|
1
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: Globocan estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Sun Y, Ai X, Shen S, Gu L and Lu S:
Detection and correlation analysis of serum cytokines in
non-small-cell lung cancer patients with bone and non-bone
metastases. Patient Prefer Adherence. 9:1165–1169. 2015.PubMed/NCBI
|
|
3
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Soerjomataram I, Cabasag C, Bardot A,
Fidler-Benaoudia MM, Miranda-Filho A, Ferlay J, Parkin DM,
Ranganathan R, Piñeros M, Znaor A, et al: Cancer survival in
Africa, Central and South America, And Asia (survcan-3): A
population-based benchmarking study in 32 countries. Lancet Oncol.
24:22–32. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Cai Q, Dozmorov M and Oh Y:
IGFBP-3/IGFBP-3 receptor system as an anti-tumor and
anti-metastatic signaling in cancer. Cells. 9:12612020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
MacParland SA, Liu JC, Ma XZ, Innes BT,
Bartczak AM, Gage BK, Manuel J, Khuu N, Echeverri J, Linares I, et
al: Single cell RNA sequencing of human liver reveals distinct
intrahepatic macrophage populations. Nat Commun. 9:43832018.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Yaqoob U, Luo F, Greuter T, Sakrikar NJ,
Sehrawat TS, Lu J, Hu X, Gao J, Kostallari E, Chen J, et al:
GIPC-regulated IGFBP-3 promotes HSC migration in vitro and portal
hypertension in vivo through a β1-integrin pathway. Cell Mol
Gastroenterol Hepatol. 10:545–559. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Fujimoto M, Andrew M and Dauber A:
Disorders caused by genetic defects associated with GH-dependent
genes: Pappa2 defects. Mol Cell Endocrinol. 518:1109672020.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Yamada PM and Lee KW: Perspectives in
mammalian IGFBP-3 biology: Local vs. systemic action. Am J Physiol
Cell Physiol. 296:C954–C976. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Coleman KL, Chiaramonti M, Haddad B,
Ranzenberger R, Henning H, Al Khashali H, Ray R, Darweesh B,
Guthrie J, Heyl D and Evans HG: Phosphorylation of IGFBP-3 by
casein kinase 2 blocks its interaction with hyaluronan, enabling
HA-CD44 signaling leading to increased NSCLC cell survival and
cisplatin resistance. Cells. 12:4052023. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Panasiti V, Naspi A, Devirgiliis V, Curzio
M, Roberti V, Curzio G, Gobbi S, Calvieri S and Londei P:
Correlation between insulin-like growth factor binding protein-3
serum level and melanoma progression. J Am Acad Dermatol.
64:865–872. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Cobb LJ, Mehta H and Cohen P: Enhancing
the apoptotic potential of insulin-like growth factor-binding
protein-3 in prostate cancer by modulation of CK2 phosphorylation.
Mol Endocrinol. 23:1624–1633. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Bernstein HG, Keilhoff G, Dobrowolny H,
Lendeckel U and Steiner J: From putative brain tumor marker to high
cognitive abilities: Emerging roles of a disintegrin and
metalloprotease (ADAM) 12 in the brain. J Chem Neuroanat.
109:1018462020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Fujimoto M, Hwa V and Dauber A: Novel
modulators of the growth hormone-insulin-like growth factor axis:
Pregnancy-associated plasma protein-A2 and stanniocalcin-2. J Clin
Res Pediatr Endocrinol. 9 (Suppl 2):S1–S8. 2017.
|
|
15
|
Cheng H, Fertig EJ, Ozawa H, Hatakeyama H,
Howard JD, Perez J, Considine M, Thakar M, Ranaweera R, Krigsfeld G
and Chung CH: Decreased SMAD4 expression is associated with
induction of epithelial-to-mesenchymal transition and cetuximab
resistance in head and neck squamous cell carcinoma. Cancer Biol
Ther. 16:1252–1258. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Yang L, Li J, Fu S, Ren P, Tang J, Wang N,
Shi X, Wu J and Lin S: Up-regulation of insulin-like growth factor
binding protein-3 is associated with brain metastasis in lung
adenocarcinoma. Mol Cells. 42:321–332. 2019.PubMed/NCBI
|
|
17
|
Liu A, Yu C, Qiu C, Wu Q, Huang C, Li X,
She X, Wan K, Liu L, Li M, et al: PRMT5 methylating SMAD4 activates
TGF-β signaling and promotes colorectal cancer metastasis.
Oncogene. 42:1572–1584. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kim HS, Lee WJ, Lee SW, Chae HW, Kim DH
and Oh Y: Insulin-like growth factor binding protein-3 induces G1
cell cycle arrest with inhibition of cyclin-dependent kinase 2 and
4 in MCF-7 human breast cancer cells. Horm Metab Res. 42:165–172.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Sheldon LA: Inhibition of E2F1 activity
and cell cycle progression by arsenic via retinoblastoma protein.
Cell Cycle. 16:2058–2072. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Martin JL, de Silva HC, Lin MZ, Scott CD
and Baxter RC: Inhibition of insulin-like growth factor-binding
protein-3 signaling through sphingosine kinase-1 sensitizes
triple-negative breast cancer cells to EGF receptor blockade. Mol
Cancer Ther. 13:316–328. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Nagahashi M and Miyoshi Y: Targeting
sphingosine-1-phosphate signaling in breast cancer. Int J Mol Sci.
25:33542024. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kuhn H, Frille A, Petersen MA,
Oberhuber-Kurth J, Hofmann L, Gläser A, Taubenheim S, Klagges S,
Kraemer S, Broschewitz J, et al: IGFBP3 inhibits tumor growth and
invasion of lung cancer cells and is associated with improved
survival in lung cancer patients. Transl Oncol. 27:1015662023.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Jang HJ, Lee S, Hong E, Yim KJ, Choi YS,
Jung JY and Kim ZH: Mychonastes sp. 246 suppresses human pancreatic
cancer cell growth via IGFBP3-PI3K-mtor signaling. J Microbiol
Biotechnol. 33:449–462. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Bao L, Liu H, You B, Gu M, Shi S, Shan Y,
Li L, Chen J and You Y: Overexpression of IGFBP3 is associated with
poor prognosis and tumor metastasis in nasopharyngeal carcinoma.
Tumour Biol. 37:15043–15052. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Kim D, Park YJ and Hwang YS: Regulation of
tumor growth and invasion in oral squamous cell carcinoma by the
tumor microenvironment through the enhancement of IGFBP-3
expression. Anticancer Res. 44:5337–5349. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Luo Y, Hong CQ, Huang BL, Ding TY, Chu LY,
Zhang B, Qu QQ, Li XH, Liu CT, Peng YH, et al: Serum insulin-like
growth factor binding protein-3 as a potential biomarker for
diagnosis and prognosis of oesophageal squamous cell carcinoma. Ann
Med. 54:2153–2166. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Liu Y, Lv H, Li X, Liu J, Chen S, Chen Y,
Jin Y, An R, Yu S and Wang Z: Erratum: Cyclovirobuxine inhibits the
progression of clear cell renal cell carcinoma by suppressing the
IGFBP3-AKT/STAT3/MAPK-snail signalling pathway: Erratum. Int J Biol
Sci. 20:6279–6280. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Igarashi K, Yui Y, Watanabe K, Kumai J,
Nishizawa Y, Miyaura C, Inada M and Sasagawa S: Molecular evidence
of IGFBP-3 dependent and independent VD3 action and its nonlinear
response on IGFBP-3 induction in prostate cancer cells. BMC Cancer.
20:8022020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Yoshino K, Motoyama S, Koyota S, Shibuya
K, Usami S, Maruyama K, Saito H, Minamiya Y, Sugiyama T and Ogawa
J: IGFBP3 and BAG1 enhance radiation-induced apoptosis in squamous
esophageal cancer cells. Biochem Biophys Res Commun. 404:1070–1075.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Mofid MR, Gheysarzadeh A and Bakhtiyari S:
Insulin-like growth factor binding protein 3 chemosensitizes
pancreatic ductal adenocarcinoma through its death receptor.
Pancreatology. 20:1442–1450. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
He Y, Luo W, Liu Y, Wang Y, Ma C, Wu Q,
Tian P, He D, Jia Z, Lv X, et al: IL-20RB mediates tumoral response
to osteoclastic niches and promotes bone metastasis of lung cancer.
J Clin Invest. 132:e1579172022. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Luo Q, Shi W, Dou B, Wang J, Peng W, Liu
X, Zhao D, Tang F, Wu Y, Li X, et al: XBP1-IGFBP3 signaling pathway
promotes NSCLC invasion and metastasis. Front Oncol. 11:6549952021.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Gharib TG, Chen G, Huang CC, Misek DE,
Iannettoni MD, Hanash SM, Orringer MB and Beer DG: Genomic and
proteomic analyses of vascular endothelial growth factor and
insulin-like growth factor-binding protein 3 in lung
adenocarcinomas. Clin Lung Cancer. 5:307–312. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Xia T, Tong S, Fan K, Zhai W, Fang B, Wang
SH and Wang JJ: XBP1 induces MMP-9 expression to promote
proliferation and invasion in human esophageal squamous cell
carcinoma. Am J Cancer Res. 6:2031–2040. 2016.PubMed/NCBI
|
|
35
|
Chen S, Chen J, Hua X, Sun Y, Cui R, Sha J
and Zhu X: The emerging role of XBP1 in cancer. Biomed
Pharmacother. 127:1100692020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Han JY, Choi BG, Choi JY, Lee SY and Ju
SY: The prognostic significance of pretreatment plasma levels of
insulin-like growth factor (IGF)-1, IGF-2, and IGF binding
protein-3 in patients with advanced non-small cell lung cancer.
Lung Cancer. 54:227–234. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Meek CL, Wallace AM, Forrest LM and
McMillan DC: The relationship between the insulin-like growth
factor-1 axis, weight loss, an inflammation-based score and
survival in patients with inoperable non-small cell lung cancer.
Clin Nutr. 29:206–209. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Z L: Analysis of the levels of IGF1,
IGFBP3 and VEGF in the serum of patients with non-small cell lung
cancer and their correlation with clinicopathological features.
Soochow university. 2017.
|
|
39
|
Zhong LP, Yang X, Zhang L, Wei KJ, Pan HY,
Zhou XJ, Li J, Chen WT and Zhang ZY: Overexpression of insulin-like
growth factor binding protein 3 in oral squamous cell carcinoma.
Oncol Rep. 20:1441–1447. 2008.PubMed/NCBI
|
|
40
|
Xu HY, Zhu DW, Zhong LP, Zhang ZY, Yang
CZ, Yang X and Zhang P: Effects of insulin-like growth factor
binding protein 3 on cell growth and tumorigenesis in oral squamous
cell carcinoma. Transl Cancer Res. 8:1709–1717. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Huttenlocher A and Horwitz AR: Integrins
in cell migration. Cold Spring Harb Perspect Biol. 3:a0050742011.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Burrows C, Holly JM, Laurence NJ, Vernon
EG, Carter JV, Clark MA, McIntosh J, McCaig C, Winters ZE and Perks
CM: Insulin-like growth factor binding protein 3 has opposing
actions on malignant and nonmalignant breast epithelial cells that
are each reversible and dependent upon cholesterol-stabilized
integrin receptor complexes. Endocrinology. 147:3484–3500. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Yen YC, Hsiao JR, Jiang SS, Chang JS, Wang
SH, Shen YY, Chen CH, Chang IS, Chang JY and Chen YW: Insulin-like
growth factor-independent insulin-like growth factor binding
protein 3 promotes cell migration and lymph node metastasis of oral
squamous cell carcinoma cells by requirement of integrin β1.
Oncotarget. 6:41837–41855. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Mondal S, Adhikari N, Banerjee S, Amin SA
and Jha T: Matrix metalloproteinase-9 (MMP-9) and its inhibitors in
cancer: A minireview. Eur J Med Chem. 194:1122602020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Wang D, Gao J, Zhao C, Li S, Zhang D, Hou
X, Zhuang X, Liu Q and Luo Y: Cyclin G2 inhibits oral squamous cell
carcinoma growth and metastasis by binding to IGFBP3 and regulating
the FAK-SRC-STAT signaling pathway. Front Oncol. 10:5605722020.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ng EFY, Kaida A, Nojima H and Miura M:
Roles of IGFBP-3 in cell migration and growth in an endophytic
tongue squamous cell carcinoma cell line. Sci Rep. 12:115032022.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Kumar A, Singh P, Pandey A and Gosipatala
SB: IGFBP3 gene promoter methylation analysis and its association
with clinicopathological characteristics of colorectal carcinoma.
Mol Biol Rep. 47:6919–6927. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Shalmashi H, Safaei S, Zarredar H, Kermani
TA, Hashemzadeh S and Navaz AM: Diagnostic significance of
hypomethylated IGFBP3 and TWIST1 genes in patients with colorectal
cancer. Adv Biomed Res. 12:2412023. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Williams AC, Smartt H, H-Zadeh AM,
Macfarlane M, Paraskeva C and Collard TJ: Insulin-like growth
factor binding protein 3 (IGFBP-3) potentiates trail-induced
apoptosis of human colorectal carcinoma cells through inhibition of
NF-kappaB. Cell Death Differ. 14:137–145. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Chan YT, Zhang C, Wu J, Lu P, Xu L, Yuan
H, Feng Y, Chen ZS and Wang N: Biomarkers for diagnosis and
therapeutic options in hepatocellular carcinoma. Mol Cancer.
23:1892024. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Li X, Zhang CC, Lin XT, Zhang J, Zhang YJ,
Yu HQ, Liu ZY, Gong Y, Zhang LD and Xie CM: Elevated expression of
WSB2 degrades P53 and activates the IGFBP3-AKT-mTOR-dependent
pathway to drive hepatocellular carcinoma. Exp Mol Med. 56:177–191.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wu D, Yu HQ, Xiong HJ, Zhang YJ, Lin XT,
Zhang J, Wu W, Wang T, Liu XY and Xie CM: Elevated sodium pump α3
subunit expression promotes colorectal liver metastasis via the
P53-PTEN/IGFBP3-AKT-mTOR axis. Front Oncol. 11:7438242021.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Hanafusa T, Shinji T, Shiraha H, Nouso K,
Iwasaki Y, Yumoto E, Ono T and Koide N: Functional promoter
upstream p53 regulatory sequence of IGFBP3 that is silenced by
tumor specific methylation. BMC Cancer. 5:92005. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Aishima S, Basaki Y, Oda Y, Kuroda Y,
Nishihara Y, Taguchi K, Taketomi A, Maehara Y, Hosoi F, Maruyama Y,
et al: High expression of insulin-like growth factor binding
protein-3 is correlated with lower portal invasion and better
prognosis in human hepatocellular carcinoma. Cancer Sci.
97:1182–1190. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Liu QW, Li JY, Zhang XC, Liu Y, Liu QY,
Xiao L, Zhang WJ, Wu HY, Deng KY and Xin HB: Human amniotic
mesenchymal stem cells inhibit hepatocellular carcinoma in
tumour-bearing mice. J Cell Mol Med. 24:10525–10541. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Alexia C, Fallot G, Lasfer M,
Schweizer-Groyer G and Groyer A: An evaluation of the role of
insulin-like growth factors (IGF) and of type-I IGF receptor
signalling in hepatocarcinogenesis and in the resistance of
hepatocarcinoma cells against drug-induced apoptosis. Biochem
Pharmacol. 68:1003–1015. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Song M, Pan Q, Yang J, He J, Zeng J, Cheng
S, Huang Y, Zhou ZQ, Zhu Q, Yang C, et al: Galectin-3 favours
tumour metastasis via the activation of β-catenin signalling in
hepatocellular carcinoma. Br J Cancer. 123:1521–1534. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Playford MP, Bicknell D, Bodmer WF and
Macaulay VM: Insulin-like growth factor 1 regulates the location,
stability, and transcriptional activity of beta-catenin. Proc Natl
Acad Sci USA. 97:12103–12108. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Larkin L: Breast cancer genetics and risk
assessment: An overview for the clinician. Climacteric. 26:229–234.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Harbeck N and Gnant M: Breast cancer.
Lancet. 389:1134–1150. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Qiu N, He YF, Zhang SM, Zhan YT, Han GD,
Jiang M, He WX, Zhou J, Liang HL, Ao X, et al: Cullin7 enhances
resistance to trastuzumab therapy in Her2 positive breast cancer
via degrading IRS-1 and downregulating IGFBP-3 to activate the
PI3K/AKT pathway. Cancer Lett. 464:25–36. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ingermann AR, Yang YF, Han J, Mikami A,
Garza AE, Mohanraj L, Fan L, Idowu M, Ware JL, Kim HS, et al:
Identification of a novel cell death receptor mediating
IGFBP-3-induced anti-tumor effects in breast and prostate cancer. J
Biol Chem. 285:30233–30246. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Butt AJ, Firth SM, King MA and Baxter RC:
Insulin-like growth factor-binding protein-3 modulates expression
of Bax and Bcl-2 and potentiates p53-independent radiation-induced
apoptosis in human breast cancer cells. J Biol Chem.
275:39174–39181. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Jia Y, Lee KW, Swerdloff R, Hwang D, Cobb
LJ, Hikim AS, Lue YH, Cohen P and Wang C: Interaction of
insulin-like growth factor-binding protein-3 and BAX in
mitochondria promotes male germ cell apoptosis. J Biol Chem.
285:1726–1732. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Pitson SM, Xia P, Leclercq TM, Moretti PA,
Zebol JR, Lynn HE, Wattenberg BW and Vadas MA:
Phosphorylation-dependent translocation of sphingosine kinase to
the plasma membrane drives its oncogenic signalling. J Exp Med.
201:49–54. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Bai R, Cui Z, Ma Y, Wu Y, Wang N, Huang L,
Yao Q and Sun J: The NF-κB-modulated miR-19a-3p enhances malignancy
of human ovarian cancer cells through inhibition of IGFBP-3
expression. Mol Carcinog. 58:2254–2265. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Chen X, Shao C, Liu J, Sun H, Yao B, Ma C,
Xu H and Zhu W: ULK2 suppresses ovarian cancer cell migration and
invasion by elevating IGFBP3. PeerJ. 12:e176282024. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Shih HJ, Chen CL and Torng PL: IGFBP3
inhibits angiogenesis through intracellular regulation of thbs1
expression. Am J Cancer Res. 10:1728–1744. 2020.PubMed/NCBI
|
|
70
|
Shih HJ, Chang HF, Chen CL and Torng PL:
Differential expression of hypoxia-inducible factors related to the
invasiveness of epithelial ovarian cancer. Sci Rep. 11:229252021.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Feldser D, Agani F, Iyer NV, Pak B,
Ferreira G and Semenza GL: Reciprocal positive regulation of
hypoxia-inducible factor 1alpha and insulin-like growth factor 2.
Cancer Res. 59:3915–3918. 1999.PubMed/NCBI
|
|
72
|
Yan Y, He M, Zhao L, Wu H, Zhao Y, Han L,
Wei B, Ye D, Lv X, Wang Y, et al: A novel HIF-2α targeted inhibitor
suppresses hypoxia-induced breast cancer stemness via
SOD2-mtROS-PDI/GPR78-UPRER axis. Cell Death Differ.
29:1769–1789. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Du L, Dou K, Zhang D, Xia H, Liang N, Wang
N, Sun J and Bai R: MiR-19a-3p promotes aerobic glycolysis in
ovarian cancer cells via IGFBP3/PI3K/AKT pathway. Folia Biol
(Praha). 69:163–172. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Chuang ST, Patton KT, Schafernak KT,
Papavero V, Lin F, Baxter RC, Teh BT and Yang XJ: Over expression
of insulin-like growth factor binding protein 3 in clear cell renal
cell carcinoma. J Urol. 179:445–449. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Braczkowski R, Białożyt M, Plato M,
Mazurek U and Braczkowska B: Expression of insulin-like growth
factor family genes in clear cell renal cell carcinoma. Contemp
Oncol (Pozn). 20:130–136. 2016.PubMed/NCBI
|
|
76
|
Liu Y, Lv H, Li X, Liu J, Chen S, Chen Y,
Jin Y, An R, Yu S and Wang Z: Cyclovirobuxine inhibits the
progression of clear cell renal cell carcinoma by suppressing the
IGFBP3-AKT/STAT3/MAPK-snail signalling pathway. Int J Biol Sci.
17:3522–3537. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Rosendahl AH and Forsberg G: IGF-I and
IGFBP-3 augment transforming growth factor-beta actions in human
renal carcinoma cells. Kidney Int. 70:1584–1590. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Shariat SF, Lamb DJ, Kattan MW, Nguyen C,
Kim J, Beck J, Wheeler TM and Slawin KM: Association of
preoperative plasma levels of insulin-like growth factor I and
insulin-like growth factor binding proteins-2 and −3 with prostate
cancer invasion, progression, and metastasis. J Clin Oncol.
20:833–841. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhong K, Luo W, Li N, Tan X, Li Y, Yin S,
Huang Y, Fang L, Ma W, Cai Y and Yin Y: CDK12 regulates
angiogenesis of advanced prostate cancer by IGFBP3. Int J Oncol.
64:202024. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Boyle BJ, Zhao XY, Cohen P and Feldman D:
Insulin-like growth factor binding protein-3 mediates 1
alpha,25-dihydroxyvitamin d(3) growth inhibition in the LNCaP
prostate cancer cell line through p21/WAF1. J Urol. 165:1319–1324.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Carlberg C and Muñoz A: An update on
vitamin D signaling and cancer. Semin Cancer Biol. 79:217–230.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Jeon SM and Shin EA: Exploring vitamin D
metabolism and function in cancer. Exp Mol Med. 50:1–14. 2018.
View Article : Google Scholar
|
|
83
|
Baxter RC: Nuclear actions of insulin-like
growth factor binding protein-3. Gene. 569:7–13. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Lee KW and Cohen P: Nuclear effects:
Unexpected intracellular actions of insulin-like growth factor
binding protein-3. J Endocrinol. 175:33–40. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Bowen C, Ostrowski MC, Leone G and Gelmann
EP: Loss of PTEN accelerates NKX3.1 degradation to promote prostate
cancer progression. Cancer Res. 79:4124–4134. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Zhang PJ, Hu XY, Liu CY, Chen ZB, Ni NN,
Yu Y, Yang LN, Huang ZQ, Liu QW and Jiang AL: The inhibitory
effects of NKX3.1 on IGF-1R expression and its signalling pathway
in human prostatic carcinoma PC3 cells. Asian J Androl. 14:493–498.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Muhlbradt E, Asatiani E, Ortner E, Wang A
and Gelmann EP: NKX3.1 activates expression of insulin-like growth
factor binding protein-3 to mediate insulin-like growth factor-I
signaling and cell proliferation. Cancer Res. 69:2615–2622. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Chen CD and Sawyers CL: NF-kappa B
activates prostate-specific antigen expression and is upregulated
in androgen-independent prostate cancer. Mol Cell Biol.
22:2862–2870. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Al-Rashidi RR, Noraldeen SAM, Kareem AK,
Mahmoud AK, Kadhum WR, Ramírez-Coronel AA, Iswanto AH, Obaid RF,
Jalil AT, Mustafa YF, et al: Malignant function of nuclear
factor-kappaB axis in prostate cancer: Molecular interactions and
regulation by non-coding RNAs. Pharmacol Res. 194:1067752023.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Mu HQ, He YH, Wang SB, Yang S, Wang YJ,
Nan CJ, Bao YF, Xie QP and Chen YH: Mir-130b/TNF-α/NF-κB/VEGFA loop
inhibits prostate cancer angiogenesis. Clin Transl Oncol.
22:111–121. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Han J, Jogie-Brahim S, Harada A and Oh Y:
Insulin-like growth factor-binding protein-3 suppresses tumor
growth via activation of caspase-dependent apoptosis and cross-talk
with NF-κB signaling. Cancer Lett. 307:200–210. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Huang S, Pettaway CA, Uehara H, Bucana CD
and Fidler IJ: Blockade of NF-kappaB activity in human prostate
cancer cells is associated with suppression of angiogenesis,
invasion, and metastasis. Oncogene. 20:4188–4197. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Smeland S, Bielack SS, Whelan J, Bernstein
M, Hogendoorn P, Krailo MD, Gorlick R, Janeway KA, Ingleby FC,
Anninga J, et al: Survival and prognosis with osteosarcoma:
Outcomes in more than 2000 patients in the EURAMOS-1 (European and
American Osteosarcoma Study) cohort. Eur J Cancer. 109:36–50. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Isakoff MS, Bielack SS, Meltzer P and
Gorlick R: Osteosarcoma: Current treatment and a collaborative
pathway to success. J Clin Oncol. 33:3029–3035. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Tan Y, Chen L, Li S, Hao H and Zhang D:
Mir-384 inhibits malignant biological behavior such as
proliferation and invasion of osteosarcoma by regulating IGFBP3.
Technol Cancer Res Treat. 19:15330338209091252020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Li M, Wu W, Deng S, Shao Z and Jin X:
TRAIP modulates the IGFBP3/AKT pathway to enhance the invasion and
proliferation of osteosarcoma by promoting KANK1 degradation. Cell
Death Dis. 12:7672021. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Ressler S, Radhi J, Aigner T, Loo C,
Zwerschke W and Sergi C: Insulin-like growth factor-binding
protein-3 in osteosarcomas and normal bone tissues. Anticancer Res.
29:2579–2587. 2009.PubMed/NCBI
|
|
98
|
Schedlich LJ, Yenson VM and Baxter RC:
TGF-β-induced expression of IGFBP-3 regulates IGF1R signaling in
human osteosarcoma cells. Mol Cell Endocrinol. 377:56–64. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Vaezi MA, Eghtedari AR, Safizadeh B,
Babaheidarian P, Salimi V, Adjaminezhad-Fard F, Yarahmadi S,
Mirzaei A, Rahbar M and Tavakoli-Yaraki M: Evaluating the local
expression pattern of IGF-1R in tumor tissues and the circulating
levels of IGF-1, IGFBP-1, and IGFBP-3 in the blood of patients with
different primary bone tumors. Front Oncol. 12:10964382022.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Chao CC, Lee WF, Yang WH, Lin CY, Han CK,
Huang YL, Fong YC, Wu MH, Lee IT, Tsai YH, et al: Igfbp-3
stimulates human osteosarcoma cell migration by upregulating VCAM-1
expression. Life Sci. 265:1187582021. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Du Q, Liu P, Zhang C, Liu T, Wang W, Shang
C, Wu J, Liao Y, Chen Y, Huang J, et al: FASN promotes lymph node
metastasis in cervical cancer via cholesterol reprogramming and
lymphangiogenesis. Cell Death Dis. 13:4882022. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Huang Y, Chang A, Zhou W, Zhao H and Zhuo
X: IGFBP3 as an indicator of lymph node metastasis and unfavorable
prognosis for papillary thyroid carcinoma. Clin Exp Med.
20:515–525. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Giuliano M, Lauricella M, Vassallo E,
Carabillò M, Vento R and Tesoriere G: Induction of apoptosis in
human retinoblastoma cells by topoisomerase inhibitors. Invest
Ophthalmol Vis Sci. 39:1300–1311. 1998.PubMed/NCBI
|
|
104
|
Naspi A, Zingariello M, Sancillo L,
Panasiti V, Polinari D, Martella M, Alba RR and Londei P: IGFBP-3
inhibits wnt signaling in metastatic melanoma cells. Mol Carcinog.
56:681–693. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Naspi A, Panasiti V, Abbate F, Roberti V,
Devirgiliis V, Curzio M, Borghi M, Lozupone F, Carotti S, Morini S,
et al: Insulin-like-growth-factor-binding-protein-3 (IGFBP-3)
contrasts melanoma progression in vitro and in vivo. PLoS One.
9:e986412014. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Wu N, Sun Q, Yang L, Sun H, Zhou Z, Hu Q,
Li C, Wang D, Zhang L, Hu Y and Cong X: HDAC3 and SNAIL2 complex
promotes melanoma metastasis by epigenetic repression of IGFBP3.
Int J Biol Macromol. 300:1403102025. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Baricević I, Masnikosa R, Lagundzin D,
Golubović V and Nedić O: Alterations of insulin-like growth factor
binding protein 3 (IGFBP-3) glycosylation in patients with breast
tumours. Clin Biochem. 43:725–731. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Miyamoto S, Yano K, Sugimoto S, Ishii G,
Hasebe T, Endoh Y, Kodama K, Goya M, Chiba T and Ochiai A: Matrix
metalloproteinase-7 facilitates insulin-like growth factor
bioavailability through its proteinase activity on insulin-like
growth factor binding protein 3. Cancer Res. 64:665–671. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Helle SI, Geisler S, Aas T, Paulsen T,
Holly JM and Lønning PE: Plasma insulin-like growth factor binding
protein-3 proteolysis is increased in primary breast cancer. Br J
Cancer. 85:74–77. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Blat C, Villaudy J and Binoux M: In vivo
proteolysis of serum insulin-like growth factor (IGF) binding
protein-3 results in increased availability of IGF to target cells.
J Clin Invest. 93:2286–2290. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Cai Q, Kim M, Harada A, Idowu MO,
Sundaresan G, Zweit J and Oh Y: Alpha-1 antitrypsin inhibits
tumorigenesis and progression of colitis-associated colon cancer
through suppression of inflammatory neutrophil-activated serine
proteases and IGFBP-3 proteolysis. Int J Mol Sci. 23:137372022.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Maile LA, Gill ZP, Perks CM and Holly JM:
The role of cell surface attachment and proteolysis in the
insulin-like growth factor (IGF)-independent effects of IGF-binding
protein-3 on apoptosis in breast epithelial cells. Endocrinology.
140:4040–4045. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Mitsui Y, Mochizuki S, Kodama T, Shimoda
M, Ohtsuka T, Shiomi T, Chijiiwa M, Ikeda T, Kitajima M and Okada
Y: Adam28 is overexpressed in human breast carcinomas: Implications
for carcinoma cell proliferation through cleavage of insulin-like
growth factor binding protein-3. Cancer Res. 66:9913–9920. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Oh SH, Whang YM, Min HY, Han SH, Kang JH,
Song KH, Glisson BS, Kim YH and Lee HY: Histone deacetylase
inhibitors enhance the apoptotic activity of insulin-like growth
factor binding protein-3 by blocking PKC-induced IGFBP-3
degradation. Int J Cancer. 131:2253–2263. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Overgaard MT, Boldt HB, Laursen LS,
Sottrup-Jensen L, Conover CA and Oxvig C: Pregnancy-associated
plasma protein-A2 (PAPP-A2), a novel insulin-like growth
factor-binding protein-5 proteinase. J Biol Chem. 276:21849–21853.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Koistinen H, Paju A, Koistinen R, Finne P,
Lövgren J, Wu P, Seppälä M and Stenman UH: Prostate-specific
antigen and other prostate-derived proteases cleave IGFBP-3, but
prostate cancer is not associated with proteolytically cleaved
circulating IGFBP-3. Prostate. 50:112–118. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Fujimoto M, Khoury JC, Khoury PR, Kalra B,
Kumar A, Sluss P, Oxvig C, Hwa V and Dauber A: Anthropometric and
biochemical correlates of PAPP-A2, free IGF-I, and IGFBP-3 in
childhood. Eur J Endocrinol. 182:363–374. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Chen CH, Chen PY, Lin YY, Feng LY, Chen
SH, Chen CY, Huang YC, Huang CY, Jung SM, Chen LY and Wei KC:
Suppression of tumor growth via IGFBP3 depletion as a potential
treatment in glioma. J Neurosurg. 132:168–179. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Kim MS and Lee DY: Insulin-like growth
factor binding protein-3 enhances etoposide-induced cell growth
inhibition by suppressing the NF-κB activity in gastric cancer
cells. Mol Cell Biochem. 403:107–113. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Rhodes DR, Barrette TR, Rubin MA, Ghosh D
and Chinnaiyan AM: Meta-analysis of microarrays: Interstudy
validation of gene expression profiles reveals pathway
dysregulation in prostate cancer. Cancer Res. 62:4427–4433.
2002.PubMed/NCBI
|
|
121
|
Hou YL, Luo P, Ji GY and Chen H: Clinical
significance of serum IGFBP-3 in colorectal cancer. J Clin Lab
Anal. 33:e229122019. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Abdolhoseinpour H, Mehrabi F, Shahraki K,
Khoshnood RJ, Masoumi B, Yahaghi E and Goudarzi PK: Investigation
of serum levels and tissue expression of two genes IGFBP-2 and
IGFBP-3 act as potential biomarker for predicting the progression
and survival in patients with glioblastoma multiforme. J Neurol
Sci. 366:202–206. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Chen X, Wang M, Wang H, Yang J, Li X,
Zhang R, Ding X, Hou H, Zhou J and Wu M: Mettl3 inhibitor
suppresses the progression of prostate cancer via IGFBP3/AKT
pathway and synergizes with PARP inhibitor. Biomed Pharmacother.
179:1173662024. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Huang H, Qin J, Wen Z, Liu Y, Chen C, Wang
C, Li H and Yang X: Effects of natural extract interventions in
prostate cancer: A systematic review and network meta-analysis.
Phytomedicine. 129:1555982024. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Singh RP, Tyagi AK, Dhanalakshmi S,
Agarwal R and Agarwal C: Grape seed extract inhibits advanced human
prostate tumor growth and angiogenesis and upregulates insulin-like
growth factor binding protein-3. Int J Cancer. 108:733–740. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Buckbinder L, Talbott R, Velasco-Miguel S,
Takenaka I, Faha B, Seizinger BR and Kley N: Induction of the
growth inhibitor IGF-binding protein 3 by p53. Nature. 377:646–649.
1995. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Whittaker S, Marais R and Zhu AX: The role
of signaling pathways in the development and treatment of
hepatocellular carcinoma. Oncogene. 29:4989–5005. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Subramaniam K, Ooi LL and Hui KM:
Transcriptional down-regulation of IGFBP-3 in human hepatocellular
carcinoma cells is mediated by the binding of TIA-1 to its AT-rich
element in the 3′-untranslated region. Cancer Lett. 297:259–268.
2010. View Article : Google Scholar : PubMed/NCBI
|