|
1
|
Suster DI and Mino-Kenudson M: Molecular
pathology of primary non-small cell lung cancer. Arch Med Res.
51:784–798. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Chen P, Liu Y, Wen Y and Zhou C: Non-small
cell lung cancer in China. Cancer Commun (Lond). 42:937–970. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Houghton AM: Common mechanisms linking
chronic obstructive pulmonary disease and lung cancer. Ann Am
Thorac Soc. 15 (Suppl 4):S273–S277. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Duréndez-Sáez E, Torres-Martinez S,
Calabuig-Fariñas S, Meri-Abad M, Ferrero-Gimeno M and Camps C:
Exosomal microRNAs in non-small cell lung cancer. Transl Cancer
Res. 10:3128–3139. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Gelatti ACZ, Drilon A and Santini FC:
Optimizing the sequencing of tyrosine kinase inhibitors (TKIs) in
epidermal growth factor receptor (EGFR) mutation-positive non-small
cell lung cancer (NSCLC). Lung Cancer. 137:113–122. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Mosca M, Conci N, Di Federico A, Tateo V,
Favorito V, Zappi A, Gelsomino F and De Giglio A: First-generation
epidermal growth factor receptor inhibitors plus antiangiogenic
drugs versus third-generation epidermal growth factor receptor
inhibitors in advanced non-small-cell lung cancer: A meta-analysis.
JCO Precis Oncol. 7:e23000732023. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Qu F, Zhou Y and Yu W: A review of
research progress on mechanisms and overcoming strategies of
acquired osimertinib resistance. Anticancer Drugs. 33:e76–e83.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Kurup S, Gesinski D, Assaad K and Reynolds
A: Design, synthesis, and evaluation of dual EGFR/AURKB inhibitors
as anticancer agents for non-small cell lung cancer. Bioorg Med
Chem Lett. 100:1296122024. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Costa DB, Nguyen KSH, Cho BC, Sequist LV,
Jackman DM, Riely GJ, Yeap BY, Halmos B, Kim JH, Jänne PA, et al:
Effects of erlotinib in EGFR mutated non-small cell lung cancers
with resistance to gefitinib. Clin Cancer Res. 14:7060–7067. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Maione P, Rossi A, Bareschino M, Sacco PC,
Schettino C, Casaluce F, Sgambato A and Gridelli C: Irreversible
EGFR inhibitors in the treatment of advanced NSCLC. Curr Pharm Des.
20:3894–3900. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Choi YW and Choi JH: Does the efficacy of
epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor
differ according to the type of EGFR mutation in non-small cell
lung cancer? Korean J Intern Med. 32:422–428. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Li J, Qu L, Wei X, Gao H, Wang W, Qin H,
Tang C, Guo W, Wang H and Liu X: Clinical observation of EGFR-TKI
as a first-line therapy on advanced non-small cell lung cancer.
Zhongguo Fei Ai Za Zhi. 15:299–304. 2012.(In Chinese). PubMed/NCBI
|
|
13
|
Vidal ÓJ: Afatinib as first-line therapy
in mutation-positive EGFR. Results by type of mutation. Med Clin
(Barc). 146 (Suppl 1):S12–S18. 2016.(In Spanish). View Article : Google Scholar
|
|
14
|
Won YW, Han JY, Lee GK, Park SY, Lim KY,
Yoon KA, Yun T, Kim HT and Lee JS: Comparison of clinical outcome
of patients with non-small-cell lung cancer harbouring epidermal
growth factor receptor exon 19 or exon 21 mutations. J Clin Pathol.
64:947–952. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Yu JY, Yu SF, Wang SH, Bai H, Zhao J, An
TT, Duan JC and Wang J: Clinical outcomes of EGFR-TKI treatment and
genetic heterogeneity in lung adenocarcinoma patients with EGFR
mutations on exons 19 and 21. Chin J Cancer. 35:302016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Chen LY, Molina-Vila MA, Ruan SY, Su KY,
Liao WY, Yu KL, Ho CC, Shih JY, Yu CJ, Yang JC, et al: Coexistence
of EGFR T790M mutation and common activating mutations in
pretreatment non-small cell lung cancer: A systematic review and
meta-analysis. Lung Cancer. 94:46–53. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
van Alderwerelt van Rosenburgh IK, Lu DM,
Grant MJ, Stayrook SE, Phadke M, Walther Z, Goldberg SB, Politi K,
Lemmon MA, Ashtekar KD and Tsutsui Y: Biochemical and structural
basis for differential inhibitor sensitivity of EGFR with distinct
exon 19 mutations. Nat Commun. 13:67912022. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Xu J, Jin B, Chu T, Dong X, Yang H, Zhang
Y, Wu D, Lou Y, Zhang X, Wang H and Han B: EGFR tyrosine kinase
inhibitor (TKI) in patients with advanced non-small cell lung
cancer (NSCLC) harboring uncommon EGFR mutations: A real-world
study in China. Lung Cancer. 96:87–92. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Park S, Lee SY, Kim D, Sim YS, Ryu JS,
Choi J, Lee SH, Ryu YJ, Lee JH and Chang JH: Comparison of
epidermal growth factor receptor tyrosine kinase inhibitors for
patients with lung adenocarcinoma harboring different epidermal
growth factor receptor mutation types. BMC Cancer. 21:522021.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Singh V, Nambirajan A, Malik PS, Thulkar
S, Pandey RM, Luthra K, Arava S, Ray R, Mohan A and Jain D:
Spectrum of uncommon and compound epidermal growth factor receptor
mutations in non-small-cell lung carcinomas with treatment response
and outcome analysis: A study from India. Lung Cancer. 149:53–60.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Chiu CH, Yang CT, Shih JY, Huang MS, Su
WC, Lai RS, Wang CC, Hsiao SH, Lin YC, Ho CL, et al: Epidermal
growth factor receptor tyrosine Kinase inhibitor treatment response
in advanced lung adenocarcinomas with G719X/L861Q/S768I mutations.
J Thorac Oncol. 10:793–799. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Watanabe M, Oizumi S, Kiuchi S, Yamada N,
Yokouchi H, Fukumoto S and Harada M: The effectiveness of afatinib
in a patient with advanced lung adenocarcinoma harboring rare G719X
and S768I mutations. Intern Med. 57:993–996. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Leventakos K, Kipp BR, Rumilla KM, Winters
JL, Yi ES and Mansfield AS: S768I mutation in EGFR in patients with
lung cancer. J Thorac Oncol. 11:1798–1801. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zhu X, Bai Q, Lu Y, Qi P, Ding J, Wang J
and Zhou X: Response to tyrosine kinase inhibitors in lung
adenocarcinoma with the rare epidermal growth factor receptor
mutation S768I: A retrospective analysis and literature review.
Target Oncol. 12:81–88. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Kutsuzawa N, Takahashi F, Tomomatsu K,
Obayashi S, Takeuchi T, Takihara T, Hayama N, Oguma T, Aoki T and
Asano K: Successful treatment of a patient with lung adenocarcinoma
harboring compound EGFR gene mutations, G719X and S768I, with
afatinib. Tokai J Exp Clin Med. 45:113–116. 2020.PubMed/NCBI
|
|
26
|
Pham VL, Le TA, Pham CP, Hoa Nguyen TT, Do
AT, Nguyen TK, Nguyen MH, Thu Hoang TA, Hao Vuong DT, Tam Nguyen
DN, et al: Real-world analysis of afatinib as a first-line
treatment for patients with advanced stage non-small-cell lung
cancer with uncommon EGFR mutations: A multicenter study in
Vietnam. Ther Adv Med Oncol. 16:175883592412429722024. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Hsu PC, Lee SH, Chiu LC, Lee CS, Wu CE,
Kuo SC, Ju JS, Huang AC, Li SH, Ko HW, et al: Afatinib in untreated
stage IIIB/IV lung adenocarcinoma with major uncommon epidermal
growth factor receptor (EGFR) mutations (G719X/L861Q/S768I): A
multicenter observational study in Taiwan. Target Oncol.
18:195–207. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Moran T, Taus A, Arriola E, Aguado C,
Dómine M, Rueda AG, Calles A, Cedrés S, Viñolas N, Isla D, et al:
Clinical activity of afatinib in patients with non-small-cell lung
cancer harboring uncommon EGFR mutations: A Spanish retrospective
multicenter study. Clin Lung Cancer. 21:428–436.e2. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Lee SH, Kim EY, Kim A and Chang YS:
Clinical implication and usefulness of de novo EGFR T790M mutation
in lung adenocarcinoma with EGFR-tyrosine kinase inhibitor
sensitizing mutation. Cancer Biol Ther. 21:741–748. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Barsouk A, Elghawy O, Heidlauf A, Yu C,
Wang L, Yang D, Kurian M, Goel K, Rushkin L, Anran Huang A, et al:
Real-world outcomes of atypical EGFR-mutated metastatic non-small
cell lung cancer (mNSCLC) treated with osimertinib (osi) vs
afatinib or erlotinib. Lung Cancer. 195:1079262024. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Nishii T, Yokose T, Miyagi Y, Daigo Y, Ito
H, Isaka T, Imai K, Murakami S, Kondo T, Saito H, et al:
Clinicopathological features and EGFR gene mutation status in
elderly patients with resected non-small-cell lung cancer. BMC
Cancer. 14:6102014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Thomas R, Balaram G, Varayathu H, Ghorpade
SN, Kowsik PV, Dharman B, Thomas BE, Ramaswamy V, Nanjaiah T, Patil
S, et al: Molecular epidemiology and clinical characteristics of
epidermal growth factor receptor mutations in NSCLC: A
single-center experience from India. J Cancer Res Ther.
19:1398–1406. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zhang T, Wan B, Zhao Y, Li C, Liu H, Lv T,
Zhan P and Song Y: Treatment of uncommon EGFR mutations in
non-small cell lung cancer: New evidence and treatment. Transl Lung
Cancer Res. 8:302–316. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Wen L, Wang S, Xu W, Xu X, Li M, Zhang Y,
Du X and Liu S: Value of serum tumor markers for predicting EGFR
mutations in non-small cell lung cancer patients. Ann Diagn Pathol.
49:1516332020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Kim EY, Kim A, Lee G, Lee H and Chang YS:
Different mutational characteristics of the subsets of
EGFR-tyrosine kinase inhibitor sensitizing mutation-positive lung
adenocarcinoma. BMC Cancer. 18:12212018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Lai Y, Zhang Z, Li J, Sun D, Zhou Y, Jiang
T, Han Y, Huang L, Zhu Y, Li X and Yan X: EGFR mutations in
surgically resected fresh specimens from 697 consecutive Chinese
patients with non-small cell lung cancer and their relationships
with clinical features. Int J Mol Sci. 14:24549–24559. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang H, Huang J, Yu X, Han S, Yan X, Sun S
and Zhu X: Different efficacy of EGFR tyrosine kinase inhibitors
and prognosis in patients with subtypes of EGFR-mutated advanced
non-small cell lung cancer: A meta-analysis. J Cancer Res Clin
Oncol. 140:1901–1909. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Liang H, Li C, Zhao Y, Zhao S, Huang J,
Cai X, Cheng B, Xiong S, Li J, Wang W, et al: Concomitant mutations
in EGFR 19Del/L858R mutation and their association with response to
EGFR-TKIs in NSCLC patients. Cancer Manag Res. 12:8653–8662. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Jiao XD, Qin BD, You P, Cai J and Zang YS:
The prognostic value of TP53 and its correlation with EGFR mutation
in advanced non-small cell lung cancer, an analysis based on
cBioPortal data base. Lung Cancer. 123:70–75. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Timperi E, Croizer H, Khantakova D, Rana
M, Molgora M, Guerriero JL, Mechta-Grigoriou F and Romano E: At the
interface of tumor-associated macrophages and fibroblasts:
Immune-suppressive networks and emerging exploitable targets. Clin
Cancer Res. 30:5242–5251. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Tajaldini M, Saeedi M, Amiriani T,
Amiriani AH, Sedighi S, Mohammad Zadeh F, Dehghan M, Jahanshahi M,
Zanjan Ghandian M, Khalili P, et al: Cancer-associated fibroblasts
(CAFs) and tumor-associated macrophages (TAMs); where do they stand
in tumorigenesis and how they can change the face of cancer
therapy? Eur J Pharmacol. 928:1750872022. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Suzuki J, Tsuboi M and Ishii G:
Cancer-associated fibroblasts and the tumor microenvironment in
non-small cell lung cancer. Expert Rev Anticancer Ther. 22:169–182.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Garvey CM, Lau R, Sanchez A, Sun RX, Fong
EJ, Doche ME, Chen O, Jusuf A, Lenz HJ, Larson B and Mumenthaler
SM: Anti-EGFR therapy induces EGF secretion by cancer-associated
fibroblasts to confer colorectal cancer chemoresistance. Cancers
(Basel). 12:13932020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Morgillo F, Woo JK, Kim ES, Hong WK and
Lee HY: Heterodimerization of insulin-like growth factor
receptor/epidermal growth factor receptor and induction of survivin
expression counteract the antitumor action of erlotinib. Cancer
Res. 66:10100–10111. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Mitsudomi T and Yatabe Y: Epidermal growth
factor receptor in relation to tumor development: EGFR gene and
cancer. FEBS J. 277:301–308. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Hirsch FR, Varella-Garcia M, Bunn PA Jr,
Di Maria MV, Veve R, Bremmes RM, Barón AE, Zeng C and Franklin WA:
Epidermal growth factor receptor in non-small-cell lung carcinomas:
Correlation between gene copy number and protein expression and
impact on prognosis. J Clin Oncol. 21:3798–3807. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Madeddu C, Donisi C, Liscia N, Lai E,
Scartozzi M and Macciò A: EGFR-mutated non-small cell lung cancer
and resistance to immunotherapy: Role of the tumor
microenvironment. Int J Mol Sci. 23:64892022. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Yang Y, Zheng X, Ni P, Li D, Dan Q, Wang
X, Wang Y, Sun Y, Liu K, Dong Z and Ge H: Targeting the STAT5A/IDO1
axis overcomes radioresistance and reverses the immunosuppressive
tumor microenvironment in NSCLC. Int J Oncol. 62:122023. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Lin A, Wei T, Meng H, Luo P and Zhang J:
Role of the dynamic tumor microenvironment in controversies
regarding immune checkpoint inhibitors for the treatment of
non-small cell lung cancer (NSCLC) with EGFR mutations. Mol Cancer.
18:1392019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Burotto M, Ali SA and O'sullivan Coyne G:
Class act: Safety comparison of approved tyrosine kinase inhibitors
for non-small-cell lung carcinoma. Expert Opin Drug Saf. 14:97–110.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhang Y, Liu H, Liu X and Lang L:
Gefitinib induces apoptosis in NSCLC cells by promoting
glutaminolysis and inhibiting the MEK/ERK signaling pathway. Discov
Med. 36:836–841. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zhao ZQ, Yu ZY, Li J and Ouyang XN:
Gefitinib induces lung cancer cell autophagy and apoptosis via
blockade of the PI3K/AKT/mTOR pathway. Oncol Lett. 12:63–68. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Li Q, Zhang D, Chen X, He L, Li T, Xu X
and Li M: Nuclear PKM2 contributes to gefitinib resistance via
upregulation of STAT3 activation in colorectal cancer. Sci Rep.
5:160822015. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Han X, Luo R, Wang L, Zhang L, Wang T,
Zhao Y, Xiao S, Qiao N, Xu C, Ding L, et al: Potential predictive
value of serum targeted metabolites and concurrently mutated genes
for EGFR-TKI therapeutic efficacy in lung adenocarcinoma patients
with EGFR sensitizing mutations. Am J Cancer Res. 10:4266–4286.
2020.PubMed/NCBI
|
|
55
|
Lee SH, Kim EY, Kim T and Chang YS:
Compared to plasma, bronchial washing fluid shows higher diagnostic
yields for detecting EGFR-TKI sensitizing mutations by ddPCR in
lung cancer. Respir Res. 21:1422020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Masui K, Gini B, Wykosky J, Zanca C,
Mischel PS, Furnari FB and Cavenee WK: A tale of two approaches:
Complementary mechanisms of cytotoxic and targeted therapy
resistance may inform next-generation cancer treatments.
Carcinogenesis. 34:725–738. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Hou B, Lu X, Gao DC, Liu QX, Zhou D, Zheng
H and Dai JG: REPORT-clinical outcomes of using second-versus
first-generation EGFR-tkis for the first-line treatment of advanced
NSCLC patients with EGFR mutations: A meta-analysis. Pak J Pharm
Sci. 34:1459–1468. 2021.PubMed/NCBI
|
|
58
|
Du X, Yang B, An Q, Assaraf YG, Cao X and
Xia J: Acquired resistance to third-generation EGFR-TKIs and
emerging next-generation EGFR inhibitors. Innovation (Camb).
2:1001032021.PubMed/NCBI
|
|
59
|
Tan CS, Kumarakulasinghe NB, Huang YQ, Ang
YLE, Choo JRE, Goh BC and Soo RA: Third generation EGFR TKIs:
Current data and future directions. Mol Cancer. 17:292018.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Pirker R: Third-generation epidermal
growth factor receptor tyrosine kinase inhibitors in advanced
nonsmall cell lung cancer. Curr Opin Oncol. 28:115–121. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wang S and Li J: Second-generation EGFR
and ErbB tyrosine kinase inhibitors as first-line treatments for
non-small cell lung cancer. Onco Targets Ther. 12:6535–6548. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wang S, Tsui ST, Liu C, Song Y and Liu D:
EGFR C797S mutation mediates resistance to third-generation
inhibitors in T790M-positive non-small cell lung cancer. J Hematol
Oncol. 9:592016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Scalvini L, Castelli R, La Monica S, Tiseo
M and Alfieri R: Fighting tertiary mutations in EGFR-driven
lung-cancers: Current advances and future perspectives in medicinal
chemistry. Biochem Pharmacol. 190:1145432021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Nagano T, Tachihara M and Nishimura Y:
Mechanism of resistance to epidermal growth factor
receptor-tyrosine kinase inhibitors and a potential treatment
strategy. Cells. 7:2122018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Shi P, Zhang S, Zhu L, Qian G, Ren H,
Ramalingam SS, Chen M and Sun SY: The third-generation EGFR
inhibitor, osimertinib, promotes c-FLIP degradation, enhancing
apoptosis including TRAIL-induced apoptosis in NSCLC cells with
activating EGFR mutations. Transl Oncol. 12:705–713. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Venkatesan S, Swanton C, Taylor BS and
Costello JF: Treatment-induced mutagenesis and selective pressures
sculpt cancer evolution. Cold Spring Harb Perspect Med.
7:a0266172017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Vander Velde R, Yoon N, Marusyk V, Durmaz
A, Dhawan A, Miroshnychenko D, Lozano-Peral D, Desai B, Balynska O,
Poleszhuk J, et al: Resistance to targeted therapies as a
multifactorial, gradual adaptation to inhibitor specific selective
pressures. Nat Commun. 11:23932020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Li K, Peng ZY, Wang R, Li X, Du N, Liu DP,
Zhang J, Zhang YF, Ma L, Sun Y, et al: Enhancement of TKI
sensitivity in lung adenocarcinoma through m6A-dependent
translational repression of Wnt signaling by circ-FBXW7. Mol
Cancer. 22:1032023. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Pang LL, Zhuang WT, Huang YH, Liao J, Li
MZ, Lv Y, Zhang L and Fang WF: Uncommon de novo
EGFRT790M-Mutant NSCLC characterized with unique genetic
features: Clinical response and acquired resistance to the
third-generation EGFR-TKIs treatment. Lung Cancer. 190:1075282024.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Denis MG, Vallée A and Théoleyre S: EGFR
T790M resistance mutation in non-small-cell lung carcinoma. Clin
Chim Acta. 444:81–85. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Shaikh M, Shinde Y, Pawara R, Noolvi M,
Surana S, Ahmad I and Patel H: Emerging approaches to overcome
acquired drug resistance obstacles to osimertinib in non-small-cell
lung cancer. J Med Chem. 65:1008–1046. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Nishino M, Suda K, Kobayashi Y, Ohara S,
Fujino T, Koga T, Chiba M, Shimoji M, Tomizawa K, Takemoto T and
Mitsudomi T: Effects of secondary EGFR mutations on resistance
against upfront osimertinib in cells with EGFR-activating mutations
in vitro. Lung Cancer. 126:149–155. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ding K, Peng Z and Xu Y: Triplet therapy
overcomes 3rd-EGFR TKI-resistant EGFR-L858R/T790M/C797S in trans
and in cis/L718Q mutation. Genes Dis. 12:1014082024. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Lim SM, Schalm SS, Lee EJ, Park S, Conti
C, Millet YA, Woessner R, Zhang Z, Tavera-Mendoza LE, Stevison F,
et al: BLU-945, a potent and selective next-generation EGFR TKI,
has antitumor activity in models of osimertinib-resistant
non-small-cell lung cancer. Ther Adv Med Oncol.
16:175883592412806892024. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Ahmadi A, Mohammadnejadi E and
Razzaghi-Asl N: Gefitinib derivatives and drug-resistance: A
perspective from molecular dynamics simulations. Comput Biol Med.
163:1072042023. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Ercan D, Zejnullahu K, Yonesaka K, Xiao Y,
Capelletti M, Rogers A, Lifshits E, Brown A, Lee C, Christensen JG,
et al: Amplification of EGFR T790M causes resistance to an
irreversible EGFR inhibitor. Oncogene. 29:2346–2356. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Kubo T, Yamamoto H, Lockwood WW, Valencia
I, Soh J, Peyton M, Jida M, Otani H, Fujii T, Ouchida M, et al: MET
gene amplification or EGFR mutation activate MET in lung cancers
untreated with EGFR tyrosine kinase inhibitors. Int J Cancer.
124:1778–1784. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Nukaga S, Yasuda H, Tsuchihara K, Hamamoto
J, Masuzawa K, Kawada I, Naoki K, Matsumoto S, Mimaki S, Ikemura S,
et al: Amplification of EGFR wild-type alleles in non-small cell
lung cancer cells confers acquired resistance to mutation-selective
EGFR tyrosine kinase inhibitors. Cancer Res. 77:2078–2089. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Presutti D, Santini S, Cardinali B, Papoff
G, Lalli C, Samperna S, Fustaino V, Giannini G and Ruberti G: MET
gene amplification and MET receptor activation are not sufficient
to predict efficacy of combined MET and EGFR inhibitors in EGFR
TKI-resistant NSCLC cells. PLoS One. 10:e01433332015. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zhang Y, Xu Y, Xu J, Zhong H, Xia J and
Zhong R: Osimertinib for EGFR-mutant NSCLC patients with acquired
T790M and EGFR amplification after first-generation EGFR-TKI
resistance. Cancer Sci. 116:753–763. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhang Z, Yang S and Wang Q: Impact of MET
alterations on targeted therapy with EGFR-tyrosine kinase
inhibitors for EGFR-mutant lung cancer. Biomark Res. 7:272019.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Nie N, Li J, Zhang J, Dai J, Liu Z, Ding
Z, Wang Y, Zhu M, Hu C, Han R, et al: First-line osimertinib in
patients with EGFR-mutated non-small cell lung cancer:
Effectiveness, resistance mechanisms, and prognosis of different
subsequent treatments. Clin Med Insights Oncol.
16:117955492211347352022. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Turke AB, Zejnullahu K, Wu YL, Song Y,
Dias-Santagata D, Lifshits E, Toschi L, Rogers A, Mok T, Sequist L,
et al: Preexistence and clonal selection of MET amplification in
EGFR mutant NSCLC. Cancer Cell. 17:77–88. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Takezawa K, Pirazzoli V, Arcila ME, Nebhan
CA, Song X, de Stanchina E, Ohashi K, Janjigian YY, Spitzler PJ,
Melnick MA, et al: HER2 amplification: a potential mechanism of
acquired resistance to EGFR inhibition in EGFR-mutant lung cancers
that lack the second-site EGFR T790M mutation. Cancer Discov.
2:922–933. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ding D, Zhang J, Luo Z, Wu H, Lin Z, Liang
W and Xue X: Analysis of the lncRNA-miRNA-mRNA network reveals a
potential regulatory mechanism of EGFR-TKI resistance in NSCLC.
Front Genet. 13:8513912022. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Liu S, Li S, Hai J, Wang X, Chen T, Quinn
MM, Gao P, Zhang Y, Ji H, Cross DAE and Wong KK: Targeting HER2
aberrations in non-small cell lung cancer with osimertinib. Clin
Cancer Res. 24:2594–2604. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Jonsdottir G, Smith M, Wood S, Hejleh TA
and Furqan M: Activity of osimertinib in a patient with stage IV
non-small cell lung cancer harboring HER2 exon 19, p.L755P
mutation: Case report. Transl Lung Cancer Res. 12:927–932. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Rastogi I, Rajanna S, Webb A, Chhabra G,
Foster B, Webb B and Puri N: Mechanism of c-Met and EGFR tyrosine
kinase inhibitor resistance through epithelial mesenchymal
transition in non-small cell lung cancer. Biochem Biophys Res
Commun. 477:937–944. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Soucheray M, Capelletti M, Pulido I, Kuang
Y, Paweletz CP, Becker JH, Kikuchi E, Xu C, Patel TB, Al-Shahrour
F, et al: Intratumoral heterogeneity in EGFR-mutant NSCLC results
in divergent resistance mechanisms in response to EGFR tyrosine
kinase inhibition. Cancer Res. 75:4372–4383. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Lu Y, Liu Y, Oeck S, Zhang GJ, Schramm A
and Glazer PM: Hypoxia induces resistance to EGFR inhibitors in
lung cancer cells via upregulation of FGFR1 and the MAPK pathway.
Cancer Res. 80:4655–4667. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Comaills V, Kabeche L, Morris R, Buisson
R, Yu M, Madden MW, LiCausi JA, Boukhali M, Tajima K, Pan S, et al:
Genomic instability is induced by persistent proliferation of cells
undergoing epithelial-to-mesenchymal transition. Cell Rep.
17:2632–2647. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Yochum ZA, Cades J, Wang H, Chatterjee S,
Simons BW, O'Brien JP, Khetarpal SK, Lemtiri-Chlieh G, Myers KV,
Huang EH, et al: Targeting the EMT transcription factor TWIST1
overcomes resistance to EGFR inhibitors in EGFR-mutant
non-small-cell lung cancer. Oncogene. 38:656–670. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Chen K, Xu J, Tong YL, Yan JF, Pan Y, Wang
WJ, Zheng L, Zheng XX, Hu C, Hu X, et al: Rab31 promotes metastasis
and cisplatin resistance in stomach adenocarcinoma through
Twist1-mediated EMT. Cell Death Dis. 14:1152023. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Burns TF, Dobromilskaya I, Murphy SC,
Gajula RP, Thiyagarajan S, Chatley SN, Aziz K, Cho YJ, Tran PT and
Rudin CM: Inhibition of TWIST1 leads to activation of
oncogene-induced senescence in oncogene-driven non-small cell lung
cancer. Mol Cancer Res. 11:329–338. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Fukuda K, Takeuchi S, Arai S, Kita K,
Tanimoto A, Nishiyama A and Yano S: Glycogen synthase kinase-3
inhibition overcomes epithelial-mesenchymal transition-associated
resistance to osimertinib in EGFR-mutant lung cancer. Cancer Sci.
111:2374–2384. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Raoof S, Mulford IJ, Frisco-Cabanos H,
Nangia V, Timonina D, Labrot E, Hafeez N, Bilton SJ, Drier Y, Ji F,
et al: Targeting FGFR overcomes EMT-mediated resistance in EGFR
mutant non-small cell lung cancer. Oncogene. 38:6399–6413. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Wu Q, Zhen Y, Shi L, Vu P, Greninger P,
Adil R, Merritt J, Egan R, Wu MJ, Yin X, et al: EGFR inhibition
potentiates FGFR inhibitor therapy and overcomes resistance in
FGFR2 fusion-positive cholangiocarcinoma. Cancer Discov.
12:1378–1395. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Hu S, Fu W, Li T, Yuan Q, Wang F, Lv G, Lv
Y, Fan X, Shen Y, Lin F, et al: Antagonism of EGFR and Notch limits
resistance to EGFR inhibitors and radiation by decreasing
tumor-initiating cell frequency. Sci Transl Med. 9:eaag03392017.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Lin Z, Wang Q, Jiang T, Wang W and Zhao
JJ: Targeting tumor-associated macrophages with STING agonism
improves the antitumor efficacy of osimertinib in a mouse model of
EGFR-mutant lung cancer. Front Immunol. 14:10772032023. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Wang Y, Zhang T, Guo L, Ren T and Yang Y:
Stromal extracellular matrix is a microenvironmental cue promoting
resistance to EGFR tyrosine kinase inhibitors in lung cancer cells.
Int J Biochem Cell Biol. 106:96–106. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Peng S, Wang R, Zhang X, Ma Y, Zhong L, Li
K, Nishiyama A, Arai S, Yano S and Wang W: EGFR-TKI resistance
promotes immune escape in lung cancer via increased PD-L1
expression. Mol Cancer. 18:1652019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Hsu KH, Huang YH, Tseng JS, Chen KC, Ku
WH, Su KY, Chen JJW, Chen HW, Yu SL, Yang TY and Chang GC: High
PD-L1 expression correlates with primary resistance to EGFR-TKIs in
treatment naïve advanced EGFR-mutant lung adenocarcinoma patients.
Lung Cancer. 127:37–43. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Zhang W, Wang J, Liang J, He Z, Wang K and
Lin H: RNA methylation of CD47 mediates tumor immunosuppression in
EGFR-TKI resistant NSCLC. Br J Cancer. 132:569–579. 2025.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Chen Q, Xia L, Wang J, Zhu S, Wang J, Li
X, Yu Y, Li Z, Wang Y, Zhu G and Lu S: EGFR-mutant NSCLC may
remodel TME from non-inflamed to inflamed through acquiring
resistance to EGFR-TKI treatment. Lung Cancer. 192:1078152024.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Yao X, Gao C, Sun C, Chen ZS and Zhuang J:
Epigenetic code underlying EGFR-TKI resistance in non-small cell
lung cancer: Elucidation of mechanisms and perspectives on
therapeutic strategies. Drug Discov Today. 30:1043212025.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Quan C, Chen Y, Wang X, Yang D, Wang Q,
Huang Y, Petersen RB, Liu X, Zheng L, Li Y and Huang K: Loss of
histone lysine methyltransferase EZH2 confers resistance to
tyrosine kinase inhibitors in non-small cell lung cancer. Cancer
Lett. 495:41–52. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Bui VNV, Daugaard TF, Sorensen BS and
Nielsen AL: Expression of the non-coding RNA nc886 facilitates the
development of tyrosine kinase inhibitor resistance in EGFR-mutated
non-small-cell lung cancer cells. Biochem Biophys Res Commun.
731:1503952024. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Hong W, Wu Q, Zhang J and Zhou Y:
Prognostic value of EGFR 19-del and 21-L858R mutations in patients
with non-small cell lung cancer. Oncol Lett. 18:3887–3895.
2019.PubMed/NCBI
|
|
109
|
Soleimani-Meigooni DN and Rabinovici GD:
Tau PET visual reads: Research and clinical applications and future
directions. J Nucl Med. 64:822–824. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
George RS, Htoo A, Cheng M, Masterson TM,
Huang K, Adra N, Kaimakliotis HZ, Akgul M and Cheng L: Artificial
intelligence in prostate cancer: Definitions, current research, and
future directions. Urol Oncol. 40:262–270. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Luo Q, Zhang L, Luo C and Jiang M:
Emerging strategies in cancer therapy combining chemotherapy with
immunotherapy. Cancer Lett. 454:191–203. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Rahmat K, Mumin NA, Hamid MTR, Hamid SA
and Ng WL: MRI breast: Current imaging trends, clinical
applications, and future research directions. Curr Med Imaging.
18:1347–1361. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Bajbouj K, Al-Ali A, Ramakrishnan RK,
Saber-Ayad M and Hamid Q: Histone modification in NSCLC: Molecular
mechanisms and therapeutic targets. Int J Mol Sci. 22:117012021.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Reungwetwattana T, Weroha SJ and Molina
JR: Oncogenic pathways, molecularly targeted therapies, and
highlighted clinical trials in non-small-cell lung cancer (NSCLC).
Clin Lung Cancer. 13:252–266. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Chia PL, Dobrovic A, Dobrovic A and John
T: Prevalence and natural history of ALK positive non-small-cell
lung cancer and the clinical impact of targeted therapy with ALK
inhibitors. Clin Epidemiol. 6:423–432. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Hsu J, Annunziata JF, Burns E, Bernicker
EH, Olsen RJ and Thomas JS: Molecular signatures of KRAS-mutated
lung adenocarcinoma: Analysis of concomitant EGFR, ALK, STK11, and
PD-L1 status. Clin Pathol. 15:2632010X2211020542022. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Gkolfinopoulos S and Mountzios G: Beyond
EGFR and ALK: Targeting rare mutations in advanced non-small cell
lung cancer. Ann Transl Med. 6:1422018. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Hirsch FR, Suda K, Wiens J and Bunn PA Jr:
New and emerging targeted treatments in advanced non-small-cell
lung cancer. Lancet. 388:1012–1024. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Weishan H, Donglin Z, Guangmei D, Wenya L,
Fasheng W and Jibing C: Immunoradiotherapy for NSCLC: Mechanisms,
clinical outcomes, and future directions. Clin Transl Oncol.
26:1063–1076. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Selzer E: Impact of molecular targets in
cancer drug development: Historical influence and future
perspectives. Expert Rev Clin Pharmacol. 3:161–163. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Amaravadi RK, Kimmelman AC and Debnath J:
Targeting autophagy in cancer: Recent advances and future
directions. Cancer Discov. 9:1167–1181. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Black A and Morris D: Personalized
medicine in metastatic non-small-cell lung cancer: Promising
targets and current clinical trials. Curr Oncol. 19 (Suppl
1):S73–S85. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Saxena A, Becker D, Preeshagul I, Lee K,
Katz E and Levy B: Therapeutic effects of repurposed therapies in
non-small cell lung cancer: What is old is new again. Oncologist.
20:934–945. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Harmey D, Griffin PR and Kenny PJ:
Development of novel pharmacotherapeutics for tobacco dependence:
Progress and future directions. Nicotine Tob Res. 14:1300–1318.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Ciardiello D, Elez E, Tabernero J and
Seoane J: Clinical development of therapies targeting TGFβ: Current
knowledge and future perspectives. Ann Oncol. 31:1336–1349. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Kannan K and Mohan S: Targeting exon
mutations in NSCLC: Clinical insights into LAG-3, TIM-3 pathways,
and advances in fourth-generation EGFR-TKIs. Med Oncol. 42:1962025.
View Article : Google Scholar : PubMed/NCBI
|