
Evolving role of deubiquitinating enzymes in oral cancer (Review)
- Authors:
- Zidi Wang
- Siyuan Cheng
- Jianhui Wei
- Jiandong Hu
- Fenge Li
- Wenhua Yang
-
Affiliations: Department of Dentistry, Tianjin Beichen Hospital, Tianjin 300400, P.R. China, Department of Oncology, Tianjin Beichen Hospital, Tianjin 300400, P.R. China, Core Laboratory, Tianjin Beichen Hospital, Tianjin 300400, P.R. China - Published online on: May 19, 2025 https://doi.org/10.3892/ol.2025.15100
- Article Number: 354
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Peres MA, Macpherson LMD, Weyant RJ, Daly B, Venturelli R, Mathur MR, Listl S, Celeste RK, Guarnizo-Herreño CC, Kearns C, et al: Oral diseases: A global public health challenge. Lancet. 394:249–260. 2019. View Article : Google Scholar : PubMed/NCBI | |
Inchingolo F, Santacroce L, Ballini A, Topi S, Dipalma G, Haxhirexha K, Bottalico L and Charitos I: Oral cancer: A historical review. Int J Environ Res Public Health. 17:31682020. View Article : Google Scholar : PubMed/NCBI | |
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, Znaor A and Bray F: Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 144:1941–1953. 2019. View Article : Google Scholar : PubMed/NCBI | |
Han B, Zheng R, Zeng H, Wang S, Sun K, Chen R, Li L, Wei W and He J: Cancer incidence and mortality in China, 2022. J Natl Cancer Cent. 4:47–53. 2024. View Article : Google Scholar : PubMed/NCBI | |
Irfan M, Delgado RZR and Frias-Lopez J: The oral microbiome and cancer. Front Immunol. 11:5910882020. View Article : Google Scholar : PubMed/NCBI | |
Mody MD, Rocco JW, Yom SS, Haddad RI and Saba NF: Head and neck cancer. Lancet. 398:2289–2299. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Guo W, Wen D, Hou G, Zhou A and Wu W: Deubiquitination and stabilization of programmed cell death ligand 1 by ubiquitin-specific peptidase 9, X-linked in oral squamous cell carcinoma. Cancer Med. 7:4004–4011. 2018. View Article : Google Scholar : PubMed/NCBI | |
Apoorva CC, Ananthaneni A, Kumar AJ, Guduru VS and Puneeth HK: Evaluation of USP22 and Ki-67 expression in oral squamous cell carcinoma: An immunohistochemical study. J Oral Maxillofac Pathol. 27:679–684. 2023. View Article : Google Scholar : PubMed/NCBI | |
Barsouk A, Aluru JS, Rawla P, Saginala K and Barsouk A: Epidemiology, risk factors, and prevention of head and neck squamous cell carcinoma. Med Sci (Basel). 11:422023.PubMed/NCBI | |
Reyes M, Flores T, Betancur D, Pena-Oyarzun D and Torres VA: Wnt/β-catenin signaling in oral carcinogenesis. Int J Mol Sci. 21:46822020. View Article : Google Scholar : PubMed/NCBI | |
Tarle M and Luksic I: Pathogenesis and therapy of oral carcinogenesis. Int J Mol Sci. 25:63432024. View Article : Google Scholar : PubMed/NCBI | |
Tan Y, Wang Z, Xu M, Li B, Huang Z, Qin S, Nice EC, Tang J and Huang C: Oral squamous cell carcinomas: State of the field and emerging directions. Int J Oral Sci. 15:442023. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Jiang C, Li N, Wang F, Xu Y, Shen Z, Yang L, Li Z and He C: The circEPSTI1/mir-942-5p/LTBP2 axis regulates the progression of OSCC in the background of OSF via EMT and the PI3K/Akt/mTOR pathway. Cell Death Dis. 11:6822020. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Dong Y, Zhao M, Ding L, Yang X, Jing Y, Song Y, Chen S, Hu Q and Ni Y: ITGB2-mediated metabolic switch in CAFs promotes OSCC proliferation by oxidation of NADH in mitochondrial oxidative phosphorylation system. Theranostics. 10:12044–12059. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Rui X, Yi C, Chen Y, Chen R, Liang Y, Wang Y, Yao W, Xu X and Huang Z: Silencing LCN2 suppresses oral squamous cell carcinoma progression by reducing EGFR signal activation and recycling. J Exp Clin Cancer Res. 42:602023. View Article : Google Scholar : PubMed/NCBI | |
Pena-Oyarzun D, Flores T, Torres VA, Quest AFG, Lobos-González L, Kretschmar C, Contreras P, Maturana-Ramírez A, Criollo A and Reyes M: Inhibition of PORCN blocks wnt signaling to attenuate progression of oral carcinogenesis. Clin Cancer Res. 30:209–223. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Chen Y and Liu W: Chaperonin containing TCP1 subunit 6A may activate Notch and Wnt pathways to facilitate the malignant behaviors and cancer stemness in oral squamous cell carcinoma. Cancer Biol Ther. 25:22871222024. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Wang X, Sun J, Yang J, Wu D, Wu F and Zhou H: Down-regulation of DNA key protein-FEN1 inhibits OSCC growth by affecting immunosuppressive phenotypes via IFN-gamma/JAK/STAT-1. Int J Oral Sci. 15:172023. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Chen T, Yang X, Cheng H, Späth SS, Clavijo PE, Chen J, Silvin C, Issaeva N, Su X, et al: Attenuated TRAF3 fosters activation of alternative NF-ĸB and reduced expression of antiviral interferon, TP53, and RB to promote HPV-positive head and neck cancers. Cancer Res. 78:4613–4626. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Sun Y, Yang J, Wu D, Yu S, Liu J, Hu T, Luo J and Zhou H: DNMT1-targeting remodeling global DNA hypomethylation for enhanced tumor suppression and circumvented toxicity in oral squamous cell carcinoma. Mol Cancer. 23:1042024. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Li R, Wu L, Chen Y, Liu S, Zhao H, Wang Y, Wang L and Shao Z: Histone methyltransferase KMT2D cooperates with MEF2A to promote the stem-like properties of oral squamous cell carcinoma. Cell Biosci. 12:492022. View Article : Google Scholar : PubMed/NCBI | |
Oh SY, Kim J, Lee KY, Lee HJ, Kwon TG, Kim JW, Lee ST, Kim DG, Choi SY and Hong SH: Chromatin remodeling-driven autophagy activation induces cisplatin resistance in oral squamous cell carcinoma. Cell Death Dis. 15:5892024. View Article : Google Scholar : PubMed/NCBI | |
Hu S, Lu H, Xie W, Wang D, Shan Z, Xing X, Wang XM, Fang J, Dong W, Dai W, et al: TDO2+ myofibroblasts mediate immune suppression in malignant transformation of squamous cell carcinoma. J Clin Invest. 132:e1576492022. View Article : Google Scholar : PubMed/NCBI | |
Fang K, Sun M, Leng Z, Chu Y, Zhao Z, Li Z, Zhang Y, Xu A, Zhang Z, Zhang L, et al: Targeting IGF1R signaling enhances the sensitivity of cisplatin by inhibiting proline and arginine metabolism in oesophageal squamous cell carcinoma under hypoxia. J Exp Clin Cancer Res. 42:732023. View Article : Google Scholar : PubMed/NCBI | |
Lyu WN, Lin MC, Shen CY, Chen LH, Lee YH, Chen SK, Lai LC, Chuang EY, Lou PJ and Tsai MH: An oral microbial biomarker for early detection of recurrence of oral squamous cell carcinoma. ACS Infect Dis. 9:1783–1792. 2023. View Article : Google Scholar : PubMed/NCBI | |
Bagan J, Sarrion G and Jimenez Y: Oral cancer: Clinical features. Oral Oncol. 46:414–417. 2010. View Article : Google Scholar : PubMed/NCBI | |
Harada H, Kikuchi M, Asato R, Hamaguchi K, Tamaki H, Mizuta M, Hori R, Kojima T, Honda K, Tsujimura T, et al: Characteristics of oral squamous cell carcinoma focusing on cases unaffected by smoking and drinking: A multicenter retrospective study. Head Neck. 45:1812–1822. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jerjes W, Upile T, Petrie A, Riskalla A, Hamdoon Z, Vourvachis M, Karavidas K, Jay A, Sandison A, Thomas GJ, et al: Clinicopathological parameters, recurrence, locoregional and distant metastasis in 115 T1-T2 oral squamous cell carcinoma patients. Head Neck Oncol. 2:92010. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez-Moles MA, Warnakulasuriya S, Lopez-Ansio M and Ramos-Garcia P: Hallmarks of cancer applied to oral and oropharyngeal carcinogenesis: A scoping review of the evidence gaps found in published systematic reviews. Cancers (Basel). 14:38342022. View Article : Google Scholar : PubMed/NCBI | |
Kleszcz R, Frackowiak M, Dorna D and Paluszczak J: Combinations of PRI-724 Wnt/beta-catenin pathway inhibitor with vismodegib, erlotinib, or HS-173 synergistically inhibit head and neck squamous cancer cells. Int J Mol Sci. 24:104482023. View Article : Google Scholar : PubMed/NCBI | |
Tathineni P, Joshi N and Jelinek MJ: Current state and future directions of EGFR-Directed therapy in head and neck cancer. Curr Treat Options Oncol. 24:680–692. 2023. View Article : Google Scholar : PubMed/NCBI | |
Swatek KN and Komander D: Ubiquitin modifications. Cell Res. 26:399–422. 2016. View Article : Google Scholar : PubMed/NCBI | |
Harrigan JA, Jacq X, Martin NM and Jackson SP: Deubiquitylating enzymes and drug discovery: Emerging opportunities. Nat Rev Drug Discov. 17:57–78. 2018. View Article : Google Scholar : PubMed/NCBI | |
Song L and Luo ZQ: Post-translational regulation of ubiquitin signaling. J Cell Biol. 218:1776–1786. 2019. View Article : Google Scholar : PubMed/NCBI | |
van Wijk SJ, Fulda S, Dikic I and Heilemann M: Visualizing ubiquitination in mammalian cells. EMBO Rep. 20:e465202019. View Article : Google Scholar : PubMed/NCBI | |
Yau RG, Doerner K, Castellanos ER, Haakonsen DL, Werner A, Wang N, Yang XW, Martinez-Martin N, Matsumoto ML, Dixit VM and Rape M: Assembly and function of heterotypic ubiquitin chains in cell-cycle and protein quality control. Cell. 171:918–933.e20. 2017. View Article : Google Scholar : PubMed/NCBI | |
Loix M, Zelcer N, Bogie JFJ and Hendriks JJA: The ubiquitous role of ubiquitination in lipid metabolism. Trends Cell Biol. 34:416–429. 2024. View Article : Google Scholar : PubMed/NCBI | |
De Cesare V, Carbajo Lopez D, Mabbitt PD, Fletcher AJ, Soetens M, Antico O, Wood NT and Virdee S: Deubiquitinating enzyme amino acid profiling reveals a class of ubiquitin esterases. Proc Natl Acad Sci USA. 118:e20069471182021. View Article : Google Scholar : PubMed/NCBI | |
Abdul Rehman SA, Kristariyanto YA, Choi SY, Nkosi PJ, Weidlich S, Labib K, Hofmann K and Kulathu Y: MINDY-1 Is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes. Mol Cell. 63:146–155. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kwasna D, Abdul Rehman SA, Natarajan J, Matthews S, Madden R, De Cesare V, Weidlich S, Virdee S, Ahel I, Gibbs-Seymour I and Kulathu Y: Discovery and characterization of ZUFSP/ZUP1, a distinct deubiquitinase class important for genome stability. Mol Cell. 70:150–164. e62018. View Article : Google Scholar : PubMed/NCBI | |
Tsuchida S and Nakayama T: Ubiquitination and deubiquitination in oral disease. Int J Mol Sci. 22:54882021. View Article : Google Scholar : PubMed/NCBI | |
Trulsson F, Akimov V, Robu M, van Overbeek N, Berrocal DAP, Shah RG, Cox J, Shah GM, Blagoev B and Vertegaal ACO: Deubiquitinating enzymes and the proteasome regulate preferential sets of ubiquitin substrates. Nat Commun. 13:27362022. View Article : Google Scholar : PubMed/NCBI | |
Schwickart M, Huang X, Lill JR, Liu J, Ferrando R, French DM, Maecker H, O'Rourke K, Bazan F, Eastham-Anderson J, et al: Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature. 463:103–107. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Zhao Y, Yang X, Ren X, Huang S, Gong S, Tan X, Li J, He S, Li Y, et al: USP44 regulates irradiation-induced DNA double-strand break repair and suppresses tumorigenesis in nasopharyngeal carcinoma. Nat Commun. 13:5012022. View Article : Google Scholar : PubMed/NCBI | |
Ling S, Shan Q, Zhan Q, Ye Q, Liu P, Xu S, He X, Ma J, Xiang J, Jiang G, et al: USP22 promotes hypoxia-induced hepatocellular carcinoma stemness by a HIF1α/USP22 positive feedback loop upon TP53 inactivation. Gut. 69:1322–1334. 2020. View Article : Google Scholar : PubMed/NCBI | |
Deng L, Meng T, Chen L, Wei W and Wang P: The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 5:112020. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G and Yin G: Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 7:32022. View Article : Google Scholar : PubMed/NCBI | |
Xie J, Huang L, Lu YG and Zheng DL: Roles of the wnt signaling pathway in head and neck squamous cell carcinoma. Front Mol Biosci. 7:5909122020. View Article : Google Scholar : PubMed/NCBI | |
Moon JH, Lee SH and Lim YC: Wnt/β-catenin/Slug pathway contributes to tumor invasion and lymph node metastasis in head and neck squamous cell carcinoma. Clin Exp Metastasis. 38:163–174. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jung H, Kim BG, Han WH, Lee JH, Cho JY, Park WS, Maurice MM, Han JK, Lee MJ, Finley D and Jho EH: Deubiquitination of dishevelled by Usp14 is required for Wnt signaling. Oncogenesis. 2:e642013. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Wu J, Chen Y, Ye D, Lei H, Xu H, Yang L, Wu Y and Gu W: Ubiquitin-specific protease 14 regulates cell proliferation and apoptosis in oral squamous cell carcinoma. Int J Biochem Cell Biol. 79:350–359. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T and Zhang J: NF-kappaB in biology and targeted therapy: New insights and translational implications. Signal Transduct Target Ther. 9:532024. View Article : Google Scholar : PubMed/NCBI | |
Chiu HW, Lee HL, Lee HH, Lu HW, Lin KY, Lin YF and Lin CH: AIM2 promotes irradiation resistance, migration ability and PD-L1 expression through STAT1/NF-ĸB activation in oral squamous cell carcinoma. J Transl Med. 22:132024. View Article : Google Scholar : PubMed/NCBI | |
Weinlich R and Green DR: The two faces of receptor interacting protein kinase-1. Mol Cell. 56:469–480. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hou X, Wang L, Zhang L, Pan X and Zhao W: Ubiquitin-specific protease 4 promotes TNF-α-induced apoptosis by deubiquitination of RIP1 in head and neck squamous cell carcinoma. FEBS Lett. 587:311–316. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Thornton AM, Kinney MC, Ma CA, Spinner JJ, Fuss IJ, Shevach EM and Jain A: The deubiquitinase CYLD targets Smad7 protein to regulate transforming growth factor β (TGF-β) signaling and the development of regulatory T cells. J Biol Chem. 286:40520–40530. 2011. View Article : Google Scholar : PubMed/NCBI | |
Morgan EL, Chen Z and Van Waes C: Regulation of NFĸB signalling by ubiquitination: A potential therapeutic target in head and neck squamous cell carcinoma? Cancers (Basel). 12:28772020. View Article : Google Scholar : PubMed/NCBI | |
Ge WL, Xu JF and Hu J: Regulation of oral squamous cell carcinoma proliferation through crosstalk between SMAD7 and CYLD. Cell Physiol Biochem. 38:1209–1217. 2016. View Article : Google Scholar : PubMed/NCBI | |
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C and He J: TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther. 9:612024. View Article : Google Scholar : PubMed/NCBI | |
Derynck R, Turley SJ and Akhurst RJ: TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol. 18:9–34. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tauriello DVF, Sancho E and Batlle E: Overcoming TGFβ-mediated immune evasion in cancer. Nat Rev Cancer. 22:25–44. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wen B, Liao H, Lin W, Li Z, Ma X, Xu Q and Yu F: The Role of TGF-β during pregnancy and pregnancy complications. Int J Mol Sci. 24:168822023. View Article : Google Scholar : PubMed/NCBI | |
Shinriki S, Jono H, Maeshiro M, Nakamura T, Guo J, Li JD, Ueda M, Yoshida R, Shinohara M, Nakayama H, et al: Loss of CYLD promotes cell invasion via ALK5 stabilization in oral squamous cell carcinoma. J Pathol. 244:367–379. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kanemaru A, Shinriki S, Kai M, Tsurekawa K, Ozeki K, Uchino S, Suenaga N, Yonemaru K, Miyake S, Masuda T, et al: Potential use of EGFR-targeted molecular therapies for tumor suppressor CYLD-negative and poor prognosis oral squamous cell carcinoma with chemoresistance. Cancer Cell Int. 22:3582022. View Article : Google Scholar : PubMed/NCBI | |
Hassin O and Oren M: Drugging p53 in cancer: One protein, many targets. Nat Rev Drug Discov. 22:127–144. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, Gao H, Ji Y, Zhou Q, Du Z, Tian L, Jiang Y, Yao K and Zhou Z: Targeting p53-MDM2 interaction by small-molecule inhibitors: Learning from MDM2 inhibitors in clinical trials. J Hematol Oncol. 15:912022. View Article : Google Scholar : PubMed/NCBI | |
Hong A, Zhang X, Jones D, Veillard AS, Zhang M, Martin A, Lyons JG, Lee CS and Rose B: Relationships between p53 mutation, HPV status and outcome in oropharyngeal squamous cell carcinoma. Radiother Oncol. 118:342–349. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fernandez-Majada V, Welz PS, Ermolaeva MA, Schell M, Adam A, Dietlein F, Komander D, Büttner R, Thomas RK, Schumacher B and Pasparakis M: The tumour suppressor CYLD regulates the p53 DNA damage response. Nat Commun. 7:125082016. View Article : Google Scholar : PubMed/NCBI | |
Muller I, Strozyk E, Schindler S, Beissert S, Oo HZ, Sauter T, Lucarelli P, Raeth S, Hausser A, Al Nakouzi N, et al: Cancer cells employ nuclear caspase-8 to overcome the p53-Dependent G2/M checkpoint through cleavage of USP28. Mol Cell. 77:970–984. e72020. View Article : Google Scholar : PubMed/NCBI | |
Prieto-Garcia C, Tomaskovic I, Shah VJ, Dikic I and Diefenbacher M: USP28: Oncogene or tumor suppressor? A unifying paradigm for squamous cell carcinoma. Cells. 10:26522021. View Article : Google Scholar : PubMed/NCBI | |
Sulkshane P, Pawar SN, Waghole R, Pawar SS, Rajput P, Uthale A, Oak S, Kalkar P, Wani H, Patil R, et al: Elevated USP9X drives early-to-late-stage oral tumorigenesis via stabilisation of anti-apoptotic MCL-1 protein and impacts outcome in oral cancers. Br J Cancer. 125:547–560. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Li R, Qin H, He H and Li S: OTUB1′s role in promoting OSCC development by stabilizing RACK1 involves cell proliferation, migration, invasion, and tumor-associated macrophage M1 polarization. Cell Signal. 110:1108352023. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Zhou S and Tang W: USP14 promotes the cancer stem-like cell properties of OSCC via promoting SOX2 deubiquitination. Oral Dis. 30:4255–4265. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Geng L, Tang Y, Wang Y, Zhang Y, Zhu C, Lei H, Xu H, Zhu Q, Wu Y and Gu W: Ubiquitin-specific protease 14 targets PFKL-mediated glycolysis to promote the proliferation and migration of oral squamous cell carcinoma. J Transl Med. 22:1932024. View Article : Google Scholar : PubMed/NCBI | |
Millen R, De Kort WWB, Koomen M, van Son GJF, Gobits R, Penning de Vries B, Begthel H, Zandvliet M, Doornaert P, Raaijmakers CPJ, et al: Patient-derived head and neck cancer organoids allow treatment stratification and serve as a tool for biomarker validation and identification. Med. 4:290–310. e122023. View Article : Google Scholar : PubMed/NCBI | |
Li H, Zhang Y, Xu M and Yang D: Current trends of targeted therapy for oral squamous cell carcinoma. J Cancer Res Clin Oncol. 148:2169–2186. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Adeoye J, Thomson P and Choi SW: Multiple tumour recurrence in oral, head and neck cancer: Characterising the patient journey. J Oral Pathol Med. 50:979–984. 2021. View Article : Google Scholar : PubMed/NCBI | |
Blatt S, Kruger M and Sagheb K, Barth M, Kämmerer PW, Al-Nawas B and Sagheb K: Tumor recurrence and follow-up intervals in oral squamous cell carcinoma. J Clin Med. 11:70612022. View Article : Google Scholar : PubMed/NCBI | |
Suenaga N, Kuramitsu M, Komure K, Kanemaru A, Takano K, Ozeki K, Nishimura Y, Yoshida R, Nakayama H, Shinriki S, et al: Loss of tumor suppressor CYLD expression triggers cisplatin resistance in oral squamous cell carcinoma. Int J Mol Sci. 20:51942019. View Article : Google Scholar : PubMed/NCBI | |
Xie W and Xu L: Ubiquitin-specific protease 14 promotes radio-resistance and suppresses autophagy in oral squamous cell carcinoma. Exp Cell Res. 398:1123852021. View Article : Google Scholar : PubMed/NCBI | |
Patni AP, Harishankar MK, Joseph JP, Sreeshma B, Jayaraj R and Devi A: Comprehending the crosstalk between Notch, Wnt and Hedgehog signaling pathways in oral squamous cell carcinoma-clinical implications. Cell Oncol (Dordr). 44:473–494. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sun T, Liu Z and Yang Q: The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer. 19:1462020. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Bai Q, Pang N and Xue J: TCF12 induces ferroptosis by suppressing OTUB1-mediated SLC7A11 deubiquitination to promote cisplatin sensitivity in oral squamous cell carcinoma. Cell Biol Int. 48:1649–1663. 2024. View Article : Google Scholar : PubMed/NCBI | |
Feng L, Zhang J, Sun M, Qiu F, Chen W and Qiu W: Tumor Suppressor LINC02487 inhibits oral squamous cell carcinoma cell migration and invasion through the USP17-SNAI1 Axis. Front Oncol. 10:5598082020. View Article : Google Scholar : PubMed/NCBI | |
Lu R, Wu G, Chen M, Ji D, Liu Y, Zhou GG and Fu W: USP18 and USP20 restrict oHSV-1 replication in resistant human oral squamous carcinoma cell line SCC9 and affect the viability of SCC9 cells. Mol Ther Oncolytics. 23:477–487. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi E, Hwang D, Bheda-Malge A, Whitehurst CB, Kabanov AV, Kondo S, Aga M, Yoshizaki T, Pagano JS, Sokolsky M and Shakelford J: Inhibition of UCH-L1 deubiquitinating activity with two forms of LDN-57444 has anti-invasive effects in metastatic carcinoma cells. Int J Mol Sci. 20:37332019. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Wu K, Zong Y, Hou Z, Deng Z and Xia Z: USP44 regulates HEXIM1 stability to inhibit tumorigenesis and metastasis of oral squamous cell carcinoma. Biol Direct. 19:1432024. View Article : Google Scholar : PubMed/NCBI | |
Chang W, Luo Q, Wu X, Nan Y, Zhao P, Zhang L, Luo A, Jiao W, Zhu Q, Fu Y and Liu Z: OTUB2 exerts tumor-suppressive roles via STAT1-mediated CALML3 activation and increased phosphatidylserine synthesis. Cell Rep. 41:1115612022. View Article : Google Scholar : PubMed/NCBI | |
Dewson G, Eichhorn PJA and Komander D: Deubiquitinases in cancer. Nat Rev Cancer. 23:842–862. 2023. View Article : Google Scholar : PubMed/NCBI |