
Treatment of ovarian cancer: From the past to the new era (Review)
- Authors:
- Khaled Alrosan
- Amjad Z. Alrosan
- Ghaith B. Heilat
- Alaa F. Alrousan
- Omar S. Gammoh
- Abdelrahim Alqudah
- Saba Madae'En
- Mohammed J. Alrousan
-
Affiliations: Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan, Department of General Surgery and Urology, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan, Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan, Department of General surgery, King Fahad Specialist Hospital, Tabuk 47717, Saudi Arabia - Published online on: June 3, 2025 https://doi.org/10.3892/ol.2025.15130
- Article Number: 384
-
Copyright: © Alrosan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Reid BM, Permuth JB and Sellers TA: Epidemiology of ovarian cancer: A review. Cancer Biol Med. 14:9–32. 2017. View Article : Google Scholar : PubMed/NCBI | |
Stewart C, Ralyea C and Lockwood S: Ovarian cancer: An integrated review. Semin Oncol Nurs. 35:151–156. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gaona-Luviano P, Medina-Gaona LA and Magaña-Pérez K: Epidemiology of ovarian cancer. Chin Clin Oncol. 9:472020. View Article : Google Scholar : PubMed/NCBI | |
Khanlarkhani N, Azizi E, Amidi F, Khodarahmian M, Salehi E, Pazhohan A, Farhood B, Mortezae K, Goradel NH and Nashtaei MS: Metabolic risk factors of ovarian cancer: A review. JBRA Assist Reprod. 26:335–347. 2022.PubMed/NCBI | |
Momenimovahed Z, Tiznobaik A, Taheri S and Salehiniya H: Ovarian cancer in the world: Epidemiology and risk factors. Int J Womens Health. 11:287–299. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nebgen DR, Lu KH and Bast RC: Novel approaches to ovarian cancer screening. Curr Oncol Rep. 21:752019. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Chan WC, Ngai CH, Lok V, Zhang L, Lucero-Prisno DE III, Xu W, Zheng ZJ, Elcarte E, Withers M, et al: Worldwide burden, risk factors, and temporal trends of ovarian cancer: A global study. Cancers (Basel). 14:22302022. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sambasivan S: Epithelial ovarian cancer: Review article. Cancer Treat Res Commun. 33:1006292022. View Article : Google Scholar : PubMed/NCBI | |
Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gajjar K, Ogden G, Mujahid MI and Razvi K: Symptoms and risk factors of ovarian cancer: A survey in primary care. ISRN Obstet Gynecol. 2012:7541972012. View Article : Google Scholar : PubMed/NCBI | |
Goff B: Symptoms associated with ovarian cancer. Clin Obstet Gynecol. 55:36–42. 2012. View Article : Google Scholar : PubMed/NCBI | |
Horackova K, Janatova M, Kleiblova P, Kleibl Z and Soukupova J: Early-onset ovarian cancer <30 years: What do we know about its genetic predisposition? Int J Mol Sci. 24:170202023. View Article : Google Scholar : PubMed/NCBI | |
Norquist BM, Harrell MI, Brady MF, Walsh T, Lee MK, Gulsuner S, Bernards SS, Casadei S, Yi Q, Burger RA, et al: Inherited mutations in women with ovarian carcinoma. JAMA Oncol. 2:482–490. 2016. View Article : Google Scholar : PubMed/NCBI | |
Choi JH, Wong AST, Huang HF and Leung PCK: Gonadotropins and ovarian cancer. Endocr Rev. 28:440–461. 2007. View Article : Google Scholar : PubMed/NCBI | |
Elias KM, Guo J and Bast RC Jr: Early detection of ovarian cancer. Hematol Oncol Clin North Am. 32:903–914. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zamwar UM and Anjankar AP: Aetiology, epidemiology, histopathology, classification, detailed evaluation, and treatment of ovarian cancer. Cureus. 14:e305612022.PubMed/NCBI | |
Berek JS, Renz M, Kehoe S, Kumar L and Friedlander M: Cancer of the ovary, fallopian tube, and peritoneum: 2021 update. Int J Gynecol Obstet. 155 (Suppl 1):S61–S85. 2021. View Article : Google Scholar | |
Zhang M, Cheng S, Jin Y, Zhao Y and Wang Y: Roles of CA125 in diagnosis, prediction, and oncogenesis of ovarian cancer. Biochim Biophys Acta Rev Cancer. 1875:1885032021. View Article : Google Scholar : PubMed/NCBI | |
Gupta KK, Gupta VK and Naumann RW: Ovarian cancer: Screening and future directions. Int J Gynecol Cancer. 29:195–200. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jacobs IJ, Menon U, Ryan A, Gentry-Maharaj A, Burnell M, Kalsi JK, Amso NN, Apostolidou S, Benjamin E, Cruickshank D, et al: Ovarian cancer screening and mortality in the UK collaborative trial of ovarian cancer screening (UKCTOCS): A randomised controlled trial. Lancet. 387:945–956. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Zhang J and Cao Y: Factors associated with serum CA125 level in women without ovarian cancer in the United States: A population-based study. BMC Cancer. 22:5442022. View Article : Google Scholar : PubMed/NCBI | |
Skates SJ, Menon U, MacDonald N, Rosenthal AN, Oram DH, Knapp RC and Jacobs IJ: Calculation of the risk of ovarian cancer from serial CA-125 values for preclinical detection in postmenopausal women. J Clin Oncol. 21 (10 Suppl):206s–210s. 2003. View Article : Google Scholar : PubMed/NCBI | |
Adolphi NL, Butler KS, Lovato DM, Tessier TE, Trujillo JE, Hathaway HJ, Fegan DL, Monson TC, Stevens TE, Huber DL, et al: Imaging of Her2-targeted magnetic nanoparticles for breast cancer detection: Comparison of SQUID-detected magnetic relaxometry and MRI. Contrast Media Mol Imaging. 7:308–319. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wan W, Liu H, Zou J, Xie T, Zhang G, Ying W and Zou X: The optimization and application of photodynamic diagnosis and autofluorescence imaging in tumor diagnosis and guided surgery: Current status and future prospects. Front Oncol. 14:15034042025. View Article : Google Scholar : PubMed/NCBI | |
Lheureux S, Braunstein M and Oza AM: Epithelial ovarian cancer: Evolution of management in the era of precision medicine. CA Cancer J Clin. 69:280–304. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hernandez-Lopez LA and Elizalde-Mendez A: How far should we go in optimal cytoreductive surgery for ovarian cancer? Chin Clin Oncol. 9:702020. View Article : Google Scholar : PubMed/NCBI | |
Haghighat S: New treatment of advanced ovarian cancer: A literature review. J Obstet Gynecol Cancer Res. 4:131–134. 2019. View Article : Google Scholar | |
Lukanović D, Kobal B and Černe K: Ovarian cancer: Treatment and resistance to pharmacotherapy. Reprod Med. 3:127–140. 2022. View Article : Google Scholar | |
Orr B and Edwards RP: Diagnosis and treatment of ovarian cancer. Hematol Oncol Clin North Am. 32:943–964. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ghirardi V, Fagotti A, Ansaloni L, Valle M, Roviello F, Sorrentino L, Accarpio F, Baiocchi G, Piccini L, De Simone M, et al: Diagnostic and therapeutic pathway of advanced ovarian cancer with peritoneal metastases. Cancers (Basel). 15:4072023. View Article : Google Scholar : PubMed/NCBI | |
Chang SJ, Hodeib M, Chang J and Bristow RE: Survival impact of complete cytoreduction to no gross residual disease for advanced-stage ovarian cancer: A meta-analysis. Gynecol Oncol. 130:493–498. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wright AA, Bohlke K, Armstrong DK, Bookman MA, Cliby WA, Coleman RL, Dizon DS, Kash JJ, Meyer LA, Moore KN, et al: Neoadjuvant chemotherapy for newly diagnosed, advanced ovarian cancer: Society of gynecologic oncology and American society of clinical oncology clinical practice guideline. Gynecol Oncol. 143:3–15. 2016. View Article : Google Scholar : PubMed/NCBI | |
Armstrong DK and Walker JL: Role of intraperitoneal therapy in the initial management of ovarian cancer. J Clin Oncol. 37:2416–2419. 2019. View Article : Google Scholar : PubMed/NCBI | |
Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J and Karlan BY: Ovarian cancer. Nat Rev Dis Primer. 2:160612016. View Article : Google Scholar : PubMed/NCBI | |
Vergote I, Tropé CG, Amant F, Kristensen GB, Ehlen T, Johnson N, Verheijen RHM, van der Burg MEL, Lacave A, Panici PB, et al: Neoadjuvant chemotherapy or primary surgery in stage IIIC or IV ovarian cancer. N Engl J Med. 363:943–953. 2010. View Article : Google Scholar : PubMed/NCBI | |
du Bois A, Reuss A, Pujade-Lauraine E, Harter P, Ray-Coquard I and Pfisterer J: Role of surgical outcome as prognostic factor in advanced epithelial ovarian cancer: A combined exploratory analysis of 3 prospectively randomized phase 3 multicenter trials: By the Arbeitsgemeinschaft Gynaekologische Onkologie Studiengruppe Ovarialkarzinom (AGO-OVAR) and the Groupe d'Investigateurs Nationaux Pour les Etudes des Cancers de l'Ovaire (GINECO). Cancer. 115:1234–1244. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gallotta V, Certelli C, Oliva R, Rosati A, Federico A, Loverro M, Lodoli C, Foschi N, Lathouras K, Fagotti A and Scambia G: Robotic surgery in ovarian cancer. Best Pract Res Clin Obstet Gynaecol. 90:1023912023. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022. View Article : Google Scholar : PubMed/NCBI | |
Finch L and Chi DS: An overview of the current debate between using minimally invasive surgery versus laparotomy for interval cytoreductive surgery in epithelial ovarian cancer. J Gynecol Oncol. 34:e842023. View Article : Google Scholar : PubMed/NCBI | |
Kumar A and Cliby WA: Advanced ovarian cancer: Weighing the risks and benefits of surgery. Clin Obstet Gynecol. 63:74–79. 2019. View Article : Google Scholar | |
Ramirez PT: Standardizing ovarian cancer surgery and peri-operative care: A European society of gynecological oncology (ESGO) consensus statement. Int J Gynecol Cancer. 31:1207–1208. 2021. View Article : Google Scholar : PubMed/NCBI | |
McGuire WP III and Markman M: Primary ovarian cancer chemotherapy: Current standards of care. Br J Cancer. 89 (Suppl 3):S3–S8. 2003. View Article : Google Scholar : PubMed/NCBI | |
Pujade-Lauraine E, Hilpert F, Weber B, Reuss A, Poveda A, Kristensen G, Sorio R, Vergote I, Witteveen P, Bamias A, et al: Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: The AURELIA open-label randomized phase III trial. J Clin Oncol. 32:1302–1308. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mikuła-Pietrasik J, Witucka A, Pakuła M, Uruski P, Begier-Krasińska B, Niklas A, Tykarski A and Książek K: Comprehensive review on how platinum- and taxane-based chemotherapy of ovarian cancer affects biology of normal cells. Cell Mol Life Sci. 76:681–697. 2019. View Article : Google Scholar : PubMed/NCBI | |
Moore K, Colombo N, Scambia G, Kim BG, Oaknin A, Friedlander M, Lisyanskaya A, Floquet A, Leary A, Sonke GS, et al: Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med. 379:2495–2505. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mirza MR, Lundqvist EA, Birrer MJ, dePont Christensen R, Nyvang GB, Malander S, Anttila M, Werner TL, Lund B, Lindahl G, et al: Niraparib plus bevacizumab versus niraparib alone for platinum-sensitive recurrent ovarian cancer (NSGO-AVANOVA2/ENGOT-ov24): A randomised, phase 2, superiority trial. Lancet Oncol. 20:1409–1419. 2019. View Article : Google Scholar : PubMed/NCBI | |
Oza AM, Cook AD, Pfisterer J, Embleton A, Ledermann JA, Pujade-Lauraine E, Kristensen G, Carey MS, Beale P, Cervantes A, et al: Standard chemotherapy with or without bevacizumab for women with newly diagnosed ovarian cancer (ICON7): Overall survival results of a phase 3 randomised trial. Lancet Oncol. 16:928–936. 2015. View Article : Google Scholar : PubMed/NCBI | |
Baert T, Ferrero A, Sehouli J, O'Donnell DM, González-Martín A, Joly F, van der Velden J, Blecharz P, Tan DSP, Querleu D, et al: The systemic treatment of recurrent ovarian cancer revisited. Ann Oncol. 32:710–725. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dasari S and Tchounwou PB: Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol. 740:364–378. 2014. View Article : Google Scholar : PubMed/NCBI | |
Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M and Kroemer G: Molecular mechanisms of cisplatin resistance. Oncogene. 31:1869–1883. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bowtell DD, Böhm S, Ahmed AA, Aspuria PJ, Bast RC, Beral V, Berek JS, Birrer MJ, Blagden S, Bookman MA, et al: Rethinking ovarian cancer II: Reducing mortality from high-grade serous ovarian cancer. Nat Rev Cancer. 15:668–679. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vergote I, Denys H, Greve JD, Gennigens C, de Vijver V, Kerger J, Vuylsteke P and Baurain JF: Treatment algorithm in patients with ovarian cancer. Facts Views Vis Obgyn. 12:227–239. 2020.PubMed/NCBI | |
Coada CA, Dondi G, Ravegnini G, Di Costanzo S, Tesei M, Fiuzzi E, Di Stanislao M, Giunchi S, Zamagni C, Bovicelli A, et al: Optimal number of neoadjuvant chemotherapy cycles prior to interval debulking surgery in advanced epithelial ovarian cancer: A systematic review and meta-analysis of progression-free survival and overall survival. J Gynecol Oncol. 34:e822023. View Article : Google Scholar : PubMed/NCBI | |
Redondo A, Guerra E, Manso L, Martin-Lorente C, Martinez-Garcia J, Perez-Fidalgo JA, Varela MQ, Rubio MJ, Barretina-Ginesta MP and Gonzalez-Martin A: SEOM clinical guideline in ovarian cancer (2020). Clin Transl Oncol. 23:961–968. 2021. View Article : Google Scholar : PubMed/NCBI | |
Akter S, Rahman MA, Hasan MN, Akhter H, Noor P, Islam R, Shin Y, Rahman MDH, Gazi MS, Huda MN, et al: Recent advances in ovarian cancer: Therapeutic strategies, potential biomarkers, and technological improvements. Cells. 11:6502022. View Article : Google Scholar : PubMed/NCBI | |
Faraoni I and Graziani G: Role of BRCA mutations in cancer treatment with Poly(ADP-ribose) polymerase (PARP) inhibitors. Cancers (Basel). 10:4872018. View Article : Google Scholar : PubMed/NCBI | |
Levit SL and Tang C: Polymeric nanoparticle delivery of combination therapy with synergistic effects in ovarian cancer. Nanomaterials (Basel). 11:10482021. View Article : Google Scholar : PubMed/NCBI | |
Matsuo K, Eno ML, Im DD and Rosenshein NB: Chemotherapy time interval and development of platinum and taxane resistance in ovarian, fallopian, and peritoneal carcinomas. Arch Gynecol Obstet. 281:325–328. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rauh-Hain JA, Nitschmann CC, Worley MJ Jr, Bradford LS, Berkowitz RS, Schorge JO, Campos SM, del Carmen MG and Horowitz NS: Platinum resistance after neoadjuvant chemotherapy compared to primary surgery in patients with advanced epithelial ovarian carcinoma. Gynecol Oncol. 129:63–68. 2025. View Article : Google Scholar | |
Pokhriyal R, Hariprasad R, Kumar L and Hariprasad G: Chemotherapy resistance in advanced ovarian cancer patients. Biomark Cancer. 11:1179299X19860812019. View Article : Google Scholar : PubMed/NCBI | |
Basourakos SP, Li L, Aparicio AM, Corn PG, Kim J and Thompson TC: Combination platinum-based and DNA damage response-targeting cancer therapy: Evolution and future directions. Curr Med Chem. 24:1586–1606. 2017. View Article : Google Scholar : PubMed/NCBI | |
Luqmani YA: Mechanisms of drug resistance in cancer chemotherapy. Med Princ Pract. 14 (Suppl 1):S35–S48. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bykov VJN, Eriksson SE, Bianchi J and Wiman KG: Targeting mutant p53 for efficient cancer therapy. Nat Rev Cancer. 18:89–102. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Xie HJ, Li YY, Wang X, Liu XX and Mai J: Molecular mechanisms of platinum-based chemotherapy resistance in ovarian cancer (Review). Oncol Rep. 47:822022. View Article : Google Scholar : PubMed/NCBI | |
Mihanfar A, Fattahi A and Nejabati HR: MicroRNA-mediated drug resistance in ovarian cancer. J Cell Physiol. 234:3180–3191. 2019. View Article : Google Scholar : PubMed/NCBI | |
Puris E, Fricker G and Gynther M: The role of solute carrier transporters in efficient anticancer drug delivery and therapy. Pharmaceutics. 15:3642023. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Wang X, Zhu X, Zhong L, Jiang Q, Wang Y, Tang Q, Li Q, Zhang C, Wang H and Zou D: Drug resistance in ovarian cancer: from mechanism to clinical trial. Mol Cancer. 23:662024. View Article : Google Scholar : PubMed/NCBI | |
Alshamrani AA: Roles of microRNAs in ovarian cancer tumorigenesis: Two decades later, what have we learned? Front Oncol. 10:10842020. View Article : Google Scholar : PubMed/NCBI | |
Nguyen VHL, Yue C, Du KY, Salem M, O'Brien J and Peng C: The role of microRNAs in epithelial ovarian cancer metastasis. Int J Mol Sci. 21:70932020. View Article : Google Scholar : PubMed/NCBI | |
Vaidyanathan A, Sawers L, Gannon AL, Chakravarty P, Scott AL, Bray SE, Ferguson MJ and Smith G: ABCB1 (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells. Br J Cancer. 115:431–441. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rottenberg S, Jaspers JE, Kersbergen A, van Der Burg E, Nygren AOH, Zander SAL, Derksen PW, de Bruin M, Zevenhoven J, Lau A, et al: High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci USA. 105:17079–17084. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Kang Z, Zhang J, Kang Y, Liang L, Liu Y, Liu Y and Wang Q: Simultaneous binding mechanism of multiple substrates for multidrug resistance transporter P-glycoprotein. Phys Chem Chem Phys. 23:4530–4543. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kazmierczak D, Jopek K, Sterzynska K, Nowicki M, Rucinski M and Januchowski R: The profile of MicroRNA expression and potential role in the regulation of drug-resistant genes in cisplatin- and paclitaxel-resistant ovarian cancer cell lines. Int J Mol Sci. 23:5262022. View Article : Google Scholar : PubMed/NCBI | |
Lee JH, Chae JW, Kim JK, Kim HJ, Chung JY and Kim YH: Inhibition of cisplatin-resistance by RNA interference targeting metallothionein using reducible oligo-peptoplex. J Control Release. 215:82–90. 2015. View Article : Google Scholar : PubMed/NCBI | |
Boušová I and Skálová L: Inhibition and induction of glutathione S-transferases by flavonoids: Possible pharmacological and toxicological consequences. Drug Metab Rev. 44:267–286. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Xie S, Zhou L, Tang X, Guan X, Deng M, Zheng H, Wang Y, Lu R and Guo L: Up-regulation of GSTT1 in serous ovarian cancer associated with resistance to TAXOL/carboplatin. J Ovarian Res. 14:1222021. View Article : Google Scholar : PubMed/NCBI | |
Tagawa T, Morgan R, Yen Y and Mortimer J: Ovarian cancer: Opportunity for targeted therapy. J Oncol. 2012:6824802012. View Article : Google Scholar : PubMed/NCBI | |
Duan P, Fan L, Gao Q, Silwal M, Ren M, Shen Y and Qu W: Targeted therapy of ovarian cancer with angiogenesis inhibitors. Curr Drug Targets. 18:1171–1178. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pulla P, Lakshmanan K, Byran G, Rajagopal K, Krishnamurthy PT and Palati DJ: A review on recent PARP inhibitor advancements in cancer therapy. Curr Enzyme Inhib. 18: View Article : Google Scholar : 2022. | |
Suh YJ, Lee B, Kim K, Jeong Y, Choi HY, Hwang SO and Kim YB: Bevacizumab versus PARP-inhibitors in women with newly diagnosed ovarian cancer: A network meta-analysis. BMC Cancer. 22:3462022. View Article : Google Scholar : PubMed/NCBI | |
Ferrara N, Hillan KJ and Novotny W: Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun. 333:328–335. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chen A: PARP inhibitors: Its role in treatment of cancer. Chin J Cancer. 30:463–471. 2011. View Article : Google Scholar : PubMed/NCBI | |
O'Malley DM, Krivak TC, Kabil N, Munley J and Moore KN: PARP inhibitors in ovarian cancer: A review. Target Oncol. 18:471–503. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sato K, Koyasu M, Nomura S, Sato Y, Kita M, Ashihara Y, Adachi Y, Ohno S, Iwase T, Kitagawa D, et al: Mutation status of RAD51C, PALB2 and BRIP1 in 100 Japanese familial breast cancer cases without BRCA1 and BRCA2 mutations. Cancer Sci. 108:2287–2294. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lee JM, Ledermann JA and Kohn EC: PARP Inhibitors for BRCA1/2 mutation-associated and BRCA-like malignancies. Ann Oncol. 25:32–40. 2014. View Article : Google Scholar : PubMed/NCBI | |
Domchek SM, Postel-Vinay S, Im SA, Park YH, Delord JP, Italiano A, Alexandre J, You B, Bastian S, Krebs MG, et al: Olaparib and durvalumab in patients with germline BRCA-mutated metastatic breast cancer (MEDIOLA): An open-label, multicentre, phase 1/2, basket study. Lancet Oncol. 21:1155–1164. 2020. View Article : Google Scholar : PubMed/NCBI | |
Drew Y, Kaufman B, Banerjee S, Lortholary A, Hong SH, Park YH, Zimmermann S, Roxburgh P, Ferguson M, Alvarez RH, et al: Phase II study of olaparib + durvalumab (MEDIOLA): Updated results in germline BRCA-mutated platinum-sensitive relapsed (PSR) ovarian cancer (OC). Ann Oncol. 30:v485–v486. 2019. View Article : Google Scholar | |
Dilawari A, Shah M, Ison G, Gittleman H, Fiero MH, Shah A, Hamed SS, Qiu J, Yu J, Manheng W, et al: FDA approval summary: Mirvetuximab soravtansine-Gynx for FRα-positive, platinum-resistant ovarian cancer. Clin Cancer Res. 29:3835–3840. 2023. View Article : Google Scholar : PubMed/NCBI | |
Orbach D, Carton M, Khadir SK, Feuilly M, Kurtinecz M, Phil D, Vokuhl C, Koscielniak E, Pierron G, Lemelle L and Sparber-Sauer M: Therapeutic benefit of larotrectinib over the historical standard of care in patients with locally advanced or metastatic infantile fibrosarcoma (EPI VITRAKVI study). ESMO Open. 9:1030062024. View Article : Google Scholar : PubMed/NCBI | |
Gouda MA and Subbiah V: Precision oncology with selective RET inhibitor selpercatinib in RET-rearranged cancers. Ther Adv Med Oncol. 15:175883592311770152023. View Article : Google Scholar : PubMed/NCBI | |
Dinkins K, Barton W, Wheeler L, Smith HJ, Mythreye K and Arend RC: Targeted therapy in high grade serous ovarian cancer: A literature review. Gynecol Oncol Rep. 54:1014502024. View Article : Google Scholar : PubMed/NCBI | |
Luvero D, Angioli R, Celoro F, Plotti F, Terranova C, Guzzo F, Cundari GB, Liparulo F, Verdone C and Montera R: Tailored treatment strategies in first line therapy for ovarian cancer patients: A critical review of the literature. Pharmaceuticals (Basel). 17:7782024. View Article : Google Scholar : PubMed/NCBI | |
Hillmann J, Maass N, Bauerschlag DO and Flörkemeier I: Promising new drugs and therapeutic approaches for treatment of ovarian cancer-targeting the hallmarks of cancer. BMC Med. 23:102025. View Article : Google Scholar : PubMed/NCBI | |
Zeimet A, Wieser V, Knoll K, Reimer D and Marth C: PARP inhibitors in the treatment of ovarian cancer. Memo Mag Eur Med Oncol. 13:198–201. 2020. | |
Tavares V, Marques IS, de Melo IG, Assis J, Pereira D and Medeiros R: Paradigm shift: A comprehensive review of ovarian cancer management in an era of advancements. Int J Mol Sci. 25:18452024. View Article : Google Scholar : PubMed/NCBI | |
Kolesnichenko M and Scheidereit C: Synthetic lethality by PARP inhibitors: New mechanism uncovered based on unresolved transcription-replication conflicts. Signal Transduct Target Ther. 9:1792024. View Article : Google Scholar : PubMed/NCBI | |
Ledermann JA and Pujade-Lauraine E: Olaparib as maintenance treatment for patients with platinum-sensitive relapsed ovarian cancer. Ther Adv Med Oncol. 11:17588359198497532019. View Article : Google Scholar : PubMed/NCBI | |
Bradley W, Moore K, Colombo N, Scambia G, Kim BG, Oaknin A, Friedlander M, Lisyanskaya A, Floquet A, Leary A, et al: Maintenance olaparib for patients with newly diagnosed, advanced ovarian cancer and a BRCA mutation: 5-year follow-up from SOLO1. Gynecol Oncol. 162:S25–S26. 2021. View Article : Google Scholar | |
Li N, Zhu J, Yin R, Wang J, Pan L, Kong B, Zheng H, Liu J, Wu X, Wang L, et al: Efficacy and safety of niraparib as maintenance treatment in patients with newly diagnosed advanced ovarian cancer using an individualized starting dose (PRIME Study): A randomized, double-blind, placebo-controlled, phase 3 trial (LBA 5). Gynecol Oncol. 166:S50–S51. 2022. View Article : Google Scholar | |
Tyszka M and Stec R: Niraparib maintenance in newly diagnosed advanced ovarian cancer-review and case series. Oncol Clin Pract. 19:62022. | |
O'Cearbhaill R, Perez-Fidalgo JA, Monk B, Tusquets I, McCormick C, Fuentes J, Moore RG, Vulsteke C, Shahin MS, Forget F, et al: Efficacy of niraparib by time of surgery and postoperative residual disease status: A post hoc analysis of patients in the PRIMA/ENGOT-OV26/GOG-3012 study. Gynecol Oncol. 166:36–43. 2022. View Article : Google Scholar : PubMed/NCBI | |
Monk B, Parkinson C, Lim M, O'Malley D, Oaknin A, Wilson M, Coleman RL, Lorusso D, Bessette P, Ghamande S, et al: A randomized, phase III trial to evaluate rucaparib monotherapy as maintenance treatment in patients with newly diagnosed ovarian cancer (ATHENA-MONO/GOG-3020/ENGOT-ov45). J Clin Oncol. 381:JCO.22.01003. 2022. | |
Ledermann J, Oza A, Lorusso D, Aghajanian C, Oaknin A, Dean A, Colombo N, Weberpals JI, Clamp AR, Scambia G, et al: Rucaparib for patients with platinum-sensitive, recurrent ovarian carcinoma (ARIEL3): Post-progression outcomes and updated safety results from a randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 21:710–722. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mirza MR, Pignata S and Ledermann JA: Latest clinical evidence and further development of PARP inhibitors in ovarian cancer. Ann Oncol. 29:1366–1376. 2018. View Article : Google Scholar : PubMed/NCBI | |
Boussios S, Abson C, Moschetta M, Rassy E, Karathanasi A, Bhat T, Ghumman F, Sheriff M and Pavlidis N: Poly (ADP-Ribose) polymerase inhibitors: Talazoparib in ovarian cancer and beyond. Drugs R D. 20:55–73. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zimmer A, Nichols E, Cimino-Mathews A, Peer C, Cao L, Lee MJ, Kohn EC, Annunziata CM, Lipkowitz S, Trepel JB, et al: A phase I study of the PD-L1 inhibitor, durvalumab, in combination with a PARP inhibitor, olaparib, and a VEGFR1-3 inhibitor, cediranib, in recurrent women's cancers with biomarker analyses. J Immunother Cancer. 7:1972019. View Article : Google Scholar : PubMed/NCBI | |
Eskander R, Ledermann J, Birrer M, Fujiwara K, Gaillard S, Richardson G, Wei C, Baig MA, Zohren F and Monk BJ: JAVELIN ovarian PARP 100 study design: Phase III trial of avelumab + chemotherapy followed by avelumab + talazoparib maintenance in previously untreated epithelial ovarian cancer. J Clin Oncol. 37:TPS9. 2019. View Article : Google Scholar | |
Herencia-Ropero A, Llop-Guevara A, Staniszewska AD, Domènech-Vivó J, García-Galea E, Moles-Fernández A, Pedretti F, Domènech H, Rodríguez O, Guzmán M, et al: The PARP1 selective inhibitor saruparib (AZD5305) elicits potent and durable antitumor activity in patient-derived BRCA1/2-associated cancer models. Genome Med. 16:1072024. View Article : Google Scholar : PubMed/NCBI | |
Muzzana M, Broggini M and Damia G: The landscape of PARP inhibitors in solid cancers. Onco Targets Ther. 18:297–317. 2025. View Article : Google Scholar : PubMed/NCBI | |
American Association for Cancer Research (AACR), . Next-generation PARP inhibitor demonstrates clinical benefit in patients with homologous recombination repair-deficient breast cancer [Internet]. AACR, Philadelphia. 2024.https://www.aacr.org/about-the-aacr/newsroom/news-releases/next-generation-parp-inhibitor-demonstrates-clinical-benefit-in-patients-with-homologous-recombination-repair-deficient-breast-cancer/February 22–2025 | |
MERCK, . LYNPARZA® (olaparib) Phase 3 PAOLA-1 trial significantly increased progression-free survival as first-line maintenance treatment with bevacizumab for newly-diagnosed advanced ovarian cancer [Internet]. Merck & Co., Inc., Rahway, NJ. 2019.https://www.merck.com/news/lynparza-olaparib-phase-3-paola-1-trial-significantly-increased-progression-free-survival-as-first-line- maintenance-treatment-with-bevacizumab-for-newly-diagnosed- advanced-ovarian-cancer/May 4–2025 | |
Ray-Coquard I, Leary A, Pignata S, Cropet C, González-Martín A, Marth C, Nagao S, Vergote I, Colombo N, Mäenpää J, et al: Olaparib plus bevacizumab first-line maintenance in ovarian cancer: Final overall survival results from the PAOLA-1/ENGOT-ov25 trial. Ann Oncol. 34:681–692. 2023. View Article : Google Scholar : PubMed/NCBI | |
Paclitaxel and Carboplatin and Veliparib in Ovarian Cancer and Ovarian Neoplasm-Clinical Trials Registry-ICH GCP [Internet], . https://ichgcp.net/clinical-trials-registry/NCT02470585?utm_source=chatgpt.comMay 4–2025 | |
Mirza MR, Benigno B, Dørum A, Mahner S, Bessette P, Barceló IB, Berton-Rigaud D, Ledermann JA, Rimel BJ, Herrstedt J, et al: Long-term safety in patients with recurrent ovarian cancer treated with niraparib versus placebo: Results from the phase III ENGOT-OV16/NOVA trial. Gynecol Oncol. 159:442–448. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, Mortimer P, Swaisland H, Lau A, O'Connor MJ, et al: Inhibition of poly(ADP-Ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 361:123–134. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chan VKY, Yang R, Wong ICK and Li X: Cost-effectiveness of poly ADP-ribose polymerase inhibitors in cancer treatment: A systematic review. Front Pharmacol. 13:8911492022. View Article : Google Scholar : PubMed/NCBI | |
European Society for Medical Oncology (ESMO), . Elucidating a risk of developing second primary malignancy during and after treatment with PARP inhibitors [Internet]. ESMO; Lugano: 2021, https://www.esmo.org/oncology-news/elucidating-a-risk-of-developing-second-primary-malignancy-during-and-after-treatment-with-parp-inhibitorsFebruary 11–2025 | |
Desai C, Pathak A, Limaye S, Maniar V and Joshi A: A review on mechanisms of resistance to PARP inhibitors. Indian J Cancer. 59 (Suppl):S119–S129. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang N, Yang Y, Jin D, Zhang Z, Shen K, Yang J, Chen H, Zhao X, Yang L and Lu H: PARP inhibitor resistance in breast and gynecological cancer: Resistance mechanisms and combination therapy strategies. Front Pharmacol. 13:9676332022. View Article : Google Scholar : PubMed/NCBI | |
Dana-Farber Cancer Institute, . Combination ATR and PARP Inhibitor (CAPRI) trial with AZD6738 and olaparib in recurrent ovarian cancer. Dana-Farber Cancer Institute, Inc.; Boston MA: https://www.dana-farber.org/clinical-trials/20-320May 4–2025 | |
Yang Y, Yang Y, Yang J, Zhao X and Wei X: Tumor microenvironment in ovarian cancer: Function and therapeutic strategy. Front Cell Dev Biol. 8:7582020. View Article : Google Scholar : PubMed/NCBI | |
Mei C, Gong W, Wang X, Lv Y, Zhang Y, Wu S and Zhu C: Anti-angiogenic therapy in ovarian cancer: Current understandings and prospects of precision medicine. Front Pharmacol. 14:11477172023. View Article : Google Scholar : PubMed/NCBI | |
Park SA, Jeong MS, Ha KT and Jang SB: Structure and function of vascular endothelial growth factor and its receptor system. BMB Rep. 51:73–78. 2018. View Article : Google Scholar : PubMed/NCBI | |
Burger RA, Sill MW, Monk BJ, Greer BE and Sorosky JI: Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: A gynecologic oncology group study. J Clin Oncol. 25:5165–5171. 2007. View Article : Google Scholar : PubMed/NCBI | |
Perren T, Swart AM, Pfisterer J, Ledermann JA, Lortholary A, Kristensen G, Carey MS, Beale P, Cervantes A and Oza A: ICON7: A phase iii randomised gynaecologic cancer intergroup trial of concurrent bevacizumab and chemotherapy followed by maintenance bevacizumab, versus chemotherapy alone in women with newly diagnosed epithelial ovarian (EOC), primary peritoneal (PPC) or fallopian tube cancer (FTC). Ann Oncol. 21:2010.PubMed/NCBI | |
Achtari C, Fink D, Günthert AR, Huober J, Pestalozzi B, Petignat P, von Moos R and Sessa C: Bevacizumab in the primary treatment of epithelial ovarian cancer-some comments on the latest results. chweizer Krebs-Bulletin = Bulletin Suisse du Cancer. 35:pp35–38. 2011. | |
Sfakianos GP, Numnum TM, Halverson CB, Panjeti D, Kendrick JE IV and Straughn JM Jr: The risk of gastrointestinal perforation and/or fistula in patients with recurrent ovarian cancer receiving bevacizumab compared to standard chemotherapy: A retrospective cohort study. Gynecol Oncol. 114:424–426. 2009. View Article : Google Scholar : PubMed/NCBI | |
Psyrri A, Kassar M, Yu Z, Bamias A, Weinberger PM, Markakis S, Kowalski D, Camp RL, Rimm DL and Dimopoulos MA: Effect of epidermal growth factor receptor expression level on survival in patients with epithelial ovarian cancer. Clin Cancer Res. 11:8637–8643. 2005. View Article : Google Scholar : PubMed/NCBI | |
Konner J, Schilder RJ, DeRosa FA, Gerst SR, Tew WP, Sabbatini PJ, Hensley ML, Spriggs DR and Aghajanian CA: A phase II study of cetuximab/paclitaxel/carboplatin for the initial treatment of advanced-stage ovarian, primary peritoneal, or fallopian tube cancer. Gynecol Oncol. 110:140–145. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liang XJ and Shen J: Adverse events risk associated with angiogenesis inhibitors addition to therapy in ovarian cancer: A meta-analysis of randomized controlled trials. Eur Rev Med Pharmacol Sci. 20:2701–2790. 2016.PubMed/NCBI | |
Watson N and Al-Samkari H: Thrombotic and bleeding risk of angiogenesis inhibitors in patients with and without malignancy. J Thromb Haemost. 19:1852–1863. 2021. View Article : Google Scholar : PubMed/NCBI | |
Moujaber T, Balleine R, Gao B, Madsen I, Harnett P and DeFazio A: New therapeutic opportunities for low-grade serous ovarian cancer. Endocr Relat Cancer. 29:R1–R16. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gershenson DM, Miller A, Brady WE, Paul J, Carty K, Rodgers W, Millan D, Coleman RL, Moore KN, Banerjee S, et al: Trametinib versus standard of care in patients with recurrent low-grade serous ovarian cancer (GOG 281/LOGS): An international, randomised, open-label, multicentre, phase 2/3 trial. Lancet. 399:541–553. 2022. View Article : Google Scholar : PubMed/NCBI | |
Grisham RN, Iyer G, Garg K, DeLair D, Hyman DM, Zhou Q, Iasonos A, Berger MF, Dao F, Spriggs DR, et al: BRAF Mutation is associated with early stage disease and improved outcome in patients with low-grade serous ovarian cancer. Cancer. 119:548–554. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hendrikse C, Theelen P, van der Ploeg P, Westgeest H, Boere I, Thijs AMJ, Ottevanger PB, van de Stolpe A, Lambrechts S, Bekkers RLM and Piek JMJ: The potential of RAS/RAF/MEK/ERK (MAPK) signaling pathway inhibitors in ovarian cancer: A systematic review and meta-analysis. Gynecol Oncol. 171:83–94. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Chen Y, Lin X, Su S, Hou X, Zhang Q and Tian Y: The drug combination of SB202190 and SP600125 significantly inhibit the growth and metastasis of olaparib-resistant ovarian cancer cell. Curr Pharm Biotechnol. 19:506–513. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cicenas J, Zalyte E, Rimkus A, Dapkus D, Noreika R and Urbonavicius S: JNK, p38, ERK, and SGK1 inhibitors in cancer. Cancers (Basel). 10:12017. View Article : Google Scholar : PubMed/NCBI | |
Santiago-O'Farrill J, Essien S, Figueroa M, Pang L, Amaravadi R, Lu Z and Bast RC: Abstract 3317: Autophagy protects ovarian cancer cells from olaparib-induced toxicity. Cancer Res. 77:33172017. View Article : Google Scholar | |
Welsh SJ and Corrie PG: Management of BRAF and MEK inhibitor toxicities in patients with metastatic melanoma. Ther Adv Med Oncol. 7:122–136. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rupaimoole R and Slack FJ: MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 16:203–222. 2017. View Article : Google Scholar : PubMed/NCBI | |
Langhe R: microRNA and ovarian cancer. Adv Exp Med Biol. 889:119–151. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Cao XY, Li YN, Qiu YY, Li YN, Li W and Wang H: Reversal of cisplatin resistance by microRNA-139-5p-independent RNF2 downregulation and MAPK inhibition in ovarian cancer. Am J Physiol Cell Physiol. 315:C225–C235. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Wang T, Xia L and Zhang M: LncRNA WDFY3-AS2 promotes cisplatin resistance and the cancer stem cell in ovarian cancer by regulating hsa-miR-139-5p/SDC4 axis. Cancer Cell Int. 21:2842021. View Article : Google Scholar : PubMed/NCBI | |
Chen K, Wang J, Yang M, Deng S and Sun L: Immunotherapy in recurrent ovarian cancer. Biomedicines. 13:1682025. View Article : Google Scholar : PubMed/NCBI | |
Turner T, Buchsbaum D, Straughn J, Randall T and Arend R: Ovarian cancer and the immune system-The role of targeted therapies. Gynecol Oncol. 142:349–356. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Zhang C, Yue D and Dong J: Tumor specific TGF-β insensitive CD8 + T cells augments the antitumor effect through inhibition of epithelial-mesenchymal transition in CD 105 + renal carcinoma stem cells. 2024. View Article : Google Scholar | |
Han Y, Liu D and Li L: PD-1/PD-L1 pathway: Current researches in cancer. Am J Cancer Res. 10:727–742. 2020.PubMed/NCBI | |
Zhu J, Yan L and Wang Q: Efficacy of PD-1/PD-L1 inhibitors in ovarian cancer: A single-arm meta-analysis. J Ovarian Res. 14:1122021. View Article : Google Scholar : PubMed/NCBI | |
Conway J, Kofman E, Mo S, Elmarakeby H and Van Allen E: Genomics of response to immune checkpoint therapies for cancer: Implications for precision medicine. Genome Med. 10:932018. View Article : Google Scholar : PubMed/NCBI | |
Hargadon KM, Johnson CE and Williams CJ: Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol. 62:29–39. 2018. View Article : Google Scholar : PubMed/NCBI | |
Brahmer J, Tykodi S, Chow L, Hwu WJ, Topalian S, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, et al: Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 366:2455–2465. 2012. View Article : Google Scholar : PubMed/NCBI | |
Inayama Y, Hamanishi J, Matsumura N, Murakami R, Abiko K, Yamaguchi K, Baba T, Horie K, Konishi I and Mandai M: Antitumor effect of nivolumab on subsequent chemotherapy for platinum-resistant ovarian cancer. Oncologist. 23:1382–1384. 2018. View Article : Google Scholar : PubMed/NCBI | |
Varga A, Piha-Paul S, Ott P, Mehnert J, Berton-Rigaud D, Morosky A, Zhao GQ, Rangwala RA and Matei D: Pembrolizumab in patients (pts) with PD-L1-positive (PD-L1 +) advanced ovarian cancer: Updated analysis of KEYNOTE-028. J Clin Oncol. 35:55132017. View Article : Google Scholar | |
Demircan N, Boussios S, Tasci T and Öztürk MA: Current and future immunotherapy approaches in ovarian cancer. Ann Transl Med. 8:17142020. View Article : Google Scholar : PubMed/NCBI | |
Pawłowska A, Skiba W, Suszczyk D, Kuryło W, Jakubowicz-Gil J, Paduch R and Wertel I: The dual blockade of the TIGIT and PD-1/PD-L1 pathway as a new hope for ovarian cancer patients. Cancers (Basel). 14:57572023. View Article : Google Scholar | |
Chauvin JM and Zarour HM: TIGIT in cancer immunotherapy. J Immunother Cancer. 8:e0009572020. View Article : Google Scholar : PubMed/NCBI | |
Postow MA, Sidlow R and Hellmann MD: Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 378:158–168. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sanmamed MF and Chen L: A paradigm shift in cancer immunotherapy: From enhancement to normalization. Cell. 175:313–326. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liao T, Li L and Wang L: Bevacizumab combined with chemotherapy for ovarian cancer: A protocol for systematic review and meta-analysis. Medicine (Baltimore). 100:e283762021. View Article : Google Scholar : PubMed/NCBI | |
Tischkowitz M, Huang S, Banerjee S, Hague J, Hendricks W, Huntsman D, Lang JD, Orlando KA, Oza AM, Pautier P, et al: Small-cell carcinoma of the ovary, hypercalcemic type-genetics, new treatment targets, and current management guidelines. Clin Cancer Res. 26:3908–3917. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Yan L and Wang Q: Efficacy of PD-1/PD-L1 inhibitors in ovarian cancer: A single-arm meta-analysis. J Ovarian Res. 14:1122021. View Article : Google Scholar : PubMed/NCBI | |
Pawłowska A, Rekowska A, Kuryło W, Pańczyszyn A, Kotarski J and Wertel I: Current understanding on why ovarian cancer is resistant to immune checkpoint inhibitors. Int J Mol Sci. 24:108592023. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Gong J and Liu Y: Indoleamine 2, 3-dioxygenase regulation of immune response (Review). Mol Med Rep. 17:4867–4873. 2018.PubMed/NCBI | |
Liu X, Newton RC, Friedman SM and Scherle PA: Indoleamine 2,3-dioxygenase, an emerging target for anti-cancer therapy. Curr Cancer Drug Targets. 9:938–952. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rogala E, Nowicka A, Bednarek W, Barczyński B, Piekarczyk W, Klimek K, Zakrzewski M and Kotarski J: Evaluation of the expression of the immunosuppressive enzyme-indoleamine 2,3-dioxygenase in ovarian cancer tissue. Menopause Review/Przegląd Menopauzalny. 3:223–227. 2013.(In Polish). | |
Safdarian A, Farhangnia P and Rezaei N: Indoleamine 2,3-Dioxygenase (IDO) and cancerous cells. 2023.1–23 | |
Liu JF, Herold C, Luo W, Penson R, Horowitz N, Konstantinopoulos P, Castro C, Curtis J, Matulonis UA, Cannistra S and Dizon DS: 937PD - A phase II trial of combination nivolumab and bevacizumab in recurrent ovarian cancer. Ann Oncol. 29:viii334–viii335. 2018. View Article : Google Scholar | |
Moore K, Bookman M, Sehouli J, Miller A, Anderson C, Scambia G, Myers T, Taskiran C, Robison K, Mäenpää J, et al: Atezolizumab, bevacizumab, and chemotherapy for newly diagnosed stage III or IV ovarian cancer: Placebo-controlled randomized phase III trial (IMagyn050/GOG 3015/ENGOT-OV39). J Clin Oncol. 39:1842–1855. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kurtz JE, Pujade-Lauraine E, Oaknin A, Belin L, Leitner K, Cibula D, Denys H, Rosengarten O, Rodrigues M, de Gregorio N, et al: Atezolizumab combined with bevacizumab and platinum-based therapy for platinum-sensitive ovarian cancer: Placebo-Controlled randomized phase III ATALANTE/ENGOT-ov29 trial. J Clin Oncol. 41:4768–4778. 2023. View Article : Google Scholar : PubMed/NCBI | |
González-Martín A, Rubio MJ, Heitz F, Christensen RD, Colombo N, Van Gorp T, Romeo M, Ray-Coquard I, Gaba L, Leary A, et al: Atezolizumab combined with platinum and maintenance niraparib for recurrent ovarian cancer with a platinum-free interval >6 months: ENGOT-OV41/GEICO 69-O/ANITA phase III trial. J Clin Oncol. 42:4294–4304. 2024. View Article : Google Scholar : PubMed/NCBI | |
Okamoto A, Kim JW, Yin R, Trillsch F, Reuss A, Aghajanian C, Rubio-Pérez MJ, Vardar MA, Scambia G, Floquet A, et al: A randomized Phase III trial of durvalumab with chemotherapy and bevacizumab, followed by maintenance durvalumab, bevacizumab and olaparib in newly diagnosed advanced ovarian cancer (DUO-O): Updated trial endpoint and inclusion of China cohort (329). Gynecol Oncol. 166 (Suppl 1):S1702022. View Article : Google Scholar | |
Ray-Coquard I, Pautier P, Pignata S, Pérol D, González-Martín A, Berger R, Fujiwara K, Vergote I, Colombo N, Mäenpää J, et al: Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N Engl J Med. 381:2416–2428. 2019. View Article : Google Scholar : PubMed/NCBI | |
Harter P, Mouret-Reynier MA, Pignata S, Cropet C, González-Martín A, Bogner G, Fujiwara K, Vergote I, Colombo N, Nøttrup TJ, et al: Efficacy of maintenance olaparib plus bevacizumab according to clinical risk in patients with newly diagnosed, advanced ovarian cancer in the phase III PAOLA-1/ENGOT-ov25 trial. Gynecol Oncol. 164:254–264. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ray-Coquard I, Pautier P, Pignata S, Pérol D, González-Martín A, Sevelda P, Fujiwara K, Vergote IB, Colombo N, Maenpaa J, et al: LBA2_PRPhase III PAOLA-1/ENGOT-ov25 trial: Olaparib plus bevacizumab (bev) as maintenance therapy in patients (pts) with newly diagnosed, advanced ovarian cancer (OC) treated with platinum-based chemotherapy (PCh) plus bev. Ann Oncol. 30:2019. View Article : Google Scholar | |
Hardesty MM, Krivak TC, Wright GS, Hamilton E, Fleming EL, Belotte J, Keeton EK, Wang P, Gupta D, Clements A, et al: OVARIO phase II trial of combination niraparib plus bevacizumab maintenance therapy in advanced ovarian cancer following first-line platinum-based chemotherapy with bevacizumab. Gynecol Oncol. 166:219–229. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu JF, Gaillard S, Hendrickson AE, Yeku O, Diver E, Jackson CG, Arend R, Ratner E, Samnotra V, Gupta D, et al: Niraparib, dostarlimab, and bevacizumab as combination therapy in pretreated, advanced platinum-resistant ovarian cancer: Findings from cohort A of the OPAL phase II trial. JCO Precis Oncol. 8:e23006932024. View Article : Google Scholar : PubMed/NCBI | |
Bukowska B, Gajek A and Marczak A: Two drugs are better than one. A short history of combined therapy of ovarian cancer. Contemp Oncol (Pozn). 5:350–353. 2015.PubMed/NCBI | |
Niculescu AG and Grumezescu AM: Novel tumor-targeting nanoparticles for cancer treatment-a review. Int J Mol Sci. 23:52532022. View Article : Google Scholar : PubMed/NCBI | |
Jani RK and Krupa G: Active targeting of nanoparticles: An innovative technology for drug delivery in cancer therapeutics. J Drug Deliv Ther. 9:408–415. 2019. View Article : Google Scholar | |
Wakaskar RR: Passive and active targeting in tumor microenvironment. Int J Drug Dev Res. 9:22017. | |
Yallapu MM, Jaggi M and Chauhan SC: Scope of nanotechnology in ovarian cancer therapeutics. J Ovarian Res. 3:192010. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Zhu X, Wei Y, Song C and Wang Y: Recent advances in targeted gene silencing and cancer therapy by nanoparticle-based delivery systems. Biomed Pharmacother. 157:1140652023. View Article : Google Scholar : PubMed/NCBI | |
Blanco E, Shen H and Ferrari M: Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 33:941–951. 2015. View Article : Google Scholar : PubMed/NCBI | |
Guo X, Guo N, Zhao J and Cai Y: Active targeting co-delivery system based on hollow mesoporous silica nanoparticles for antitumor therapy in ovarian cancer stem-like cells. Oncol Rep. 38:1442–1450. 2017. View Article : Google Scholar : PubMed/NCBI | |
Madej M, Kurowska N and Strzalka-Mrozik B: Polymeric nanoparticles-tools in a drug delivery system in selected cancer therapies. Appl Sci. 12:94792022. View Article : Google Scholar | |
Hascicek C and Gun O: Nano drug delivery systems for ovarian cancer therapy. Integr Cancer Sci Ther. 4:1–4. 2017.PubMed/NCBI | |
Saripilli R and Sharma DK: Nanotechnology-based drug delivery system for the diagnosis and treatment of ovarian cancer. Discov Oncol. 16:4222025. View Article : Google Scholar : PubMed/NCBI | |
Barani M, Bilal M, Sabir F, Rahdar A and Kyzas GZ: Nanotechnology in ovarian cancer: Diagnosis and treatment. Life Sci. 266:1189142021. View Article : Google Scholar : PubMed/NCBI | |
Engelberth SA, Hempel N and Bergkvist M: Development of nanoscale approaches for ovarian cancer therapeutics and diagnostics. Crit Rev Oncog. 19:281–315. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Tan W, Zheng J, Su Y and Cui M: Aptamer nanomaterials for ovarian cancer target theranostics. Front Bioeng Biotechnol. 10:8844052022. View Article : Google Scholar : PubMed/NCBI | |
Di Lorenzo G, Ricci G, Severini GM, Romano F and Biffi S: Imaging and therapy of ovarian cancer: clinical application of nanoparticles and future perspectives. Theranostics. 8:4279–4294. 2018. View Article : Google Scholar : PubMed/NCBI | |
Search for: Ovarian Cancer, Other terms: Nanoparticles, Completed studies | Card Results | ClinicalTrials.gov [Internet]. [cited 2024 Jun 29]. Available from:, . https://clinicaltrials.gov/search?cond=Ovarian%20Cancer&term=Nanoparticles&aggFilters=status:com&page=2 | |
Gavas S, Quazi S and Karpiński TM: Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res Lett. 16:1732021. View Article : Google Scholar : PubMed/NCBI | |
Kumah EA, Fopa RD, Harati S, Boadu P, Zohoori FV and Pak T: Human and environmental impacts of nanoparticles: A scoping review of the current literature. BMC Public Health. 23:10592023. View Article : Google Scholar : PubMed/NCBI | |
Pandey RP, Vidic J, Mukherjee R and Chang CM: Experimental methods for the biological evaluation of nanoparticle-based drug delivery risks. Pharmaceutics. 15:6122023. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Ding H, Zhang F, Xu Y, Liang W and Huang L: New trends in diagnosing and treating ovarian cancer using nanotechnology. Front Bioeng Biotechnol. 11:11609852023. View Article : Google Scholar : PubMed/NCBI | |
Wilson MK, Pujade-Lauraine E, Aoki D, Mirza MR, Lorusso D, Oza AM, du Bois A, Vergote I, Reuss A, Bacon M, et al: Fifth ovarian cancer consensus conference of the gynecologic cancer intergroup: Recurrent disease. Ann Oncol. 28:727–732. 2017. View Article : Google Scholar : PubMed/NCBI | |
Daly MB, Pal T, Berry MP, Buys SS, Dickson P, Domchek SM, Elkhanany A, Friedman S, Goggins M, Hutton ML, et al: Genetic/Familial high-risk assessment: Breast, ovarian, and pancreatic, Version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 19:77–102. 2021. View Article : Google Scholar : PubMed/NCBI | |
Konstantinopoulos PA, Norquist B, Lacchetti C, Armstrong D, Grisham RN, Goodfellow PJ, Kohn EC, Levine DA, Liu JF, Lu KH, et al: Germline and somatic tumor testing in epithelial ovarian cancer: ASCO guideline. J Clin Oncol. 38:1222–1245. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zelli V, Compagnoni C, Cannita K, Capelli R, Capalbo C, Di Vito Nolfi M, Alesse E, Zazzeroni F and Tessitore A: Applications of next generation sequencing to the analysis of familial breast/ovarian cancer. High Throughput. 9:12020. View Article : Google Scholar : PubMed/NCBI | |
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al: Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of medical genetics and genomics and the association for molecular pathology. Genet Med. 17:405–424. 2015. View Article : Google Scholar : PubMed/NCBI | |
Das SK, Menezes ME, Bhatia S, Wang X, Emdad L, Sarkar D and Fisher PB: Gene therapies for cancer: Strategies, challenges and successes. J Cell Physiol. 230:259–271. 2015. View Article : Google Scholar : PubMed/NCBI | |
Áyen Á, Martínez YJ, Marchal JA and Boulaiz H: Recent progress in gene therapy for ovarian cancer. Int J Mol Sci. 19:19302018. View Article : Google Scholar : PubMed/NCBI | |
Li S, Jiang K, Li J, Hao X, Chu W, Luo C, Zhu Y, Xie R and Chen B: Estrogen enhances the proliferation and migration of ovarian cancer cells by activating transient receptor potential channel C3. J Ovarian Res. 13:202020. View Article : Google Scholar : PubMed/NCBI | |
Cunat S, Hoffmann P and Pujol P: Estrogens and epithelial ovarian cancer. Gynecol Oncol. 94:25–32. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kozieł MJ and Piastowska-Ciesielska AW: Estrogens, estrogen receptors and tumor microenvironment in ovarian cancer. Int J Mol Sci. 24:146732023. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Xu H, Zhang Y, Li Z, Meng W, Xia J, Le W, Meng K and Guo Y: Research progress of estrogen receptor in ovarian cancer. Clin Exp Obstet Gynecol. 50:1992023. View Article : Google Scholar | |
Jeon SY, Hwang KA and Choi KC: Effect of steroid hormones, estrogen and progesterone, on epithelial mesenchymal transition in ovarian cancer development. J Steroid Biochem Mol Biol. 158:1–8. 2016. View Article : Google Scholar : PubMed/NCBI | |
Park SH, Cheung LWT, Wong AST and Leung PCK: Estrogen regulates snail and slug in the down-regulation of e-cadherin and induces metastatic potential of ovarian cancer cells through estrogen receptor alpha. Mol Endocrinol. 22:2085–2098. 2008. View Article : Google Scholar : PubMed/NCBI | |
Smyth JF, Gourley C, Walker G, MacKean MJ, Stevenson A, Williams ARW, Nafussi AA, Rye T, Rye R, Stewart M, et al: Antiestrogen therapy is active in selected ovarian cancer cases: the use of letrozole in estrogen receptor-positive patients. Clin Cancer Res. 13:3617–3622. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gershenson DM, Cobb LP and Sun CC: Endocrine therapy in the management of low-grade serous ovarian/peritoneal carcinoma: Mounting evidence for therelative efficacy of tamoxifen and aromatase inhibitors. Gynecol Oncol. 159:601–603. 2020. View Article : Google Scholar : PubMed/NCBI | |
George A, McLachlan J, Tunariu N, Pepa CD, Migali C, Gore M, Kaye S and Banerjee S: The role of hormonal therapy in patients with relapsed high-grade ovarian carcinoma: A retrospective series of tamoxifen and letrozole. BMC Cancer. 17:4562017. View Article : Google Scholar : PubMed/NCBI | |
Colombo N, Sessa C, du Bois A, Ledermann J, McCluggage WG, McNeish I, Morice P, Pignata S, Ray-Coquard I, Vergote I, et al: ESMO-ESGO consensus conference recommendations on ovarian cancer: Pathology and molecular biology, early and advanced stages, borderline tumours and recurrent disease. Ann Oncol. 30:672–705. 2019. View Article : Google Scholar : PubMed/NCBI | |
National Comprehensive Cancer Network (NCCN), . Guidelines Detail. NCCN; Plymouth Meeting, PA: 2025, https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1455May 3–2025 | |
Lopresti ML, Bandera CA and Miner TJ: New approaches to improving survival after neoadjuvant chemotherapy: The role of intraperitoneal therapy and heated intraperitoneal chemotherapy in ovarian cancer. Am Soc Clin Oncol Educ Book. 39:19–23. 2019. View Article : Google Scholar : PubMed/NCBI | |
Murphy M, Martin G, Mahmoudjafari Z, Bivona C, Grauer D and Henry D: Intraperitoneal paclitaxel and cisplatin compared with dose-dense paclitaxel and carboplatin for patients with stage III ovarian cancer. J Oncol Pharm Pract. 26:1566–1574. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cascales-Campos P, López-López V, Gil J, Arévalo-Pérez J, Nieto A, Barceló F, Gil E and Parrilla P: Hyperthermic intraperitoneal chemotherapy with paclitaxel or cisplatin in patients with stage III-C/IV ovarian cancer. Is there any difference? Surg Oncol. 25:164–170. 2016.PubMed/NCBI | |
Sjoquist KM, Espinoza D, Mileshkin L, Ananda S, Shannon C, Yip S, Goh J, Bowtell D, Harrison M and Friedlander ML: REZOLVE (ANZGOG-1101): A phase 2 trial of intraperitoneal bevacizumab to treat symptomatic ascites in patients with chemotherapy-resistant, epithelial ovarian cancer. Gynecol Oncol. 161:374–381. 2021. View Article : Google Scholar : PubMed/NCBI | |
Virdi S and Jadavji NM: The impact of maternal folates on brain development and function after birth. Metabolites. 12:8762022. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez T, Muminovic M, Nano O and Vulfovich M: Folate receptor alpha-a novel approach to cancer therapy. Int J Mol Sci. 25:10462024. View Article : Google Scholar : PubMed/NCBI | |
Elnakat H and Ratnam M: Distribution, functionality and gene regulation of folate receptor isoforms: Implications in targeted therapy. Adv Drug Deliv Rev. 56:1067–1084. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mai J, Wu L, Yang L, Sun T, Liu X, Yin R, Jiang Y, Li J and Li Q: Therapeutic strategies targeting folate receptor α for ovarian cancer. Front Immunol. 14:12545322023. View Article : Google Scholar : PubMed/NCBI | |
Kurosaki A, Hasegawa K, Kato T, Abe K, Hanaoka T, Miyara A, O'Shannessy DJ, Somers EB, Yasuda M, Sekino T and Fujiwara K: Serum folate receptor alpha as a biomarker for ovarian cancer: Implications for diagnosis, prognosis and predicting its local tumor expression. Int J Cancer. 138:1994–2002. 2016. View Article : Google Scholar : PubMed/NCBI | |
Moore KN, Martin LP, O'Malley DM, Matulonis UA, Konner JA, Vergote I, Ponte JF and Birrer MJ: A review of mirvetuximab soravtansine in the treatment of platinum-resistant ovarian cancer. Future Oncol. 14:123–136. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li X, Zhou S, Abrahams CL, Krimm S, Smith J, Bajjuri K, Stephenson HT, Henningsen R, Hanson J, Heibeck TH, et al: Discovery of STRO-002, a novel homogeneous ADC targeting folate receptor alpha, for the treatment of ovarian and endometrial cancers. Mol Cancer Ther. 22:155–167. 2023. View Article : Google Scholar : PubMed/NCBI | |
Matulonis UA, Oaknin A, Pignata S, Denys H, Colombo N, Van Gorp T, Konner JA, Romeo M, Harter P, Murphy CG, et al: Mirvetuximab soravtansine (MIRV) in patients with platinum-resistant ovarian cancer with high folate receptor alpha (FRα) expression: Characterization of antitumor activity in the SORAYA study. J Clin Oncol. 40 (16_suppl):S55122022. View Article : Google Scholar | |
Jelovac D and Armstrong DK: Role of farletuzumab in epithelial ovarian carcinoma. Curr Pharm Des. 18:3812–3815. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fayoud AM, Darwish MY, Nada EA, Helal AA, Mohamed NS, Elrashedy AA and Abd-ElGawad M: Efficacy and safety of farletuzumab in ovarian cancer: A systematic review and single-arm meta-analysis. Cureus. 16:e735032024.PubMed/NCBI | |
Abrahams C, Krimm S, Li X, Zhou S, Hanson J, Masikat MR, Bajjuri K, Heibeck T, Kothari D, Yu A, et al: Abstract NT-090: Preclinical activity and safety of STRO-002, a novel adc targeting folate receptor alpha for ovarian and endometrial cancer. Clin Cancer Res. 25 (22_Suppl):NT–090. 2019. View Article : Google Scholar | |
Naumann RW, Braiteh FS, Martin LP, Hamilton EP, Diaz JP, Diab S, Schilder RJ, Moroney JW, Uyar D, O'Malley DM, et al: Phase 1 dose-escalation study of STRO-002, an antifolate receptor alpha (FRα) antibody drug conjugate (ADC), in patients with advanced, progressive platinum-resistant/refractory epithelial ovarian cancer (EOC). J Clin Oncol. 39 (15_suppl):S55502021. View Article : Google Scholar | |
Ashburn TT and Thor KB: Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 3:673–683. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kim JH, Park WH, Suh DH, Kim K, No JH and Kim YB: Calcitriol combined with platinum-based chemotherapy suppresses growth and expression of vascular endothelial growth factor of SKOV-3 ovarian cancer cells. Anticancer Res. 41:2945–2952. 2021. View Article : Google Scholar : PubMed/NCBI | |
Srivastava AK, Rizvi A, Cui T, Han C, Banerjee A, Naseem I, Zheng Y, Wani AA and Wang QE: Depleting ovarian cancer stem cells with calcitriol. Oncotarget. 9:14481–14491. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kuittinen T, Rovio P, Luukkaala T, Laurila M, Grénman S, Kallioniemi A and Mäenpää J: Paclitaxel, carboplatin and 1,25-D3 inhibit proliferation of ovarian cancer cells in vitro. Anticancer Res. 40:3129–313. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Zhou S and Guo B: Vitamin D suppresses ovarian cancer growth and invasion by targeting long non-coding RNA CCAT2. Int J Mol Sci. 21:23342020. View Article : Google Scholar : PubMed/NCBI | |
Dovnik A and Dovnik NF: Vitamin D and ovarian cancer: Systematic review of the literature with a focus on molecular mechanisms. Cells. 9:3352020. View Article : Google Scholar : PubMed/NCBI | |
Duffy MJ, Murray A, Synnott NC, O'Donovan N and Crown J: Vitamin D analogues: Potential use in cancer treatment. Crit Rev Oncol Hematol. 112:190–197. 2017. View Article : Google Scholar : PubMed/NCBI | |
Piatek K, Schepelmann M and Kallay E: The effect of vitamin D and its analogs in ovarian cancer. Nutrients. 14:38672022. View Article : Google Scholar : PubMed/NCBI | |
Rizvi A and Naseem I: Causing DNA damage and stopping DNA repair-Vitamin D supplementation with Poly(ADP-ribose) polymerase 1 (PARP1) inhibitors may cause selective cell death of cancer cells: A novel therapeutic paradigm utilizing elevated copper levels within the tumour. Med Hypotheses. 144:1102782020. View Article : Google Scholar : PubMed/NCBI | |
Ghaseminejad-Raeini A, Ghaderi A, Sharafi A, Nematollahi-Sani B, Moossavi M, Derakhshani A and Sarab GA: Immunomodulatory actions of vitamin D in various immune-related disorders: A comprehensive review. Front Immunol. 14:9504652023. View Article : Google Scholar : PubMed/NCBI | |
Munteanu C, Mârza SM and Papuc I: The immunomodulatory effects of vitamins in cancer. Front Immunol. 15:14643292024. View Article : Google Scholar : PubMed/NCBI | |
Glassman D, Bateman NW, Lee S, Zhao L, Yao J, Tan Y, Ivan C, Rangel KM, Zhang J, Conrads KA, et al: Molecular correlates of venous thromboembolism (VTE) in ovarian cancer. Cancers (Basel). 14:14962022. View Article : Google Scholar : PubMed/NCBI | |
Skorda A, Bay ML, Hautaniemi S, Lahtinen A and Kallunki T: Kinase inhibitors in the treatment of ovarian cancer: Current state and future promises. Cancers (Basel). 14:62572022. View Article : Google Scholar : PubMed/NCBI | |
Kasthuri RS, Taubman MB and Mackman N: Role of tissue factor in cancer. J Clin Oncol. 27:4834–4838. 2009. View Article : Google Scholar : PubMed/NCBI | |
Versteeg HH, Spek CA, Peppelenbosch MP and Richel DJ: Tissue factor and cancer metastasis: The role of intracellular and extracellular signaling pathways. Mol Med. 10:6–11. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ruf W, Yokota N and Schaffner F: Tissue factor in cancer progression and angiogenesis. Thromb Res. 125:S36–S38. 2010. View Article : Google Scholar : PubMed/NCBI | |
Coleman RL, Lorusso D, Gennigens C, González-Martín A, Randall L, Cibula D, Lund B, Woelber L, Pignata S, Forget F, et al: Efficacy and safety of tisotumab vedotin in previously treated recurrent or metastatic cervical cancer (innovaTV 204/GOG-3023/ENGOT-cx6): A multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 22:609–619. 2021. View Article : Google Scholar : PubMed/NCBI | |
de Bono JS, Concin N, Hong DS, Thistlethwaite FC, Machiels JP, Arkenau HT, Plummer R, Jones RH, Nielsen D, Windfeld K, et al: Tisotumab vedotin in patients with advanced or metastatic solid tumours (InnovaTV 201): A first-in-human, multicentre, phase 1–2 trial. Lancet Oncol. 20:383–393. 2019. View Article : Google Scholar : PubMed/NCBI | |
Arter ZL, Desmond D, Berenberg JL, Killeen JL, Bunch K and Merritt MA: Epithelial ovarian cancer survival by race and ethnicity in an equal-access healthcare population. Br J Cancer. 130:108–113. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wagar MK, Mojdehbakhsh RP, Godecker A, Rice LW and Barroilhet L: Racial and ethnic enrollment disparities in clinical trials of poly(ADP-ribose) polymerase inhibitors for gynecologic cancers. Gynecol Oncol. 165:49–52. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fabbro M, Moore KN, Dørum A, Tinker AV, Mahner S, Bover I, Banerjee S, Tognon G, Goffin F, Shapira-Frommer R, et al: Efficacy and safety of niraparib as maintenance treatment in older patients (≥70 years) with recurrent ovarian cancer: Results from the ENGOT-OV16/NOVA trial. Gynecol Oncol. 152:560–567. 2019. View Article : Google Scholar : PubMed/NCBI | |
Selle F, Colombo N, Korach J, Mendiola C, Cardona A, Ghazi Y and Oza AM: Safety and efficacy of extended bevacizumab therapy in elderly (≥70 Years) versus younger patients treated for newly diagnosed ovarian cancer in the international ROSiA study. Int J Gynecol Cancer. 28:729–737. 2018. View Article : Google Scholar : PubMed/NCBI | |
Freyer G, Tew WP and Moore KN: Treatment and trials: Ovarian cancer in older women. Am Soc Clin Oncol Educ Book. pp227–235. 2013. View Article : Google Scholar : PubMed/NCBI | |
Coleman RL, Fleming GF, Brady MF, Swisher EM, Steffensen KD, Friedlander M, Okamoto A, Moore KN, Efrat Ben-Baruch N, Werner TL, et al: Veliparib with first-line chemotherapy and as maintenance therapy in ovarian cancer. N Engl J Med. 381:2403–2415. 2019. View Article : Google Scholar : PubMed/NCBI | |
González-Martín A, Pothuri B, Vergote I, DePont Christensen R, Graybill W, Mirza MR, McCormick C, Lorusso D, Hoskins P, Freyer G, et al: Niraparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med. 381:2391–2402. 2019. View Article : Google Scholar : PubMed/NCBI | |
Swisher EM, Lin KK, Oza AM, Scott CL, Giordano H, Sun J, Konecny GE, Coleman RL, Tinker AV, O'Malley DM, et al: Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): An international, multicentre, open-label, phase 2 trial. Lancet Oncol. 18:75–87. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sha D, Jin Z, Budczies J, Kluck K, Stenzinger A and Sinicrope FA: Tumor mutational burden as a predictive biomarker in solid tumors. Cancer Discov. 10:1808–1825. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fan S, Gao X, Qin Q, Li H, Yuan Z and Zhao S: Association between tumor mutation burden and immune infiltration in ovarian cancer. Int Immunopharmacol. 89:1071262020. View Article : Google Scholar : PubMed/NCBI | |
Matulonis UA, Shapira-Frommer R, Santin AD, Lisyanskaya AS, Pignata S, Vergote I, Raspagliesi F, Sonke GS, Birrer M, Provencher DM, et al: Antitumor activity and safety of pembrolizumab in patients with advanced recurrent ovarian cancer: Results from the phase II KEYNOTE-100 study. Ann Oncol. 30:1080–1087. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lee M, Samstein RM, Valero C, Chan TA and Morris LGT: Tumor mutational burden as a predictive biomarker for checkpoint inhibitor immunotherapy. Hum Vaccines Immunother. 16:112–115. 2020. View Article : Google Scholar : PubMed/NCBI | |
Klempner SJ, Fabrizio D, Bane S, Reinhart M, Peoples T, Ali SM, Sokol ES, Frampton G, Schrock AB, Anhorn R and Reddy P: Tumor mutational burden as a predictive biomarker for response to immune checkpoint inhibitors: A review of current evidence. Oncologist. 25:e147–e159. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lee CY, Cheng WF, Lin PH, Chen YL, Huang SH, Lei KH, Chang KY, Ko MY and Chi P: An activity-based functional test for identifying homologous recombination deficiencies across cancer types in real time. Cell Rep Med. 4:1012472023. View Article : Google Scholar : PubMed/NCBI | |
Korsholm LM, Kjeldsen M, Perino L, Mariani L, Nyvang GB, Kristensen E, Bagger FO, Mirza MR and Rossing M: Combining homologous recombination-deficient testing and functional RAD51 analysis enhances the prediction of Poly(ADP-Ribose) polymerase inhibitor sensitivity. JCO Precis Oncol. 8:e23004832024. View Article : Google Scholar : PubMed/NCBI | |
Pettitt SJ, Krastev DB, Brandsma I, Dréan A, Song F, Aleksandrov R, Harrell MI, Menon M, Brough R, Campbell J, et al: Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance. Nat Commun. 9:18492018. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Liu T, Zhang Z, Payne SH, Zhang B, McDermott JE, Zhou JY, Petyuk VA, Chen L, Ray D, et al: Integrated proteogenomic characterization of human high-grade serous ovarian cancer. Cell. 166:755–765. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tannock IF and Hickman JA: Limits to personalized cancer medicine. N Engl J Med. 375:1289–1294. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, Pacey S, Baird R and Rosenfeld N: Liquid biopsies come of age: Towards implementation of circulating tumour DNA. Nat Rev. 17:223–238. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mateo J, Lord CJ, Serra V, Tutt A, Balmaña J, Castroviejo-Bermejo M, Cruz C, Oaknin A, Kaye SB and de Bono JS: A decade of clinical development of PARP inhibitors in perspective. Ann Oncol. 30:1437–1447. 2019. View Article : Google Scholar : PubMed/NCBI | |
McAlpine JN, Porter H, Köbel M, Nelson BH, Prentice LM, Kalloger SE, Senz J, Milne K, Ding J, Shah SP, et al: BRCA1 and BRCA2 mutations correlate with TP53 abnormalities and presence of immune cell infiltrates in ovarian high-grade serous carcinoma. Mod Pathol. 25:740–750. 2012. View Article : Google Scholar : PubMed/NCBI | |
Scully R and Livingston DM: In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nature. 408:429–432. 2000. View Article : Google Scholar : PubMed/NCBI | |
Venkitaraman AR: Cancer suppression by the chromosome custodians, BRCA1 and BRCA2. Science. 343:1470–1475. 2014. View Article : Google Scholar : PubMed/NCBI | |
Davies AA, Masson JY, McIlwraith MJ, Stasiak AZ, Stasiak A, Venkitaraman AR and West SC: Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol Cell. 7:273–282. 2001. View Article : Google Scholar : PubMed/NCBI | |
Genome Atlas Research Network, . Integrated genomic analyses of ovarian carcinoma. Nature. 474:609–615. 2011. View Article : Google Scholar : PubMed/NCBI | |
Walsh T, Casadei S, Lee MK, Pennil CC, Nord AS, Thornton AM, Roeb W, Agnew KJ, Stray SM, Wickramanayake A, et al: Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci USA. 108:18032–18037. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, et al: Mutational landscape and significance across 12 major cancer types. Nature. 502:333–339. 2013. View Article : Google Scholar : PubMed/NCBI | |
Levine AJ: p53, the cellular gatekeeper for growth and division. Cell. 88:323–331. 1997. View Article : Google Scholar : PubMed/NCBI | |
Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, Leiserson MDM, Niu B, McLellan MD, Uzunangelov V, et al: Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell. 158:929–944. 2014. View Article : Google Scholar : PubMed/NCBI | |
Haupt Y, Maya R, Kazaz A and Oren M: Mdm2 promotes the rapid degradation of p53. Nature. 387:296–299. 1997. View Article : Google Scholar : PubMed/NCBI | |
Vaz F, Hanenberg H, Schuster B, Barker K, Wiek C, Erven V, Neveling K, Endt D, Kesterton I, Autore F, et al: Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat Genet. 42:406–409. 2010. View Article : Google Scholar : PubMed/NCBI | |
Norquist B, Wurz KA, Pennil CC, Garcia R, Gross J, Sakai W, Karlan BY, Taniguchi T and Swisher EM: Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J Clin Oncol. 29:3008–3015. 2011. View Article : Google Scholar : PubMed/NCBI | |
Guan B, Mao TL, Panuganti PK, Kuhn E, Kurman RJ, Maeda D, Chen E, Jeng YM, Wang TL and Shih IM: Mutation and loss of expression of ARID1A in uterine low-grade endometrioid carcinoma. Am J Surg Pathol. 35:625–632. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, Senz J, McConechy MK, Anglesio MS, Kalloger SE, et al: ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med. 363:1532–1543. 2010. View Article : Google Scholar : PubMed/NCBI | |
Samartzis EP, Gutsche K, Dedes KJ, Fink D, Stucki M and Imesch P: Loss of ARID1A expression sensitizes cancer cells to PI3K- and AKT-inhibition. Oncotarget. 5:5295–5303. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, et al: PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 275:1943–1947. 1997. View Article : Google Scholar : PubMed/NCBI | |
Song MS, Salmena L and Pandolfi PP: The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 13:283–296. 2012. View Article : Google Scholar : PubMed/NCBI | |
Obata K, Morland SJ, Watson RH, Hitchcock A, Chenevix-Trench G, Thomas EJ and Campbell IG: Frequent PTEN/MMAC mutations in endometrioid but not serous or mucinous epithelial ovarian tumors. Cancer Res. 58:2095–2097. 1998.PubMed/NCBI | |
Bos JL: Ras oncogenes in human cancer: A review. Cancer Res. 49:4682–4689. 1989.PubMed/NCBI | |
Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, et al: Mutations of the BRAF gene in human cancer. Nature. 417:949–954. 2002. View Article : Google Scholar : PubMed/NCBI | |
Downward J: Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 3:11–22. 2003. View Article : Google Scholar : PubMed/NCBI | |
Garnett MJ and Marais R: Guilty as charged: B-RAF is a human oncogene. Cancer Cell. 6:313–319. 2004. View Article : Google Scholar : PubMed/NCBI | |
Singer G, Oldt R, Cohen Y, Wang BG, Sidransky D, Kurman RJ and Shih IM: Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. JNCI. J Natl Cancer Inst. 95:484–486. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kamb A, Gruis NA, Weaver-Feldhaus J, Liu Q, Harshman K, Tavtigian SV, Stockert E, Day RS III, Johnson BE and Skolnick MH: A cell cycle regulator potentially involved in genesis of many tumor types. Science. 264:436–440. 1994. View Article : Google Scholar : PubMed/NCBI | |
Sherr CJ: The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol. 2:731–737. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kim WY and Sharpless NE: The regulation of INK4/ARF in cancer and aging. Cell. 127:265–275. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pomerantz J, Schreiber-Agus N, Liégeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee HW, et al: The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell. 92:713–723. 2025. View Article : Google Scholar : PubMed/NCBI | |
Zhao R, Choi BY, Lee MH, Bode AM and Dong Z: Implications of genetic and epigenetic alterations of CDKN2A (p16(INK4a)) in cancer. EBioMedicine. 8:30–39. 2016. View Article : Google Scholar : PubMed/NCBI | |
Reed AL, Califano J, Cairns P, Westra WH, Jones RM, Koch W, Ahrendt S, Eby Y, Sewell D, Nawroz H, et al: High frequency of p16 (CDKN2/MTS-1/INK4A) inactivation in head and neck squamous cell carcinoma. Cancer Res. 56:3630–3633. 1996.PubMed/NCBI | |
Cawthon RM, Weiss R, Xu GF, Viskochil D, Culver M, Stevens J, Robertson M, Dunn D, Gesteland R and O'Connell P: A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations. Cell. 62:193–201. 1990. View Article : Google Scholar : PubMed/NCBI | |
Xu G, O'Connell P, Viskochil D, Cawthon R, Robertson M, Culver M, Dunn D, Stevens J, Gesteland R and White R: The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell. 62:599–608. 1990. View Article : Google Scholar : PubMed/NCBI | |
Dasgupta B and Gutmann DH: Neurofibromatosis 1: Closing the GAP between mice and men. Curr Opin Genet Dev. 13:20–27. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ballester R, Marchuk D, Boguski M, Saulino A, Letcher R, Wigler M and Collins F: The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell. 63:851–859. 1990. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network, ; Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, Robertson AG, Pashtan I, Shen R, et al: Integrated genomic characterization of endometrial carcinoma. Nature. 497:67–73. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ratner N and Miller SJ: A RASopathy gene commonly mutated in cancer: The neurofibromatosis type 1 tumour suppressor. Nat Rev Cancer. 15:290–301. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ortiz M, Wabel E, Mitchell K and Horibata S: Mechanisms of chemotherapy resistance in ovarian cancer. Cancer Drug Resist. 5:304–316. 2022.PubMed/NCBI | |
National Library of Medicine (NIH), . ClinicalTrials.gov. https://clinicaltrials.gov/NIH; Bethesda, MD: 2025 March 15–2025 |