
IGFBP3 modulation of tumor pathogenesis and cell signaling pathways (Review)
- Authors:
- Yanzi Zhang
- Xin Lv
-
Affiliations: Clinical Laboratory, Children's Hospital Affiliated to Shandong University, Jinan, Shandong 250022, P.R. China - Published online on: June 3, 2025 https://doi.org/10.3892/ol.2025.15125
- Article Number: 379
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Ai X, Shen S, Gu L and Lu S: Detection and correlation analysis of serum cytokines in non-small-cell lung cancer patients with bone and non-bone metastases. Patient Prefer Adherence. 9:1165–1169. 2015.PubMed/NCBI | |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar : PubMed/NCBI | |
Soerjomataram I, Cabasag C, Bardot A, Fidler-Benaoudia MM, Miranda-Filho A, Ferlay J, Parkin DM, Ranganathan R, Piñeros M, Znaor A, et al: Cancer survival in Africa, Central and South America, And Asia (survcan-3): A population-based benchmarking study in 32 countries. Lancet Oncol. 24:22–32. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cai Q, Dozmorov M and Oh Y: IGFBP-3/IGFBP-3 receptor system as an anti-tumor and anti-metastatic signaling in cancer. Cells. 9:12612020. View Article : Google Scholar : PubMed/NCBI | |
MacParland SA, Liu JC, Ma XZ, Innes BT, Bartczak AM, Gage BK, Manuel J, Khuu N, Echeverri J, Linares I, et al: Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat Commun. 9:43832018. View Article : Google Scholar : PubMed/NCBI | |
Yaqoob U, Luo F, Greuter T, Sakrikar NJ, Sehrawat TS, Lu J, Hu X, Gao J, Kostallari E, Chen J, et al: GIPC-regulated IGFBP-3 promotes HSC migration in vitro and portal hypertension in vivo through a β1-integrin pathway. Cell Mol Gastroenterol Hepatol. 10:545–559. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fujimoto M, Andrew M and Dauber A: Disorders caused by genetic defects associated with GH-dependent genes: Pappa2 defects. Mol Cell Endocrinol. 518:1109672020. View Article : Google Scholar : PubMed/NCBI | |
Yamada PM and Lee KW: Perspectives in mammalian IGFBP-3 biology: Local vs. systemic action. Am J Physiol Cell Physiol. 296:C954–C976. 2009. View Article : Google Scholar : PubMed/NCBI | |
Coleman KL, Chiaramonti M, Haddad B, Ranzenberger R, Henning H, Al Khashali H, Ray R, Darweesh B, Guthrie J, Heyl D and Evans HG: Phosphorylation of IGFBP-3 by casein kinase 2 blocks its interaction with hyaluronan, enabling HA-CD44 signaling leading to increased NSCLC cell survival and cisplatin resistance. Cells. 12:4052023. View Article : Google Scholar : PubMed/NCBI | |
Panasiti V, Naspi A, Devirgiliis V, Curzio M, Roberti V, Curzio G, Gobbi S, Calvieri S and Londei P: Correlation between insulin-like growth factor binding protein-3 serum level and melanoma progression. J Am Acad Dermatol. 64:865–872. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cobb LJ, Mehta H and Cohen P: Enhancing the apoptotic potential of insulin-like growth factor-binding protein-3 in prostate cancer by modulation of CK2 phosphorylation. Mol Endocrinol. 23:1624–1633. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bernstein HG, Keilhoff G, Dobrowolny H, Lendeckel U and Steiner J: From putative brain tumor marker to high cognitive abilities: Emerging roles of a disintegrin and metalloprotease (ADAM) 12 in the brain. J Chem Neuroanat. 109:1018462020. View Article : Google Scholar : PubMed/NCBI | |
Fujimoto M, Hwa V and Dauber A: Novel modulators of the growth hormone-insulin-like growth factor axis: Pregnancy-associated plasma protein-A2 and stanniocalcin-2. J Clin Res Pediatr Endocrinol. 9 (Suppl 2):S1–S8. 2017. | |
Cheng H, Fertig EJ, Ozawa H, Hatakeyama H, Howard JD, Perez J, Considine M, Thakar M, Ranaweera R, Krigsfeld G and Chung CH: Decreased SMAD4 expression is associated with induction of epithelial-to-mesenchymal transition and cetuximab resistance in head and neck squamous cell carcinoma. Cancer Biol Ther. 16:1252–1258. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Li J, Fu S, Ren P, Tang J, Wang N, Shi X, Wu J and Lin S: Up-regulation of insulin-like growth factor binding protein-3 is associated with brain metastasis in lung adenocarcinoma. Mol Cells. 42:321–332. 2019.PubMed/NCBI | |
Liu A, Yu C, Qiu C, Wu Q, Huang C, Li X, She X, Wan K, Liu L, Li M, et al: PRMT5 methylating SMAD4 activates TGF-β signaling and promotes colorectal cancer metastasis. Oncogene. 42:1572–1584. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kim HS, Lee WJ, Lee SW, Chae HW, Kim DH and Oh Y: Insulin-like growth factor binding protein-3 induces G1 cell cycle arrest with inhibition of cyclin-dependent kinase 2 and 4 in MCF-7 human breast cancer cells. Horm Metab Res. 42:165–172. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sheldon LA: Inhibition of E2F1 activity and cell cycle progression by arsenic via retinoblastoma protein. Cell Cycle. 16:2058–2072. 2017. View Article : Google Scholar : PubMed/NCBI | |
Martin JL, de Silva HC, Lin MZ, Scott CD and Baxter RC: Inhibition of insulin-like growth factor-binding protein-3 signaling through sphingosine kinase-1 sensitizes triple-negative breast cancer cells to EGF receptor blockade. Mol Cancer Ther. 13:316–328. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nagahashi M and Miyoshi Y: Targeting sphingosine-1-phosphate signaling in breast cancer. Int J Mol Sci. 25:33542024. View Article : Google Scholar : PubMed/NCBI | |
Kuhn H, Frille A, Petersen MA, Oberhuber-Kurth J, Hofmann L, Gläser A, Taubenheim S, Klagges S, Kraemer S, Broschewitz J, et al: IGFBP3 inhibits tumor growth and invasion of lung cancer cells and is associated with improved survival in lung cancer patients. Transl Oncol. 27:1015662023. View Article : Google Scholar : PubMed/NCBI | |
Jang HJ, Lee S, Hong E, Yim KJ, Choi YS, Jung JY and Kim ZH: Mychonastes sp. 246 suppresses human pancreatic cancer cell growth via IGFBP3-PI3K-mtor signaling. J Microbiol Biotechnol. 33:449–462. 2023. View Article : Google Scholar : PubMed/NCBI | |
Bao L, Liu H, You B, Gu M, Shi S, Shan Y, Li L, Chen J and You Y: Overexpression of IGFBP3 is associated with poor prognosis and tumor metastasis in nasopharyngeal carcinoma. Tumour Biol. 37:15043–15052. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim D, Park YJ and Hwang YS: Regulation of tumor growth and invasion in oral squamous cell carcinoma by the tumor microenvironment through the enhancement of IGFBP-3 expression. Anticancer Res. 44:5337–5349. 2024. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Hong CQ, Huang BL, Ding TY, Chu LY, Zhang B, Qu QQ, Li XH, Liu CT, Peng YH, et al: Serum insulin-like growth factor binding protein-3 as a potential biomarker for diagnosis and prognosis of oesophageal squamous cell carcinoma. Ann Med. 54:2153–2166. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Lv H, Li X, Liu J, Chen S, Chen Y, Jin Y, An R, Yu S and Wang Z: Erratum: Cyclovirobuxine inhibits the progression of clear cell renal cell carcinoma by suppressing the IGFBP3-AKT/STAT3/MAPK-snail signalling pathway: Erratum. Int J Biol Sci. 20:6279–6280. 2024. View Article : Google Scholar : PubMed/NCBI | |
Igarashi K, Yui Y, Watanabe K, Kumai J, Nishizawa Y, Miyaura C, Inada M and Sasagawa S: Molecular evidence of IGFBP-3 dependent and independent VD3 action and its nonlinear response on IGFBP-3 induction in prostate cancer cells. BMC Cancer. 20:8022020. View Article : Google Scholar : PubMed/NCBI | |
Yoshino K, Motoyama S, Koyota S, Shibuya K, Usami S, Maruyama K, Saito H, Minamiya Y, Sugiyama T and Ogawa J: IGFBP3 and BAG1 enhance radiation-induced apoptosis in squamous esophageal cancer cells. Biochem Biophys Res Commun. 404:1070–1075. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mofid MR, Gheysarzadeh A and Bakhtiyari S: Insulin-like growth factor binding protein 3 chemosensitizes pancreatic ductal adenocarcinoma through its death receptor. Pancreatology. 20:1442–1450. 2020. View Article : Google Scholar : PubMed/NCBI | |
He Y, Luo W, Liu Y, Wang Y, Ma C, Wu Q, Tian P, He D, Jia Z, Lv X, et al: IL-20RB mediates tumoral response to osteoclastic niches and promotes bone metastasis of lung cancer. J Clin Invest. 132:e1579172022. View Article : Google Scholar : PubMed/NCBI | |
Luo Q, Shi W, Dou B, Wang J, Peng W, Liu X, Zhao D, Tang F, Wu Y, Li X, et al: XBP1-IGFBP3 signaling pathway promotes NSCLC invasion and metastasis. Front Oncol. 11:6549952021. View Article : Google Scholar : PubMed/NCBI | |
Gharib TG, Chen G, Huang CC, Misek DE, Iannettoni MD, Hanash SM, Orringer MB and Beer DG: Genomic and proteomic analyses of vascular endothelial growth factor and insulin-like growth factor-binding protein 3 in lung adenocarcinomas. Clin Lung Cancer. 5:307–312. 2004. View Article : Google Scholar : PubMed/NCBI | |
Xia T, Tong S, Fan K, Zhai W, Fang B, Wang SH and Wang JJ: XBP1 induces MMP-9 expression to promote proliferation and invasion in human esophageal squamous cell carcinoma. Am J Cancer Res. 6:2031–2040. 2016.PubMed/NCBI | |
Chen S, Chen J, Hua X, Sun Y, Cui R, Sha J and Zhu X: The emerging role of XBP1 in cancer. Biomed Pharmacother. 127:1100692020. View Article : Google Scholar : PubMed/NCBI | |
Han JY, Choi BG, Choi JY, Lee SY and Ju SY: The prognostic significance of pretreatment plasma levels of insulin-like growth factor (IGF)-1, IGF-2, and IGF binding protein-3 in patients with advanced non-small cell lung cancer. Lung Cancer. 54:227–234. 2006. View Article : Google Scholar : PubMed/NCBI | |
Meek CL, Wallace AM, Forrest LM and McMillan DC: The relationship between the insulin-like growth factor-1 axis, weight loss, an inflammation-based score and survival in patients with inoperable non-small cell lung cancer. Clin Nutr. 29:206–209. 2010. View Article : Google Scholar : PubMed/NCBI | |
Z L: Analysis of the levels of IGF1, IGFBP3 and VEGF in the serum of patients with non-small cell lung cancer and their correlation with clinicopathological features. Soochow university. 2017. | |
Zhong LP, Yang X, Zhang L, Wei KJ, Pan HY, Zhou XJ, Li J, Chen WT and Zhang ZY: Overexpression of insulin-like growth factor binding protein 3 in oral squamous cell carcinoma. Oncol Rep. 20:1441–1447. 2008.PubMed/NCBI | |
Xu HY, Zhu DW, Zhong LP, Zhang ZY, Yang CZ, Yang X and Zhang P: Effects of insulin-like growth factor binding protein 3 on cell growth and tumorigenesis in oral squamous cell carcinoma. Transl Cancer Res. 8:1709–1717. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huttenlocher A and Horwitz AR: Integrins in cell migration. Cold Spring Harb Perspect Biol. 3:a0050742011. View Article : Google Scholar : PubMed/NCBI | |
Burrows C, Holly JM, Laurence NJ, Vernon EG, Carter JV, Clark MA, McIntosh J, McCaig C, Winters ZE and Perks CM: Insulin-like growth factor binding protein 3 has opposing actions on malignant and nonmalignant breast epithelial cells that are each reversible and dependent upon cholesterol-stabilized integrin receptor complexes. Endocrinology. 147:3484–3500. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yen YC, Hsiao JR, Jiang SS, Chang JS, Wang SH, Shen YY, Chen CH, Chang IS, Chang JY and Chen YW: Insulin-like growth factor-independent insulin-like growth factor binding protein 3 promotes cell migration and lymph node metastasis of oral squamous cell carcinoma cells by requirement of integrin β1. Oncotarget. 6:41837–41855. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mondal S, Adhikari N, Banerjee S, Amin SA and Jha T: Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur J Med Chem. 194:1122602020. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Gao J, Zhao C, Li S, Zhang D, Hou X, Zhuang X, Liu Q and Luo Y: Cyclin G2 inhibits oral squamous cell carcinoma growth and metastasis by binding to IGFBP3 and regulating the FAK-SRC-STAT signaling pathway. Front Oncol. 10:5605722020. View Article : Google Scholar : PubMed/NCBI | |
Ng EFY, Kaida A, Nojima H and Miura M: Roles of IGFBP-3 in cell migration and growth in an endophytic tongue squamous cell carcinoma cell line. Sci Rep. 12:115032022. View Article : Google Scholar : PubMed/NCBI | |
Kumar A, Singh P, Pandey A and Gosipatala SB: IGFBP3 gene promoter methylation analysis and its association with clinicopathological characteristics of colorectal carcinoma. Mol Biol Rep. 47:6919–6927. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shalmashi H, Safaei S, Zarredar H, Kermani TA, Hashemzadeh S and Navaz AM: Diagnostic significance of hypomethylated IGFBP3 and TWIST1 genes in patients with colorectal cancer. Adv Biomed Res. 12:2412023. View Article : Google Scholar : PubMed/NCBI | |
Williams AC, Smartt H, H-Zadeh AM, Macfarlane M, Paraskeva C and Collard TJ: Insulin-like growth factor binding protein 3 (IGFBP-3) potentiates trail-induced apoptosis of human colorectal carcinoma cells through inhibition of NF-kappaB. Cell Death Differ. 14:137–145. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chan YT, Zhang C, Wu J, Lu P, Xu L, Yuan H, Feng Y, Chen ZS and Wang N: Biomarkers for diagnosis and therapeutic options in hepatocellular carcinoma. Mol Cancer. 23:1892024. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li X, Zhang CC, Lin XT, Zhang J, Zhang YJ, Yu HQ, Liu ZY, Gong Y, Zhang LD and Xie CM: Elevated expression of WSB2 degrades P53 and activates the IGFBP3-AKT-mTOR-dependent pathway to drive hepatocellular carcinoma. Exp Mol Med. 56:177–191. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wu D, Yu HQ, Xiong HJ, Zhang YJ, Lin XT, Zhang J, Wu W, Wang T, Liu XY and Xie CM: Elevated sodium pump α3 subunit expression promotes colorectal liver metastasis via the P53-PTEN/IGFBP3-AKT-mTOR axis. Front Oncol. 11:7438242021. View Article : Google Scholar : PubMed/NCBI | |
Hanafusa T, Shinji T, Shiraha H, Nouso K, Iwasaki Y, Yumoto E, Ono T and Koide N: Functional promoter upstream p53 regulatory sequence of IGFBP3 that is silenced by tumor specific methylation. BMC Cancer. 5:92005. View Article : Google Scholar : PubMed/NCBI | |
Aishima S, Basaki Y, Oda Y, Kuroda Y, Nishihara Y, Taguchi K, Taketomi A, Maehara Y, Hosoi F, Maruyama Y, et al: High expression of insulin-like growth factor binding protein-3 is correlated with lower portal invasion and better prognosis in human hepatocellular carcinoma. Cancer Sci. 97:1182–1190. 2006. View Article : Google Scholar : PubMed/NCBI | |
Liu QW, Li JY, Zhang XC, Liu Y, Liu QY, Xiao L, Zhang WJ, Wu HY, Deng KY and Xin HB: Human amniotic mesenchymal stem cells inhibit hepatocellular carcinoma in tumour-bearing mice. J Cell Mol Med. 24:10525–10541. 2020. View Article : Google Scholar : PubMed/NCBI | |
Alexia C, Fallot G, Lasfer M, Schweizer-Groyer G and Groyer A: An evaluation of the role of insulin-like growth factors (IGF) and of type-I IGF receptor signalling in hepatocarcinogenesis and in the resistance of hepatocarcinoma cells against drug-induced apoptosis. Biochem Pharmacol. 68:1003–1015. 2004. View Article : Google Scholar : PubMed/NCBI | |
Song M, Pan Q, Yang J, He J, Zeng J, Cheng S, Huang Y, Zhou ZQ, Zhu Q, Yang C, et al: Galectin-3 favours tumour metastasis via the activation of β-catenin signalling in hepatocellular carcinoma. Br J Cancer. 123:1521–1534. 2020. View Article : Google Scholar : PubMed/NCBI | |
Playford MP, Bicknell D, Bodmer WF and Macaulay VM: Insulin-like growth factor 1 regulates the location, stability, and transcriptional activity of beta-catenin. Proc Natl Acad Sci USA. 97:12103–12108. 2000. View Article : Google Scholar : PubMed/NCBI | |
Larkin L: Breast cancer genetics and risk assessment: An overview for the clinician. Climacteric. 26:229–234. 2023. View Article : Google Scholar : PubMed/NCBI | |
Harbeck N and Gnant M: Breast cancer. Lancet. 389:1134–1150. 2017. View Article : Google Scholar : PubMed/NCBI | |
Qiu N, He YF, Zhang SM, Zhan YT, Han GD, Jiang M, He WX, Zhou J, Liang HL, Ao X, et al: Cullin7 enhances resistance to trastuzumab therapy in Her2 positive breast cancer via degrading IRS-1 and downregulating IGFBP-3 to activate the PI3K/AKT pathway. Cancer Lett. 464:25–36. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ingermann AR, Yang YF, Han J, Mikami A, Garza AE, Mohanraj L, Fan L, Idowu M, Ware JL, Kim HS, et al: Identification of a novel cell death receptor mediating IGFBP-3-induced anti-tumor effects in breast and prostate cancer. J Biol Chem. 285:30233–30246. 2010. View Article : Google Scholar : PubMed/NCBI | |
Butt AJ, Firth SM, King MA and Baxter RC: Insulin-like growth factor-binding protein-3 modulates expression of Bax and Bcl-2 and potentiates p53-independent radiation-induced apoptosis in human breast cancer cells. J Biol Chem. 275:39174–39181. 2000. View Article : Google Scholar : PubMed/NCBI | |
Jia Y, Lee KW, Swerdloff R, Hwang D, Cobb LJ, Hikim AS, Lue YH, Cohen P and Wang C: Interaction of insulin-like growth factor-binding protein-3 and BAX in mitochondria promotes male germ cell apoptosis. J Biol Chem. 285:1726–1732. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pitson SM, Xia P, Leclercq TM, Moretti PA, Zebol JR, Lynn HE, Wattenberg BW and Vadas MA: Phosphorylation-dependent translocation of sphingosine kinase to the plasma membrane drives its oncogenic signalling. J Exp Med. 201:49–54. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bai R, Cui Z, Ma Y, Wu Y, Wang N, Huang L, Yao Q and Sun J: The NF-κB-modulated miR-19a-3p enhances malignancy of human ovarian cancer cells through inhibition of IGFBP-3 expression. Mol Carcinog. 58:2254–2265. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Shao C, Liu J, Sun H, Yao B, Ma C, Xu H and Zhu W: ULK2 suppresses ovarian cancer cell migration and invasion by elevating IGFBP3. PeerJ. 12:e176282024. View Article : Google Scholar : PubMed/NCBI | |
Shih HJ, Chen CL and Torng PL: IGFBP3 inhibits angiogenesis through intracellular regulation of thbs1 expression. Am J Cancer Res. 10:1728–1744. 2020.PubMed/NCBI | |
Shih HJ, Chang HF, Chen CL and Torng PL: Differential expression of hypoxia-inducible factors related to the invasiveness of epithelial ovarian cancer. Sci Rep. 11:229252021. View Article : Google Scholar : PubMed/NCBI | |
Feldser D, Agani F, Iyer NV, Pak B, Ferreira G and Semenza GL: Reciprocal positive regulation of hypoxia-inducible factor 1alpha and insulin-like growth factor 2. Cancer Res. 59:3915–3918. 1999.PubMed/NCBI | |
Yan Y, He M, Zhao L, Wu H, Zhao Y, Han L, Wei B, Ye D, Lv X, Wang Y, et al: A novel HIF-2α targeted inhibitor suppresses hypoxia-induced breast cancer stemness via SOD2-mtROS-PDI/GPR78-UPRER axis. Cell Death Differ. 29:1769–1789. 2022. View Article : Google Scholar : PubMed/NCBI | |
Du L, Dou K, Zhang D, Xia H, Liang N, Wang N, Sun J and Bai R: MiR-19a-3p promotes aerobic glycolysis in ovarian cancer cells via IGFBP3/PI3K/AKT pathway. Folia Biol (Praha). 69:163–172. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chuang ST, Patton KT, Schafernak KT, Papavero V, Lin F, Baxter RC, Teh BT and Yang XJ: Over expression of insulin-like growth factor binding protein 3 in clear cell renal cell carcinoma. J Urol. 179:445–449. 2008. View Article : Google Scholar : PubMed/NCBI | |
Braczkowski R, Białożyt M, Plato M, Mazurek U and Braczkowska B: Expression of insulin-like growth factor family genes in clear cell renal cell carcinoma. Contemp Oncol (Pozn). 20:130–136. 2016.PubMed/NCBI | |
Liu Y, Lv H, Li X, Liu J, Chen S, Chen Y, Jin Y, An R, Yu S and Wang Z: Cyclovirobuxine inhibits the progression of clear cell renal cell carcinoma by suppressing the IGFBP3-AKT/STAT3/MAPK-snail signalling pathway. Int J Biol Sci. 17:3522–3537. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rosendahl AH and Forsberg G: IGF-I and IGFBP-3 augment transforming growth factor-beta actions in human renal carcinoma cells. Kidney Int. 70:1584–1590. 2006. View Article : Google Scholar : PubMed/NCBI | |
Shariat SF, Lamb DJ, Kattan MW, Nguyen C, Kim J, Beck J, Wheeler TM and Slawin KM: Association of preoperative plasma levels of insulin-like growth factor I and insulin-like growth factor binding proteins-2 and −3 with prostate cancer invasion, progression, and metastasis. J Clin Oncol. 20:833–841. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zhong K, Luo W, Li N, Tan X, Li Y, Yin S, Huang Y, Fang L, Ma W, Cai Y and Yin Y: CDK12 regulates angiogenesis of advanced prostate cancer by IGFBP3. Int J Oncol. 64:202024. View Article : Google Scholar : PubMed/NCBI | |
Boyle BJ, Zhao XY, Cohen P and Feldman D: Insulin-like growth factor binding protein-3 mediates 1 alpha,25-dihydroxyvitamin d(3) growth inhibition in the LNCaP prostate cancer cell line through p21/WAF1. J Urol. 165:1319–1324. 2001. View Article : Google Scholar : PubMed/NCBI | |
Carlberg C and Muñoz A: An update on vitamin D signaling and cancer. Semin Cancer Biol. 79:217–230. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jeon SM and Shin EA: Exploring vitamin D metabolism and function in cancer. Exp Mol Med. 50:1–14. 2018. View Article : Google Scholar | |
Baxter RC: Nuclear actions of insulin-like growth factor binding protein-3. Gene. 569:7–13. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lee KW and Cohen P: Nuclear effects: Unexpected intracellular actions of insulin-like growth factor binding protein-3. J Endocrinol. 175:33–40. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bowen C, Ostrowski MC, Leone G and Gelmann EP: Loss of PTEN accelerates NKX3.1 degradation to promote prostate cancer progression. Cancer Res. 79:4124–4134. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang PJ, Hu XY, Liu CY, Chen ZB, Ni NN, Yu Y, Yang LN, Huang ZQ, Liu QW and Jiang AL: The inhibitory effects of NKX3.1 on IGF-1R expression and its signalling pathway in human prostatic carcinoma PC3 cells. Asian J Androl. 14:493–498. 2012. View Article : Google Scholar : PubMed/NCBI | |
Muhlbradt E, Asatiani E, Ortner E, Wang A and Gelmann EP: NKX3.1 activates expression of insulin-like growth factor binding protein-3 to mediate insulin-like growth factor-I signaling and cell proliferation. Cancer Res. 69:2615–2622. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen CD and Sawyers CL: NF-kappa B activates prostate-specific antigen expression and is upregulated in androgen-independent prostate cancer. Mol Cell Biol. 22:2862–2870. 2002. View Article : Google Scholar : PubMed/NCBI | |
Al-Rashidi RR, Noraldeen SAM, Kareem AK, Mahmoud AK, Kadhum WR, Ramírez-Coronel AA, Iswanto AH, Obaid RF, Jalil AT, Mustafa YF, et al: Malignant function of nuclear factor-kappaB axis in prostate cancer: Molecular interactions and regulation by non-coding RNAs. Pharmacol Res. 194:1067752023. View Article : Google Scholar : PubMed/NCBI | |
Mu HQ, He YH, Wang SB, Yang S, Wang YJ, Nan CJ, Bao YF, Xie QP and Chen YH: Mir-130b/TNF-α/NF-κB/VEGFA loop inhibits prostate cancer angiogenesis. Clin Transl Oncol. 22:111–121. 2020. View Article : Google Scholar : PubMed/NCBI | |
Han J, Jogie-Brahim S, Harada A and Oh Y: Insulin-like growth factor-binding protein-3 suppresses tumor growth via activation of caspase-dependent apoptosis and cross-talk with NF-κB signaling. Cancer Lett. 307:200–210. 2011. View Article : Google Scholar : PubMed/NCBI | |
Huang S, Pettaway CA, Uehara H, Bucana CD and Fidler IJ: Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene. 20:4188–4197. 2001. View Article : Google Scholar : PubMed/NCBI | |
Smeland S, Bielack SS, Whelan J, Bernstein M, Hogendoorn P, Krailo MD, Gorlick R, Janeway KA, Ingleby FC, Anninga J, et al: Survival and prognosis with osteosarcoma: Outcomes in more than 2000 patients in the EURAMOS-1 (European and American Osteosarcoma Study) cohort. Eur J Cancer. 109:36–50. 2019. View Article : Google Scholar : PubMed/NCBI | |
Isakoff MS, Bielack SS, Meltzer P and Gorlick R: Osteosarcoma: Current treatment and a collaborative pathway to success. J Clin Oncol. 33:3029–3035. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tan Y, Chen L, Li S, Hao H and Zhang D: Mir-384 inhibits malignant biological behavior such as proliferation and invasion of osteosarcoma by regulating IGFBP3. Technol Cancer Res Treat. 19:15330338209091252020. View Article : Google Scholar : PubMed/NCBI | |
Li M, Wu W, Deng S, Shao Z and Jin X: TRAIP modulates the IGFBP3/AKT pathway to enhance the invasion and proliferation of osteosarcoma by promoting KANK1 degradation. Cell Death Dis. 12:7672021. View Article : Google Scholar : PubMed/NCBI | |
Ressler S, Radhi J, Aigner T, Loo C, Zwerschke W and Sergi C: Insulin-like growth factor-binding protein-3 in osteosarcomas and normal bone tissues. Anticancer Res. 29:2579–2587. 2009.PubMed/NCBI | |
Schedlich LJ, Yenson VM and Baxter RC: TGF-β-induced expression of IGFBP-3 regulates IGF1R signaling in human osteosarcoma cells. Mol Cell Endocrinol. 377:56–64. 2013. View Article : Google Scholar : PubMed/NCBI | |
Vaezi MA, Eghtedari AR, Safizadeh B, Babaheidarian P, Salimi V, Adjaminezhad-Fard F, Yarahmadi S, Mirzaei A, Rahbar M and Tavakoli-Yaraki M: Evaluating the local expression pattern of IGF-1R in tumor tissues and the circulating levels of IGF-1, IGFBP-1, and IGFBP-3 in the blood of patients with different primary bone tumors. Front Oncol. 12:10964382022. View Article : Google Scholar : PubMed/NCBI | |
Chao CC, Lee WF, Yang WH, Lin CY, Han CK, Huang YL, Fong YC, Wu MH, Lee IT, Tsai YH, et al: Igfbp-3 stimulates human osteosarcoma cell migration by upregulating VCAM-1 expression. Life Sci. 265:1187582021. View Article : Google Scholar : PubMed/NCBI | |
Du Q, Liu P, Zhang C, Liu T, Wang W, Shang C, Wu J, Liao Y, Chen Y, Huang J, et al: FASN promotes lymph node metastasis in cervical cancer via cholesterol reprogramming and lymphangiogenesis. Cell Death Dis. 13:4882022. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Chang A, Zhou W, Zhao H and Zhuo X: IGFBP3 as an indicator of lymph node metastasis and unfavorable prognosis for papillary thyroid carcinoma. Clin Exp Med. 20:515–525. 2020. View Article : Google Scholar : PubMed/NCBI | |
Giuliano M, Lauricella M, Vassallo E, Carabillò M, Vento R and Tesoriere G: Induction of apoptosis in human retinoblastoma cells by topoisomerase inhibitors. Invest Ophthalmol Vis Sci. 39:1300–1311. 1998.PubMed/NCBI | |
Naspi A, Zingariello M, Sancillo L, Panasiti V, Polinari D, Martella M, Alba RR and Londei P: IGFBP-3 inhibits wnt signaling in metastatic melanoma cells. Mol Carcinog. 56:681–693. 2017. View Article : Google Scholar : PubMed/NCBI | |
Naspi A, Panasiti V, Abbate F, Roberti V, Devirgiliis V, Curzio M, Borghi M, Lozupone F, Carotti S, Morini S, et al: Insulin-like-growth-factor-binding-protein-3 (IGFBP-3) contrasts melanoma progression in vitro and in vivo. PLoS One. 9:e986412014. View Article : Google Scholar : PubMed/NCBI | |
Wu N, Sun Q, Yang L, Sun H, Zhou Z, Hu Q, Li C, Wang D, Zhang L, Hu Y and Cong X: HDAC3 and SNAIL2 complex promotes melanoma metastasis by epigenetic repression of IGFBP3. Int J Biol Macromol. 300:1403102025. View Article : Google Scholar : PubMed/NCBI | |
Baricević I, Masnikosa R, Lagundzin D, Golubović V and Nedić O: Alterations of insulin-like growth factor binding protein 3 (IGFBP-3) glycosylation in patients with breast tumours. Clin Biochem. 43:725–731. 2010. View Article : Google Scholar : PubMed/NCBI | |
Miyamoto S, Yano K, Sugimoto S, Ishii G, Hasebe T, Endoh Y, Kodama K, Goya M, Chiba T and Ochiai A: Matrix metalloproteinase-7 facilitates insulin-like growth factor bioavailability through its proteinase activity on insulin-like growth factor binding protein 3. Cancer Res. 64:665–671. 2004. View Article : Google Scholar : PubMed/NCBI | |
Helle SI, Geisler S, Aas T, Paulsen T, Holly JM and Lønning PE: Plasma insulin-like growth factor binding protein-3 proteolysis is increased in primary breast cancer. Br J Cancer. 85:74–77. 2001. View Article : Google Scholar : PubMed/NCBI | |
Blat C, Villaudy J and Binoux M: In vivo proteolysis of serum insulin-like growth factor (IGF) binding protein-3 results in increased availability of IGF to target cells. J Clin Invest. 93:2286–2290. 1994. View Article : Google Scholar : PubMed/NCBI | |
Cai Q, Kim M, Harada A, Idowu MO, Sundaresan G, Zweit J and Oh Y: Alpha-1 antitrypsin inhibits tumorigenesis and progression of colitis-associated colon cancer through suppression of inflammatory neutrophil-activated serine proteases and IGFBP-3 proteolysis. Int J Mol Sci. 23:137372022. View Article : Google Scholar : PubMed/NCBI | |
Maile LA, Gill ZP, Perks CM and Holly JM: The role of cell surface attachment and proteolysis in the insulin-like growth factor (IGF)-independent effects of IGF-binding protein-3 on apoptosis in breast epithelial cells. Endocrinology. 140:4040–4045. 1999. View Article : Google Scholar : PubMed/NCBI | |
Mitsui Y, Mochizuki S, Kodama T, Shimoda M, Ohtsuka T, Shiomi T, Chijiiwa M, Ikeda T, Kitajima M and Okada Y: Adam28 is overexpressed in human breast carcinomas: Implications for carcinoma cell proliferation through cleavage of insulin-like growth factor binding protein-3. Cancer Res. 66:9913–9920. 2006. View Article : Google Scholar : PubMed/NCBI | |
Oh SH, Whang YM, Min HY, Han SH, Kang JH, Song KH, Glisson BS, Kim YH and Lee HY: Histone deacetylase inhibitors enhance the apoptotic activity of insulin-like growth factor binding protein-3 by blocking PKC-induced IGFBP-3 degradation. Int J Cancer. 131:2253–2263. 2012. View Article : Google Scholar : PubMed/NCBI | |
Overgaard MT, Boldt HB, Laursen LS, Sottrup-Jensen L, Conover CA and Oxvig C: Pregnancy-associated plasma protein-A2 (PAPP-A2), a novel insulin-like growth factor-binding protein-5 proteinase. J Biol Chem. 276:21849–21853. 2001. View Article : Google Scholar : PubMed/NCBI | |
Koistinen H, Paju A, Koistinen R, Finne P, Lövgren J, Wu P, Seppälä M and Stenman UH: Prostate-specific antigen and other prostate-derived proteases cleave IGFBP-3, but prostate cancer is not associated with proteolytically cleaved circulating IGFBP-3. Prostate. 50:112–118. 2002. View Article : Google Scholar : PubMed/NCBI | |
Fujimoto M, Khoury JC, Khoury PR, Kalra B, Kumar A, Sluss P, Oxvig C, Hwa V and Dauber A: Anthropometric and biochemical correlates of PAPP-A2, free IGF-I, and IGFBP-3 in childhood. Eur J Endocrinol. 182:363–374. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen CH, Chen PY, Lin YY, Feng LY, Chen SH, Chen CY, Huang YC, Huang CY, Jung SM, Chen LY and Wei KC: Suppression of tumor growth via IGFBP3 depletion as a potential treatment in glioma. J Neurosurg. 132:168–179. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kim MS and Lee DY: Insulin-like growth factor binding protein-3 enhances etoposide-induced cell growth inhibition by suppressing the NF-κB activity in gastric cancer cells. Mol Cell Biochem. 403:107–113. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rhodes DR, Barrette TR, Rubin MA, Ghosh D and Chinnaiyan AM: Meta-analysis of microarrays: Interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Cancer Res. 62:4427–4433. 2002.PubMed/NCBI | |
Hou YL, Luo P, Ji GY and Chen H: Clinical significance of serum IGFBP-3 in colorectal cancer. J Clin Lab Anal. 33:e229122019. View Article : Google Scholar : PubMed/NCBI | |
Abdolhoseinpour H, Mehrabi F, Shahraki K, Khoshnood RJ, Masoumi B, Yahaghi E and Goudarzi PK: Investigation of serum levels and tissue expression of two genes IGFBP-2 and IGFBP-3 act as potential biomarker for predicting the progression and survival in patients with glioblastoma multiforme. J Neurol Sci. 366:202–206. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Wang M, Wang H, Yang J, Li X, Zhang R, Ding X, Hou H, Zhou J and Wu M: Mettl3 inhibitor suppresses the progression of prostate cancer via IGFBP3/AKT pathway and synergizes with PARP inhibitor. Biomed Pharmacother. 179:1173662024. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Qin J, Wen Z, Liu Y, Chen C, Wang C, Li H and Yang X: Effects of natural extract interventions in prostate cancer: A systematic review and network meta-analysis. Phytomedicine. 129:1555982024. View Article : Google Scholar : PubMed/NCBI | |
Singh RP, Tyagi AK, Dhanalakshmi S, Agarwal R and Agarwal C: Grape seed extract inhibits advanced human prostate tumor growth and angiogenesis and upregulates insulin-like growth factor binding protein-3. Int J Cancer. 108:733–740. 2004. View Article : Google Scholar : PubMed/NCBI | |
Buckbinder L, Talbott R, Velasco-Miguel S, Takenaka I, Faha B, Seizinger BR and Kley N: Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature. 377:646–649. 1995. View Article : Google Scholar : PubMed/NCBI | |
Whittaker S, Marais R and Zhu AX: The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene. 29:4989–5005. 2010. View Article : Google Scholar : PubMed/NCBI | |
Subramaniam K, Ooi LL and Hui KM: Transcriptional down-regulation of IGFBP-3 in human hepatocellular carcinoma cells is mediated by the binding of TIA-1 to its AT-rich element in the 3′-untranslated region. Cancer Lett. 297:259–268. 2010. View Article : Google Scholar : PubMed/NCBI |