint blockade efficacy for glioma. Cancer Cell. 41:693–710.e8. 2023. View Article : Google Scholar : PubMed/NCBI

43 

You R, Hua YJ, Liu YP, Yang Q, Zhang YN, Li JB, Li CF, Zou X, Yu T, Cao JY, et al: Concurrent chemoradiotherapy with or without anti-EGFR-targeted treatment for stage II–IVb nasopharyngeal carcinoma: Retrospective analysis with a large cohort and long follow-up. Theranostics. 7:2314–2324. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Cao C, Fang Y, Jiang F, Jin Q, Jin T, Huang S, Hu Q, Chen Y, Piao Y, Hua Y, et al: Concurrent nimotuzumab and intensity-modulated radiotherapy for elderly patients with locally advanced nasopharyngeal carcinoma. Cancer Sci. 115:2729–2737. 2024. View Article : Google Scholar : PubMed/NCBI

45 

Teng F, Cui G, Qian L and Zhao L: Changes of T Lymphocyte subsets in peripheral blood of patients with intermediate and advanced cervical cancer before and after nimotuzumab combined with chemoradiotherapy. Int Arch Allergy Immunol. 184:85–97. 2023. View Article : Google Scholar : PubMed/NCBI

46 

Liu Y, He S, Wang XL, Peng W, Chen QY, Chi DM, Chen JR, Han BW, Lin GW, Li YQ, et al: Tumour heterogeneity and intercellular networks of nasopharyngeal carcinoma at single cell resolution. Nat Commun. 12:7412021. View Article : Google Scholar : PubMed/NCBI

47 

Lv J, Wei Y, Yin JH, Chen YP, Zhou GQ, Wei C, Liang XY, Zhang Y, Zhang CJ, He SW, et al: The tumor immune microenvironment of nasopharyngeal carcinoma after gemcitabine plus cisplatin treatment. Nat Med. 29:1424–1436. 2023. View Article : Google Scholar : PubMed/NCBI

48 

Xie X, Gong S, Jin H, Yang P, Xu T, Cai Y, Guo C, Zhang R, Lou F, Yang W, et al: Radiation-induced lymphopenia correlates with survival in nasopharyngeal carcinoma: Impact of treatment modality and the baseline lymphocyte count. Radiat Oncol. 15:652020. View Article : Google Scholar : PubMed/NCBI

49 

Stratton JA, Byfield PE, Byfield JE, Small RC, Benfield J and Pilch Y: A comparison of the acute effects of radiation therapy, including or excluding the thymus, on the lymphocyte subpopulations of cancer patients. J Clin Invest. 56:88–97. 1975. View Article : Google Scholar : PubMed/NCBI

50 

Wang Q, Li S, Qiao S, Zheng Z, Duan X and Zhu X: Changes in T lymphocyte subsets in different tumors before and after radiotherapy: A meta-analysis. Front Immunol. 12:6486522021. View Article : Google Scholar : PubMed/NCBI

51 

Mahnke YD, Brodie TM, Sallusto F, Roederer M and Lugli E: The who's who of T-cell differentiation: Human memory T-cell subsets. Eur J Immunol. 43:2797–2809. 2013. View Article : Google Scholar : PubMed/NCBI

52 

Gicobi JK, Mao Z, DeFranco G, Hirdler JB, Li Y, Vianzon VV, Dellacecca ER, Hsu MA, Barham W, Yan Y, et al: Salvage therapy expands highly cytotoxic and metabolically fit resilient CD8(+) T cells via ME1 up-regulation. Sci Adv. 9:eadi24142023. View Article : Google Scholar : PubMed/NCBI

53 

Ma L, Han Q, Cheng L, Song H, Qiang R, Xu P, Gao F, Zhu L and Xu J: Altered mitochondrial mass and low mitochondrial membrane potential of immune cells in patients with HBV infection and correlation with liver inflammation. Front Immunol. 15:14776462024. View Article : Google Scholar : PubMed/NCBI

54 

Andrews LP, Butler SC, Cui J, Cillo AR, Cardello C, Liu C, Brunazzi EA, Baessler A, Xie B, Kunning SR, et al: LAG-3 and PD-1 synergize on CD8(+) T cells to drive T cell exhaustion and hinder autocrine IFN-γ-dependent anti-tumor immunity. Cell. 187:4355–4372.e22. 2024. View Article : Google Scholar : PubMed/NCBI

55 

Ogando J, Sáez ME, Santos J, Nuevo-Tapioles C, Gut M, Esteve-Codina A, Heath S, González-Pérez A, Cuezva JM, Lacalle RA and Mañes S: PD-1 signaling affects cristae morphology and leads to mitochondrial dysfunction in human CD8(+) T lymphocytes. J Immunother Cancer. 7:1512019. View Article : Google Scholar : PubMed/NCBI

56 

Yang X, Li Q and Zeng T: Peripheral CD4(+) T cells correlate with response and survival in patients with advanced non-small cell lung cancer receiving chemo-immunotherapy. Front Immunol. 15:13645072024. View Article : Google Scholar : PubMed/NCBI

57 

Zhu M and Li X, Cheng X, Yi X, Ye F and Li X, Hu Z, Zhang L, Nie J and Li X: Association of the tissue infiltrated and peripheral blood immune cell subsets with response to radiotherapy for rectal cancer. BMC Med Genomics. 15 (Suppl 2):S1072022. View Article : Google Scholar : PubMed/NCBI

58 

Kresovich JK, O'Brien KM, Xu Z, Weinberg CR, Sandler DP and Taylor JA: Circulating leukocyte subsets before and after a breast cancer diagnosis and therapy. JAMA Netw Open. 7:e23561132024. View Article : Google Scholar : PubMed/NCBI

59 

Wang Y, Radfar S and Khong HT: Activated CD4+ T cells enhance radiation effect through the cooperation of interferon-gamma and TNF-alpha. BMC Cancer. 10:602010. View Article : Google Scholar : PubMed/NCBI

60 

Rackov G, Zaniani PT, Del Pino S, Shokri R, Monserrat J, Alvarez-Mon M, Martinez-A C and Balomenos D: Mitochondrial reactive oxygen is critical for IL-12/IL-18-induced IFN-γ production by CD4(+) T cells and is regulated by Fas/FasL signaling. Cell Death Dis. 13:5312022. View Article : Google Scholar : PubMed/NCBI

61 

Herrera FG, Ronet C, de Olza MO, Barras D, Crespo I, Andreatta M, Corria-Osorio J, Spill A, Benedetti F, Genolet R, et al: Low-Dose radiotherapy reverses tumor immune desertification and resistance to immunotherapy. Cancer Discov. 12:108–133. 2022. View Article : Google Scholar : PubMed/NCBI

62 

Fraietta JA, Lacey SF, Orlando EJ, Pruteanu-Malinici I, Gohil M, Lundh S, Boesteanu AC, Wang Y, O'Connor RS, Hwang WT, et al: Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med. 24:563–571. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang Q, Yin X, Liu H, Wang Q, Zhang L, Wang Y and Lu H: Mitochondrial function changes in T cell subsets during radiotherapy for patients with nasopharyngeal carcinoma. Oncol Lett 29: 273, 2025.
APA
Wang, Q., Yin, X., Liu, H., Wang, Q., Zhang, L., Wang, Y., & Lu, H. (2025). Mitochondrial function changes in T cell subsets during radiotherapy for patients with nasopharyngeal carcinoma. Oncology Letters, 29, 273. https://doi.org/10.3892/ol.2025.15019
MLA
Wang, Q., Yin, X., Liu, H., Wang, Q., Zhang, L., Wang, Y., Lu, H."Mitochondrial function changes in T cell subsets during radiotherapy for patients with nasopharyngeal carcinoma". Oncology Letters 29.6 (2025): 273.
Chicago
Wang, Q., Yin, X., Liu, H., Wang, Q., Zhang, L., Wang, Y., Lu, H."Mitochondrial function changes in T cell subsets during radiotherapy for patients with nasopharyngeal carcinoma". Oncology Letters 29, no. 6 (2025): 273. https://doi.org/10.3892/ol.2025.15019
Copy and paste a formatted citation
x
Spandidos Publications style
Wang Q, Yin X, Liu H, Wang Q, Zhang L, Wang Y and Lu H: Mitochondrial function changes in T cell subsets during radiotherapy for patients with nasopharyngeal carcinoma. Oncol Lett 29: 273, 2025.
APA
Wang, Q., Yin, X., Liu, H., Wang, Q., Zhang, L., Wang, Y., & Lu, H. (2025). Mitochondrial function changes in T cell subsets during radiotherapy for patients with nasopharyngeal carcinoma. Oncology Letters, 29, 273. https://doi.org/10.3892/ol.2025.15019
MLA
Wang, Q., Yin, X., Liu, H., Wang, Q., Zhang, L., Wang, Y., Lu, H."Mitochondrial function changes in T cell subsets during radiotherapy for patients with nasopharyngeal carcinoma". Oncology Letters 29.6 (2025): 273.
Chicago
Wang, Q., Yin, X., Liu, H., Wang, Q., Zhang, L., Wang, Y., Lu, H."Mitochondrial function changes in T cell subsets during radiotherapy for patients with nasopharyngeal carcinoma". Oncology Letters 29, no. 6 (2025): 273. https://doi.org/10.3892/ol.2025.15019
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team