|
1
|
Peres MA, Macpherson LMD, Weyant RJ, Daly
B, Venturelli R, Mathur MR, Listl S, Celeste RK, Guarnizo-Herreño
CC, Kearns C, et al: Oral diseases: A global public health
challenge. Lancet. 394:249–260. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Inchingolo F, Santacroce L, Ballini A,
Topi S, Dipalma G, Haxhirexha K, Bottalico L and Charitos I: Oral
cancer: A historical review. Int J Environ Res Public Health.
17:31682020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ferlay J, Colombet M, Soerjomataram I,
Mathers C, Parkin DM, Piñeros M, Znaor A and Bray F: Estimating the
global cancer incidence and mortality in 2018: GLOBOCAN sources and
methods. Int J Cancer. 144:1941–1953. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Han B, Zheng R, Zeng H, Wang S, Sun K,
Chen R, Li L, Wei W and He J: Cancer incidence and mortality in
China, 2022. J Natl Cancer Cent. 4:47–53. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Irfan M, Delgado RZR and Frias-Lopez J:
The oral microbiome and cancer. Front Immunol. 11:5910882020.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Mody MD, Rocco JW, Yom SS, Haddad RI and
Saba NF: Head and neck cancer. Lancet. 398:2289–2299. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Wu J, Guo W, Wen D, Hou G, Zhou A and Wu
W: Deubiquitination and stabilization of programmed cell death
ligand 1 by ubiquitin-specific peptidase 9, X-linked in oral
squamous cell carcinoma. Cancer Med. 7:4004–4011. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Apoorva CC, Ananthaneni A, Kumar AJ,
Guduru VS and Puneeth HK: Evaluation of USP22 and Ki-67 expression
in oral squamous cell carcinoma: An immunohistochemical study. J
Oral Maxillofac Pathol. 27:679–684. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Barsouk A, Aluru JS, Rawla P, Saginala K
and Barsouk A: Epidemiology, risk factors, and prevention of head
and neck squamous cell carcinoma. Med Sci (Basel).
11:422023.PubMed/NCBI
|
|
11
|
Reyes M, Flores T, Betancur D,
Pena-Oyarzun D and Torres VA: Wnt/β-catenin signaling in oral
carcinogenesis. Int J Mol Sci. 21:46822020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Tarle M and Luksic I: Pathogenesis and
therapy of oral carcinogenesis. Int J Mol Sci. 25:63432024.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Tan Y, Wang Z, Xu M, Li B, Huang Z, Qin S,
Nice EC, Tang J and Huang C: Oral squamous cell carcinomas: State
of the field and emerging directions. Int J Oral Sci. 15:442023.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wang J, Jiang C, Li N, Wang F, Xu Y, Shen
Z, Yang L, Li Z and He C: The circEPSTI1/mir-942-5p/LTBP2 axis
regulates the progression of OSCC in the background of OSF via EMT
and the PI3K/Akt/mTOR pathway. Cell Death Dis. 11:6822020.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zhang X, Dong Y, Zhao M, Ding L, Yang X,
Jing Y, Song Y, Chen S, Hu Q and Ni Y: ITGB2-mediated metabolic
switch in CAFs promotes OSCC proliferation by oxidation of NADH in
mitochondrial oxidative phosphorylation system. Theranostics.
10:12044–12059. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Huang Z, Rui X, Yi C, Chen Y, Chen R,
Liang Y, Wang Y, Yao W, Xu X and Huang Z: Silencing LCN2 suppresses
oral squamous cell carcinoma progression by reducing EGFR signal
activation and recycling. J Exp Clin Cancer Res. 42:602023.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Pena-Oyarzun D, Flores T, Torres VA, Quest
AFG, Lobos-González L, Kretschmar C, Contreras P, Maturana-Ramírez
A, Criollo A and Reyes M: Inhibition of PORCN blocks wnt signaling
to attenuate progression of oral carcinogenesis. Clin Cancer Res.
30:209–223. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Chen Y, Chen Y and Liu W: Chaperonin
containing TCP1 subunit 6A may activate Notch and Wnt pathways to
facilitate the malignant behaviors and cancer stemness in oral
squamous cell carcinoma. Cancer Biol Ther. 25:22871222024.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Wang S, Wang X, Sun J, Yang J, Wu D, Wu F
and Zhou H: Down-regulation of DNA key protein-FEN1 inhibits OSCC
growth by affecting immunosuppressive phenotypes via
IFN-gamma/JAK/STAT-1. Int J Oral Sci. 15:172023. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zhang J, Chen T, Yang X, Cheng H, Späth
SS, Clavijo PE, Chen J, Silvin C, Issaeva N, Su X, et al:
Attenuated TRAF3 fosters activation of alternative NF-ĸB and
reduced expression of antiviral interferon, TP53, and RB to promote
HPV-positive head and neck cancers. Cancer Res. 78:4613–4626. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Liu Y, Sun Y, Yang J, Wu D, Yu S, Liu J,
Hu T, Luo J and Zhou H: DNMT1-targeting remodeling global DNA
hypomethylation for enhanced tumor suppression and circumvented
toxicity in oral squamous cell carcinoma. Mol Cancer. 23:1042024.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Wang X, Li R, Wu L, Chen Y, Liu S, Zhao H,
Wang Y, Wang L and Shao Z: Histone methyltransferase KMT2D
cooperates with MEF2A to promote the stem-like properties of oral
squamous cell carcinoma. Cell Biosci. 12:492022. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Oh SY, Kim J, Lee KY, Lee HJ, Kwon TG, Kim
JW, Lee ST, Kim DG, Choi SY and Hong SH: Chromatin
remodeling-driven autophagy activation induces cisplatin resistance
in oral squamous cell carcinoma. Cell Death Dis. 15:5892024.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Hu S, Lu H, Xie W, Wang D, Shan Z, Xing X,
Wang XM, Fang J, Dong W, Dai W, et al: TDO2+ myofibroblasts mediate
immune suppression in malignant transformation of squamous cell
carcinoma. J Clin Invest. 132:e1576492022. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Fang K, Sun M, Leng Z, Chu Y, Zhao Z, Li
Z, Zhang Y, Xu A, Zhang Z, Zhang L, et al: Targeting IGF1R
signaling enhances the sensitivity of cisplatin by inhibiting
proline and arginine metabolism in oesophageal squamous cell
carcinoma under hypoxia. J Exp Clin Cancer Res. 42:732023.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lyu WN, Lin MC, Shen CY, Chen LH, Lee YH,
Chen SK, Lai LC, Chuang EY, Lou PJ and Tsai MH: An oral microbial
biomarker for early detection of recurrence of oral squamous cell
carcinoma. ACS Infect Dis. 9:1783–1792. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Bagan J, Sarrion G and Jimenez Y: Oral
cancer: Clinical features. Oral Oncol. 46:414–417. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Harada H, Kikuchi M, Asato R, Hamaguchi K,
Tamaki H, Mizuta M, Hori R, Kojima T, Honda K, Tsujimura T, et al:
Characteristics of oral squamous cell carcinoma focusing on cases
unaffected by smoking and drinking: A multicenter retrospective
study. Head Neck. 45:1812–1822. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Jerjes W, Upile T, Petrie A, Riskalla A,
Hamdoon Z, Vourvachis M, Karavidas K, Jay A, Sandison A, Thomas GJ,
et al: Clinicopathological parameters, recurrence, locoregional and
distant metastasis in 115 T1-T2 oral squamous cell carcinoma
patients. Head Neck Oncol. 2:92010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Gonzalez-Moles MA, Warnakulasuriya S,
Lopez-Ansio M and Ramos-Garcia P: Hallmarks of cancer applied to
oral and oropharyngeal carcinogenesis: A scoping review of the
evidence gaps found in published systematic reviews. Cancers
(Basel). 14:38342022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Kleszcz R, Frackowiak M, Dorna D and
Paluszczak J: Combinations of PRI-724 Wnt/beta-catenin pathway
inhibitor with vismodegib, erlotinib, or HS-173 synergistically
inhibit head and neck squamous cancer cells. Int J Mol Sci.
24:104482023. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Tathineni P, Joshi N and Jelinek MJ:
Current state and future directions of EGFR-Directed therapy in
head and neck cancer. Curr Treat Options Oncol. 24:680–692. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Swatek KN and Komander D: Ubiquitin
modifications. Cell Res. 26:399–422. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Harrigan JA, Jacq X, Martin NM and Jackson
SP: Deubiquitylating enzymes and drug discovery: Emerging
opportunities. Nat Rev Drug Discov. 17:57–78. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Song L and Luo ZQ: Post-translational
regulation of ubiquitin signaling. J Cell Biol. 218:1776–1786.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
van Wijk SJ, Fulda S, Dikic I and
Heilemann M: Visualizing ubiquitination in mammalian cells. EMBO
Rep. 20:e465202019. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yau RG, Doerner K, Castellanos ER,
Haakonsen DL, Werner A, Wang N, Yang XW, Martinez-Martin N,
Matsumoto ML, Dixit VM and Rape M: Assembly and function of
heterotypic ubiquitin chains in cell-cycle and protein quality
control. Cell. 171:918–933.e20. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Loix M, Zelcer N, Bogie JFJ and Hendriks
JJA: The ubiquitous role of ubiquitination in lipid metabolism.
Trends Cell Biol. 34:416–429. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
De Cesare V, Carbajo Lopez D, Mabbitt PD,
Fletcher AJ, Soetens M, Antico O, Wood NT and Virdee S:
Deubiquitinating enzyme amino acid profiling reveals a class of
ubiquitin esterases. Proc Natl Acad Sci USA. 118:e20069471182021.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Abdul Rehman SA, Kristariyanto YA, Choi
SY, Nkosi PJ, Weidlich S, Labib K, Hofmann K and Kulathu Y: MINDY-1
Is a member of an evolutionarily conserved and structurally
distinct new family of deubiquitinating enzymes. Mol Cell.
63:146–155. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kwasna D, Abdul Rehman SA, Natarajan J,
Matthews S, Madden R, De Cesare V, Weidlich S, Virdee S, Ahel I,
Gibbs-Seymour I and Kulathu Y: Discovery and characterization of
ZUFSP/ZUP1, a distinct deubiquitinase class important for genome
stability. Mol Cell. 70:150–164. e62018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Tsuchida S and Nakayama T: Ubiquitination
and deubiquitination in oral disease. Int J Mol Sci. 22:54882021.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Trulsson F, Akimov V, Robu M, van Overbeek
N, Berrocal DAP, Shah RG, Cox J, Shah GM, Blagoev B and Vertegaal
ACO: Deubiquitinating enzymes and the proteasome regulate
preferential sets of ubiquitin substrates. Nat Commun. 13:27362022.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Schwickart M, Huang X, Lill JR, Liu J,
Ferrando R, French DM, Maecker H, O'Rourke K, Bazan F,
Eastham-Anderson J, et al: Deubiquitinase USP9X stabilizes MCL1 and
promotes tumour cell survival. Nature. 463:103–107. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Chen Y, Zhao Y, Yang X, Ren X, Huang S,
Gong S, Tan X, Li J, He S, Li Y, et al: USP44 regulates
irradiation-induced DNA double-strand break repair and suppresses
tumorigenesis in nasopharyngeal carcinoma. Nat Commun. 13:5012022.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ling S, Shan Q, Zhan Q, Ye Q, Liu P, Xu S,
He X, Ma J, Xiang J, Jiang G, et al: USP22 promotes hypoxia-induced
hepatocellular carcinoma stemness by a HIF1α/USP22 positive
feedback loop upon TP53 inactivation. Gut. 69:1322–1334. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Deng L, Meng T, Chen L, Wei W and Wang P:
The role of ubiquitination in tumorigenesis and targeted drug
discovery. Signal Transduct Target Ther. 5:112020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang
X, Zhou Z, Shu G and Yin G: Wnt/β-catenin signalling: Function,
biological mechanisms, and therapeutic opportunities. Signal
Transduct Target Ther. 7:32022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Xie J, Huang L, Lu YG and Zheng DL: Roles
of the wnt signaling pathway in head and neck squamous cell
carcinoma. Front Mol Biosci. 7:5909122020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Moon JH, Lee SH and Lim YC:
Wnt/β-catenin/Slug pathway contributes to tumor invasion and lymph
node metastasis in head and neck squamous cell carcinoma. Clin Exp
Metastasis. 38:163–174. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Jung H, Kim BG, Han WH, Lee JH, Cho JY,
Park WS, Maurice MM, Han JK, Lee MJ, Finley D and Jho EH:
Deubiquitination of dishevelled by Usp14 is required for Wnt
signaling. Oncogenesis. 2:e642013. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Chen X, Wu J, Chen Y, Ye D, Lei H, Xu H,
Yang L, Wu Y and Gu W: Ubiquitin-specific protease 14 regulates
cell proliferation and apoptosis in oral squamous cell carcinoma.
Int J Biochem Cell Biol. 79:350–359. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M,
Zeng C, Zhou T and Zhang J: NF-kappaB in biology and targeted
therapy: New insights and translational implications. Signal
Transduct Target Ther. 9:532024. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Chiu HW, Lee HL, Lee HH, Lu HW, Lin KY,
Lin YF and Lin CH: AIM2 promotes irradiation resistance, migration
ability and PD-L1 expression through STAT1/NF-ĸB activation in oral
squamous cell carcinoma. J Transl Med. 22:132024. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Weinlich R and Green DR: The two faces of
receptor interacting protein kinase-1. Mol Cell. 56:469–480. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Hou X, Wang L, Zhang L, Pan X and Zhao W:
Ubiquitin-specific protease 4 promotes TNF-α-induced apoptosis by
deubiquitination of RIP1 in head and neck squamous cell carcinoma.
FEBS Lett. 587:311–316. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Zhao Y, Thornton AM, Kinney MC, Ma CA,
Spinner JJ, Fuss IJ, Shevach EM and Jain A: The deubiquitinase CYLD
targets Smad7 protein to regulate transforming growth factor β
(TGF-β) signaling and the development of regulatory T cells. J Biol
Chem. 286:40520–40530. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Morgan EL, Chen Z and Van Waes C:
Regulation of NFĸB signalling by ubiquitination: A potential
therapeutic target in head and neck squamous cell carcinoma?
Cancers (Basel). 12:28772020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Ge WL, Xu JF and Hu J: Regulation of oral
squamous cell carcinoma proliferation through crosstalk between
SMAD7 and CYLD. Cell Physiol Biochem. 38:1209–1217. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li
C and He J: TGF-β signaling in health, disease, and therapeutics.
Signal Transduct Target Ther. 9:612024. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Derynck R, Turley SJ and Akhurst RJ: TGFβ
biology in cancer progression and immunotherapy. Nat Rev Clin
Oncol. 18:9–34. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Tauriello DVF, Sancho E and Batlle E:
Overcoming TGFβ-mediated immune evasion in cancer. Nat Rev Cancer.
22:25–44. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wen B, Liao H, Lin W, Li Z, Ma X, Xu Q and
Yu F: The Role of TGF-β during pregnancy and pregnancy
complications. Int J Mol Sci. 24:168822023. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Shinriki S, Jono H, Maeshiro M, Nakamura
T, Guo J, Li JD, Ueda M, Yoshida R, Shinohara M, Nakayama H, et al:
Loss of CYLD promotes cell invasion via ALK5 stabilization in oral
squamous cell carcinoma. J Pathol. 244:367–379. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kanemaru A, Shinriki S, Kai M, Tsurekawa
K, Ozeki K, Uchino S, Suenaga N, Yonemaru K, Miyake S, Masuda T, et
al: Potential use of EGFR-targeted molecular therapies for tumor
suppressor CYLD-negative and poor prognosis oral squamous cell
carcinoma with chemoresistance. Cancer Cell Int. 22:3582022.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Hassin O and Oren M: Drugging p53 in
cancer: One protein, many targets. Nat Rev Drug Discov. 22:127–144.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhu H, Gao H, Ji Y, Zhou Q, Du Z, Tian L,
Jiang Y, Yao K and Zhou Z: Targeting p53-MDM2 interaction by
small-molecule inhibitors: Learning from MDM2 inhibitors in
clinical trials. J Hematol Oncol. 15:912022. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Hong A, Zhang X, Jones D, Veillard AS,
Zhang M, Martin A, Lyons JG, Lee CS and Rose B: Relationships
between p53 mutation, HPV status and outcome in oropharyngeal
squamous cell carcinoma. Radiother Oncol. 118:342–349. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Fernandez-Majada V, Welz PS, Ermolaeva MA,
Schell M, Adam A, Dietlein F, Komander D, Büttner R, Thomas RK,
Schumacher B and Pasparakis M: The tumour suppressor CYLD regulates
the p53 DNA damage response. Nat Commun. 7:125082016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Muller I, Strozyk E, Schindler S, Beissert
S, Oo HZ, Sauter T, Lucarelli P, Raeth S, Hausser A, Al Nakouzi N,
et al: Cancer cells employ nuclear caspase-8 to overcome the
p53-Dependent G2/M checkpoint through cleavage of USP28. Mol Cell.
77:970–984. e72020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Prieto-Garcia C, Tomaskovic I, Shah VJ,
Dikic I and Diefenbacher M: USP28: Oncogene or tumor suppressor? A
unifying paradigm for squamous cell carcinoma. Cells. 10:26522021.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Sulkshane P, Pawar SN, Waghole R, Pawar
SS, Rajput P, Uthale A, Oak S, Kalkar P, Wani H, Patil R, et al:
Elevated USP9X drives early-to-late-stage oral tumorigenesis via
stabilisation of anti-apoptotic MCL-1 protein and impacts outcome
in oral cancers. Br J Cancer. 125:547–560. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Li Y, Li R, Qin H, He H and Li S: OTUB1′s
role in promoting OSCC development by stabilizing RACK1 involves
cell proliferation, migration, invasion, and tumor-associated
macrophage M1 polarization. Cell Signal. 110:1108352023. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Liu C, Zhou S and Tang W: USP14 promotes
the cancer stem-like cell properties of OSCC via promoting SOX2
deubiquitination. Oral Dis. 30:4255–4265. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhang X, Geng L, Tang Y, Wang Y, Zhang Y,
Zhu C, Lei H, Xu H, Zhu Q, Wu Y and Gu W: Ubiquitin-specific
protease 14 targets PFKL-mediated glycolysis to promote the
proliferation and migration of oral squamous cell carcinoma. J
Transl Med. 22:1932024. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Millen R, De Kort WWB, Koomen M, van Son
GJF, Gobits R, Penning de Vries B, Begthel H, Zandvliet M,
Doornaert P, Raaijmakers CPJ, et al: Patient-derived head and neck
cancer organoids allow treatment stratification and serve as a tool
for biomarker validation and identification. Med. 4:290–310.
e122023. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Li H, Zhang Y, Xu M and Yang D: Current
trends of targeted therapy for oral squamous cell carcinoma. J
Cancer Res Clin Oncol. 148:2169–2186. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Wang W, Adeoye J, Thomson P and Choi SW:
Multiple tumour recurrence in oral, head and neck cancer:
Characterising the patient journey. J Oral Pathol Med. 50:979–984.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Blatt S, Kruger M and Sagheb K, Barth M,
Kämmerer PW, Al-Nawas B and Sagheb K: Tumor recurrence and
follow-up intervals in oral squamous cell carcinoma. J Clin Med.
11:70612022. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Suenaga N, Kuramitsu M, Komure K, Kanemaru
A, Takano K, Ozeki K, Nishimura Y, Yoshida R, Nakayama H, Shinriki
S, et al: Loss of tumor suppressor CYLD expression triggers
cisplatin resistance in oral squamous cell carcinoma. Int J Mol
Sci. 20:51942019. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Xie W and Xu L: Ubiquitin-specific
protease 14 promotes radio-resistance and suppresses autophagy in
oral squamous cell carcinoma. Exp Cell Res. 398:1123852021.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Patni AP, Harishankar MK, Joseph JP,
Sreeshma B, Jayaraj R and Devi A: Comprehending the crosstalk
between Notch, Wnt and Hedgehog signaling pathways in oral squamous
cell carcinoma-clinical implications. Cell Oncol (Dordr).
44:473–494. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Sun T, Liu Z and Yang Q: The role of
ubiquitination and deubiquitination in cancer metabolism. Mol
Cancer. 19:1462020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Liu Y, Bai Q, Pang N and Xue J: TCF12
induces ferroptosis by suppressing OTUB1-mediated SLC7A11
deubiquitination to promote cisplatin sensitivity in oral squamous
cell carcinoma. Cell Biol Int. 48:1649–1663. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Feng L, Zhang J, Sun M, Qiu F, Chen W and
Qiu W: Tumor Suppressor LINC02487 inhibits oral squamous cell
carcinoma cell migration and invasion through the USP17-SNAI1 Axis.
Front Oncol. 10:5598082020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Lu R, Wu G, Chen M, Ji D, Liu Y, Zhou GG
and Fu W: USP18 and USP20 restrict oHSV-1 replication in resistant
human oral squamous carcinoma cell line SCC9 and affect the
viability of SCC9 cells. Mol Ther Oncolytics. 23:477–487. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Kobayashi E, Hwang D, Bheda-Malge A,
Whitehurst CB, Kabanov AV, Kondo S, Aga M, Yoshizaki T, Pagano JS,
Sokolsky M and Shakelford J: Inhibition of UCH-L1 deubiquitinating
activity with two forms of LDN-57444 has anti-invasive effects in
metastatic carcinoma cells. Int J Mol Sci. 20:37332019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Chen S, Wu K, Zong Y, Hou Z, Deng Z and
Xia Z: USP44 regulates HEXIM1 stability to inhibit tumorigenesis
and metastasis of oral squamous cell carcinoma. Biol Direct.
19:1432024. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Chang W, Luo Q, Wu X, Nan Y, Zhao P, Zhang
L, Luo A, Jiao W, Zhu Q, Fu Y and Liu Z: OTUB2 exerts
tumor-suppressive roles via STAT1-mediated CALML3 activation and
increased phosphatidylserine synthesis. Cell Rep. 41:1115612022.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Dewson G, Eichhorn PJA and Komander D:
Deubiquitinases in cancer. Nat Rev Cancer. 23:842–862. 2023.
View Article : Google Scholar : PubMed/NCBI
|