|
1
|
Wright KP Jr, McHill AW, Birks BR, Griffin
BR, Rusterholz T and Chinoy ED: Entrainment of the human circadian
clock to the natural light-dark cycle. Curr Biol. 23:1554–1558.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Malik S, Stokes J III, Manne U, Singh R
and Mishra MK: Understanding the significance of biological clock
and its impact on cancer incidence. Cancer Lett. 527:80–94. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Pariollaud M and Lamia KA: Cancer in the
fourth dimension: What is the impact of circadian disruption?
Cancer Discov. 10:1455–1464. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Sulli G, Lam MTY and Panda S: Interplay
between circadian clock and cancer: New frontiers for cancer
treatment. Trends Cancer. 5:475–494. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Takahashi JS: Transcriptional architecture
of the mammalian circadian clock. Nat Rev Genet. 18:164–179. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ruan W, Yuan X and Eltzschig HK: Circadian
rhythm as a therapeutic target. Nat Rev Drug Discov. 20:287–307.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Vasey C, McBride J and Penta K: Circadian
rhythm dysregulation and restoration: The role of melatonin.
Nutrients. 13:34802021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Behrens T, Rabstein S, Wichert K, Erbel R,
Eisele L, Arendt M, Dragano N, Brüning T and Jöckel KH: Shift work
and the incidence of prostate cancer: A 10-year follow-up of a
German population-based cohort study. Scand J Work Environ Health.
43:560–568. 2017.PubMed/NCBI
|
|
9
|
Schernhammer ES, Laden F, Speizer FE,
Willett WC, Hunter DJ, Kawachi I and Colditz GA: Rotating night
shifts and risk of breast cancer in women participating in the
nurses' health study. J Natl Cancer Inst. 93:1563–1568. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Schernhammer ES, Laden F, Speizer FE,
Willett WC, Hunter DJ, Kawachi I, Fuchs CS and Colditz GA:
Night-shift work and risk of colorectal cancer in the nurses'
health study. J Natl Cancer Inst. 95:825–828. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Travis RC, Balkwill A, Fensom GK, Appleby
PN, Reeves GK, Wang XS, Roddam AW, Gathani T, Peto R, Green J, et
al: Night shift work and breast cancer incidence: Three prospective
studies and meta-analysis of published studies. J Natl Cancer Inst.
108:djw1692016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
IARC Monographs Vol 124 Group, :
Carcinogenicity of night shift work. Lancet Oncol. 20:1058–1059.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Rijo-Ferreira F and Takahashi JS: Genomics
of circadian rhythms in health and disease. Genome Med. 11:822019.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Shafi AA and Knudsen KE: Cancer and the
circadian clock. Cancer Res. 79:3806–3814. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Walker WH II, Walton JC, DeVries AC and
Nelson RJ: Circadian rhythm disruption and mental health. Transl
Psychiatry. 10:282020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Mohawk JA, Green CB and Takahashi JS:
Central and peripheral circadian clocks in mammals. Ann Rev
Neurosci. 35:445–462. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Gabriel BM and Zierath JR: Circadian
rhythms and exercise-re-setting the clock in metabolic disease. Nat
Rev Endocrinol. 15:197–206. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Haupt S, Eckstein ML, Wolf A, Zimmer RT,
Wachsmuth NB and Moser O: Eat, train, sleep-retreat? Hormonal
interactions of intermittent fasting, exercise and circadian
rhythm. Biomolecules. 11:5162021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Panagiotou M, Michel S, Meijer JH and
Deboer T: The aging brain: Sleep, the circadian clock and exercise.
Biochem Pharmacol. 191:1145632021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Buhr ED, Yoo SH and Takahashi JS:
Temperature as a universal resetting cue for mammalian circadian
oscillators. Science. 330:379–385. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Schroeder AM and Colwell CS: How to fix a
broken clock. Trends Pharmacol Sci. 34:605–519. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Patke A, Young MW and Axelrod S: Molecular
mechanisms and physiological importance of circadian rhythms. Nat
Rev Mol Cell Biol. 21:67–84. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Scheiermann C, Gibbs J, Ince L and Loudon
A: Clocking in to immunity. Nat Rev Immunol. 18:423–437. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Nagoshi E, Saini C, Bauer C, Laroche T,
Naef F and Schibler U: Circadian gene expression in individual
fibroblasts: Cell-autonomous and self-sustained oscillators pass
time to daughter cells. Cell. 119:693–705. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Barber LE, VoPham T, White LF, Roy HK,
Palmer JR and Bertrand KA: Circadian disruption and colorectal
cancer incidence in black women. Cancer Epidemiol Biomarkers Prev.
32:927–935. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Papantoniou K, Konrad P, Haghayegh S,
Strohmaier S, Eliassen AH and Schernhammer E: Rotating night shift
work, sleep, and thyroid cancer risk in the nurses' health study 2.
Cancers (Basel). 15:56732023. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Yang G, Yang Y, Lv K, Wu Y, Song T and
Yuan Q: Night shift work and prostate cancer: A large cohort study
from UK Biobank and Mendelian randomisation study. BMJ Open.
14:e0844012024. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
National Toxicology Program, . NTP Cancer
Hazard Assessment Report on Night Shift Work and Light at Night.
Research Triangle Park (NC), National Toxicology Program, .
2021.
|
|
29
|
Papantoniou K, Devore EE, Massa J,
Strohmaier S, Vetter C, Yang L, Shi Y, Giovannucci E, Speizer F and
Schernhammer ES: Rotating night shift work and colorectal cancer
risk in the nurses' health studies. Int J Cancer. 143:2709–2717.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Yousef E, Mitwally N, Noufal N and Tahir
MR: Shift work and risk of skin cancer: A systematic review and
meta-analysis. Sci Rep. 10:20122020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Carter BD, Diver WR, Hildebrand JS, Patel
AV and Gapstur SM: Circadian disruption and fatal ovarian cancer.
Am J Prev Med. 46 (3 Suppl 1):S34–S41. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Garcia-Saenz A, Sánchez de Miguel A,
Espinosa A, Valentin A, Aragonés N, Llorca J, Amiano P, Martín
Sánchez V, Guevara M, Capelo R, et al: Evaluating the Association
between artificial light-at-night exposure and breast and prostate
cancer risk in spain (MCC-Spain study). Environ Health Perspect.
126:0470112018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Garcia-Saenz A, de Miguel AS, Espinosa A,
Costas L, Aragonés N, Tonne C, Moreno V, Pérez-Gómez B, Valentin A,
Pollán M, et al: Association between outdoor Light-at-night
exposure and colorectal cancer in spain. Epidemiology. 31:718–727.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhang D, Jones RR, James P, Kitahara CM
and Xiao Q: Associations between artificial light at night and risk
for thyroid cancer: A large US cohort study. Cancer. 127:1448–1458.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Xiao Q, Jones RR, James P and
Stolzenberg-Solomon RZ: Light at night and risk of pancreatic
cancer in the NIH-AARP diet and health study. Cancer Res.
81:1616–1622. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Sirhan-Atalla M, Gabinet NM and Portnov
BA: Disaggregating the effects of daytime and nighttime light
exposures on obesity, overweight, prostate and breast cancer
morbidity worldwide. Chronobiol Int. 40:483–514. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Jones RR: Exposure to artificial light at
night and risk of cancer: Where do we go from here? Br J Cancer.
124:1467–1468. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Turner MC, Gracia-Lavedan E, Papantoniou
K, Aragonés N, Castaño-Vinyals G, Dierssen-Sotos T, Amiano P,
Ardanaz E, Marcos-Delgado A, Molina-Barceló A, et al: Sleep and
breast and prostate cancer risk in the MCC-Spain study. Sci Rep.
12:218072022. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wong ATY, Heath AK, Tong TYN, Reeves GK,
Floud S, Beral V and Travis RC: Sleep duration and breast cancer
incidence: Results from the Million Women Study and meta-analysis
of published prospective studies. Sleep. 44:zsaa1662021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Chen Y, Tan F, Wei L, Li X, Lyu Z, Feng X,
Wen Y, Guo L, He J, Dai M and Li N: Sleep duration and the risk of
cancer: A systematic review and meta-analysis including
dose-response relationship. BMC Cancer. 18:11492018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Li X, Hu Y and Aslanbeigi F: Genetic and
epigenetic alterations in night shift nurses with breast cancer: A
narrative review. Cancer Cell International. 25:202025. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ning D, Fang Y and Zhang W: Association of
habitual sleep duration and its trajectory with the risk of cancer
according to sex and body mass index in a population-based cohort.
Cancer. 129:3582–3594. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Vatsyayan A, Mathur P, Bhoyar RC, Imran M,
Senthivel V, Divakar MK, Mishra A, Jolly B, Sivasubbu S and Scaria
V: Understanding the genetic epidemiology of hereditary breast
cancer in India using whole genome data from 1029 healthy
individuals. Cancer Causes Control. Mar 1–2025.(Epub ahead of
print). View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yin X, Shen H, Wang H, Wang Q, Zhang S,
Zhang C, Jia Q, Guo S, Xu X, Zhang W, et al: Pathogenic germline
variants in Chinese pancreatic adenocarcinoma patients. Nat Commun.
16:22142025. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Srour B, Plancoulaine S, Andreeva VA,
Fassier P, Julia C, Galan P, Hercberg S, Deschasaux M,
Latino-Martel P and Touvier M: Circadian nutritional behaviours and
cancer risk: New insights from the NutriNet-santé prospective
cohort study: Disclaimers. Int J Cancer. 143:2369–2379. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kogevinas M, Espinosa A, Castelló A,
Gómez-Acebo I, Guevara M, Martin V, Amiano P, Alguacil J, Peiro R,
Moreno V, et al: Effect of mistimed eating patterns on breast and
prostate cancer risk (MCC-Spain Study). Int J Cancer.
143:2380–2389. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Bishehsari F, Engen PA, Voigt RM, Swanson
G, Shaikh M, Wilber S, Naqib A, Green SJ, Shetuni B, Forsyth CB, et
al: Abnormal eating patterns cause circadian disruption and promote
alcohol-associated colon carcinogenesis. Cell Mol Gastroenterol
Hepatol. 9:219–237. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Marinac CR, Nelson SH, Breen CI, Hartman
SJ, Natarajan L, Pierce JP, Flatt SW, Sears DD and Patterson RE:
Prolonged nightly fasting and breast cancer prognosis. JAMA Oncol.
2:1049–1055. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Verbanac D, Maleš Ž and Barišić K:
Nutrition-facts and myths. Acta Pharm. 69:497–510. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Munt AE, Partridge SR and Allman-Farinelli
M: The barriers and enablers of healthy eating among young adults:
A missing piece of the obesity puzzle: A scoping review. Obes Revi.
18:1–17. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wang Y, Guo H and He F: Circadian
disruption: From mouse models to molecular mechanisms and cancer
therapeutic targets. Cancer Metastasis Rev. 42:297–322. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Pariollaud M, Ibrahim LH, Irizarry E,
Mello RM, Chan AB, Altman BJ, Shaw RJ, Bollong MJ, Wiseman RL and
Lamia KA: Circadian disruption enhances HSF1 signaling and
tumorigenesis in Kras-driven lung cancer. Sci Adv. 8:eabo11232022.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Hadadi E, Taylor W, Li XM, Aslan Y,
Villote M, Rivière J, Duvallet G, Auriau C, Dulong S,
Raymond-Letron I, et al: Chronic circadian disruption modulates
breast cancer stemness and immune microenvironment to drive
metastasis in mice. Nat Commun. 11:31932020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Koritala BSC, Porter KI, Sarkar S and
Gaddameedhi S: Circadian disruption and cisplatin chronotherapy for
mammary carcinoma. Toxicol Appl Pharmacol. 436:1158632022.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Milićević N, Bergen AA and
Felder-Schmittbuhl MP: Per1 mutation enhances masking responses in
mice. Chronobiol Int. 39:1533–1538. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Oosthuizen T, Pillay N and Oosthuizen MK:
A mouse in the spotlight: Response capacity to artificial light at
night in a rodent pest species, the southern multimammate mouse
(Mastomys coucha). J Environ Manage. 372:1233732024. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Viljoen A and Oosthuizen MK: Dim light at
night affects the locomotor activity of nocturnal African pygmy
mice (Mus minutoides) in an intensity-dependent manner. Proc
Biol Sci. 290:202305262023.PubMed/NCBI
|
|
58
|
Datta S, Samanta D, Tiwary B, Chaudhuri AG
and Chakrabarti N: Sex and estrous cycle dependent changes in
locomotor activity, anxiety and memory performance in aged mice
after exposure of light at night. Behav Brain Res. 365:198–209.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Schoonderwoerd RA, de Torres Gutiérrez P,
Blommers R, van Beurden AW, Coenen TCJJ, Klett NJ, Michel SH and
Meijer JH: Inhibitory responses to retinohypothalamic tract
stimulation in the circadian clock of the diurnal rodent Rhabdomys
pumilio. FASEB J. 36:e224152022. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Tir S, Foster RG and Peirson SN:
Evaluation of the digital ventilated Cage® system for
circadian phenotyping. Sci Rep. 15:36742025. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Walker WH II, Kvadas RM, May LE, Liu JA,
Bumgarner JR, Walton JC, DeVries AC, Dauchy RT, Blask DE and Nelson
RJ: Artificial light at night reduces anxiety-like behavior in
female mice with exacerbated mammary tumor growth. Cancers (Basel).
13:48602021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Agbaria S, Haim A, Fares F and Zubidat AE:
Epigenetic modification in 4T1 mouse breast cancer model by
artificial light at night and melatonin-the role of
DNA-methyltransferase. Chronobiol Int. 36:629–643. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Schwartz PB, Nukaya M, Berres ME,
Rubinstein CD, Wu G, Hogenesch JB, Bradfield CA and
Ronnekleiv-Kelly SM: The circadian clock is disrupted in pancreatic
cancer. PLoS Genet. 19:e10107702023. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Walker WH II, Kaper AL, Meléndez-Fernández
OH, Bumgarner JR, Liu JA, Walton JC, DeVries AC and Nelson RJ:
Time-restricted feeding alters the efficiency of mammary tumor
growth. Chronobiol Int. 39:535–546. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Lawther AJ, Phillips AJK, Chung NC, Chang
A, Ziegler AI, Debs S, Sloan EK and Walker AK: Disrupting circadian
rhythms promotes cancer-induced inflammation in mice. Brain Behav
Immun Health. 21:1004282022. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Koritala BSC, Porter KI, Arshad OA, Gajula
RP, Mitchell HD, Arman T, Manjanatha MG, Teeguarden J, Van Dongen
HPA, McDermott JE and Gaddameedhi S: Night shift schedule causes
circadian dysregulation of DNA repair genes and elevated DNA damage
in humans. J Pineal Res. 70:e127262021. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Mishra A, Lin H, Singla R, Le N, Oraebosi
M, Liu D and Cao R: Circadian desynchrony in early life leads to
enduring autistic-like behavioral changes in adulthood. Commun
Biol. 7:14852024. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Aiello I, Mul Fedele ML, Román F, Marpegan
L, Caldart C, Chiesa JJ, Golombek DA, Finkielstein CV and Paladino
N: Circadian disruption promotes tumor-immune microenvironment
remodeling favoring tumor cell proliferation. Sci Adv.
6:eaaz45302020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zeng X, Liang C and Yao J: Chronic
shift-lag promotes NK cell ageing and impairs immunosurveillance in
mice by decreasing the expression of CD122. J Cell Mol Med.
24:14583–14595. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Tian R, Li Y and Shu M: Circadian
regulation patterns with distinct immune landscapes in gliomas aid
in the development of a risk model to predict prognosis and
therapeutic response. Front Immunol. 12:7974502021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Jones AA and Arble DM: Loss of endogenous
circadian clock function in mice alters respiratory cycle timing in
a time of day- and sex-specific manner. Respir Physiol Neurobiol.
331:1043372025. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Ma C, Li H, Li W, Yang G and Chen L:
Adaptive differences in cellular and behavioral responses to
circadian disruption between C57BL/6 and BALB/c strains. Int J Mol
Sci. 25:104042024. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Peng Y, Tsuno Y, Matsui A, Hiraoka Y,
Tanaka K, Horike SI, Daikoku T and Mieda M: Cell Type-specific
genetic manipulation and impaired circadian rhythms in vip tTA
Knock-In mice. Front Physiol. 13:8956332022. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Du NH, Kompotis K, Sato M, Pedron E,
Androvic S and Brown S: Behavioural phenotypes of Dicer knockout in
the mouse SCN. Eur J Neurosci. 60:6634–6651. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Teeple K, Rajput P, Gonzalez M,
Han-Hallett Y, Fernández-Juricic E and Casey T: High fat diet
induces obesity, alters eating pattern and disrupts corticosterone
circadian rhythms in female ICR mice. PLoS One. 18:e02792092023.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Aroca-Siendones MI, Moreno-SanJuan S,
Puentes-Pardo JD, Verbeni M, Arnedo J, Escudero-Feliu J,
García-Costela M, García-Robles A, Carazo Á and León J: Core
circadian clock proteins as biomarkers of progression in colorectal
cancer. Biomedicines. 9:9672021. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Qiu MJ, Liu LP, Jin S, Fang XF, He XX,
Xiong ZF and Yang SL: Research on circadian clock genes in common
abdominal malignant tumors. Chronobiol Int. 36:906–918. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Deng F, Yang K and Zheng G: Period family
of clock genes as novel predictors of survival in human cancer: A
systematic review and Meta-analysis. Dis Markers. 2020:64862382020.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhao H, Zeng ZL, Yang J, Jin Y, Qiu MZ, Hu
XY, Han J, Liu KY, Liao JW, Xu RH and Zou QF: Prognostic relevance
of Period1 (Per1) and Period2 (Per2) expression in human gastric
cancer. Int J Clin Exp Pathol. 7:619–630. 2014.PubMed/NCBI
|
|
80
|
Shafi AA, McNair CM, McCann JJ, Alshalalfa
M, Shostak A, Severson TM, Zhu Y, Bergman A, Gordon N, Mandigo AC,
et al: The circadian cryptochrome, CRY1, is a pro-tumorigenic
factor that rhythmically modulates DNA repair. Nat Commun.
12:4012021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Sulli G, Rommel A, Wang X, Kolar MJ, Puca
F, Saghatelian A, Plikus MV, Verma IM and Panda S: Pharmacological
activation of REV-ERBs is lethal in cancer and oncogene-induced
senescence. Nature. 553:351–355. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Liang Y, Wang S, Huang X, Chai R, Tang Q,
Yang R, Huang X, Wang X and Zheng K: Dysregulation of circadian
clock genes as significant clinic factor in the tumorigenesis of
hepatocellular carcinoma. Comput Math Methods Med.
2021:82388332021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Heng J and Heng HH: Genome chaos: Creating
new genomic information essential for cancer macroevolution. Semin
Cancer Biol. 81:160–175. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Park J, Lee K, Kim H, Shin H and Lee C:
Endogenous circadian reporters reveal functional differences of
PERIOD paralogs and the significance of PERIOD:CK1 stable
interaction. Proc Natl Acad Sci USA. 120:e22122551202023.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Yin S, Zhang Z, Tang H and Yang K: The
biological clock gene PER1 affects the development of oral squamous
cell carcinoma by altering the circadian rhythms of cell
proliferation and apoptosis. Chronobiol Int. 39:1206–1219. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Lellupitiyage Don SS, Lin HH, Furtado JJ,
Qraitem M, Taylor SR and Farkas ME: Circadian oscillations persist
in low malignancy breast cancer cells. Cell Cycle. 18:2447–2453.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Lin HH, Qraitem M, Lian Y, Taylor SR and
Farkas ME: Analyses of BMAL1 and PER2 oscillations in a model of
breast cancer progression reveal changes with malignancy. Integr
Cancer Ther. 18:15347354198364942019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Ye H, Yang K, Tan X, Zhao D, Lü X and Wang
Q: Circadian variation of clock gene Per2 and cancer-related
clock-controlled genes in buccal mucosa carcinoma of golden hamster
at different cancer stages. Hua Xi Kou Qiang Yi Xue Za Zhi.
33:513–518. 2015.(In Chinese). PubMed/NCBI
|
|
89
|
Liu B, Xu K, Jiang Y and Li X: Aberrant
expression of Per1, Per2 and Per3 and their prognostic relevance in
non-small cell lung cancer. Int J Clin Exp Pathol. 7:7863–7871.
2014.PubMed/NCBI
|
|
90
|
Liu Y, Wu Z, Li Y, Zhang J, Gao Y, Yuan G
and Han M: PER3 plays anticancer roles in the oncogenesis and
progression of breast cancer via regulating MEK/ERK signaling
pathway. J Chin Med Assoc. 85:1051–1060. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Zhang F, Sun H, Zhang S, Yang X, Zhang G
and Su T: Overexpression of PER3 inhibits Self-renewal capability
and chemoresistance of colorectal cancer Stem-Like cells via
inhibition of notch and β-Catenin signaling. Oncol Res. 25:709–719.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Hasakova K, Reis R, Vician M, Zeman M and
Herichova I: Expression of miR-34a-5p is up-regulated in human
colorectal cancer and correlates with survival and clock gene PER2
expression. PLoS One. 14:e02243962019. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Yang MY, Lin PM, Hsiao HH, Hsu JF, Lin HY,
Hsu CM, Chen IY, Su SW, Liu YC and Lin SF: Up-regulation of PER3
expression is correlated with better clinical outcome in acute
leukemia. Anticancer Res. 35:6615–6622. 2015.PubMed/NCBI
|
|
94
|
Rajendran S, Benna C, Marchet A, Nitti D
and Mocellin S: Germline polymorphisms of circadian genes and
gastric cancer predisposition. Cancer Commun (Lond). 40:234–238.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Benna C, Rajendran S, Spiro G, Tropea S,
Del Fiore P, Rossi CR and Mocellin S: Associations of clock genes
polymorphisms with soft tissue sarcoma susceptibility and
prognosis. J Transl Med. 16:3382018. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Hinoura T, Mukai S, Kamoto T and Kuroda Y:
PER3 polymorphisms and their association with prostate cancer risk
in Japanese men. J Prev Med Hyg. 62:E489–E495. 2021.PubMed/NCBI
|
|
97
|
Couto P, Miranda D, Vieira R, Vilhena A,
De Marco L and Bastos-Rodrigues L: Association between CLOCK, PER3
and CCRN4L with non-small cell lung cancer in Brazilian patients.
Mol Med Rep. 10:435–440. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Dagmura H, Yiğit S, Nursal AF, Duman E and
Gumusay O: Possible association of PER2/PER3 variable number tandem
repeat polymorphism variants with susceptibility and clinical
characteristics in pancreatic cancer. Genet Test Mol Biomarkers.
25:124–130. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zhao Q, Zheng G, Yang K, Ao YR, Su XL, Li
Y and Lv XQ: The clock gene PER1 plays an important role in
regulating the clock gene network in human oral squamous cell
carcinoma cells. Oncotarget. 7:70290–70302. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Xiaojuan F, Kai Y, Hanxue L, Qin Z and Dan
C: Effects and mechanism of the circadian clock gene Per1 on the
proliferation, apoptosis, cycle, and tumorigenicity in vivo of
human oral squamous cell carcinoma. Hua Xi Kou Qiang Yi Xue Za Zhi.
34:255–261, (In Chinese). PubMed/NCBI
|
|
101
|
Yang G, Yang Y, Tang H and Yang K: Loss of
the clock gene Per1 promotes oral squamous cell carcinoma
progression via the AKT/mTOR pathway. Cancer Sci. 111:1542–1554.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Bellet MM, Stincardini C, Costantini C,
Gargaro M, Pieroni S, Castelli M, Piobbico D, Sassone-Corsi P,
Della-Fazia MA, Romani L and Servillo G: The circadian protein PER1
modulates the cellular response to anticancer treatments. Int J Mol
Sci. 22:29742021. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Kastenhuber ER and Lowe SW: Putting p53 in
Context. Cell. 170:1062–1078. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Han Y, Meng F, Venter J, Wu N, Wan Y,
Standeford H, Francis H, Meininger C, Greene J Jr, Trzeciakowski
JP, et al: miR-34a-dependent overexpression of Per1 decreases
cholangiocarcinoma growth. J Hepatol. 64:1295–1304. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Guo X, Li K, Jiang W, Hu Y, Xiao W, Huang
Y, Feng Y, Pan Q and Wan R: RNA demethylase ALKBH5 prevents
pancreatic cancer progression by posttranscriptional activation of
PER1 in an m6A-YTHDF2-dependent manner. Mol Cancer. 19:912020.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Yao J, Hui JW, Chen YJ, Luo DY, Yan JS,
Zhang YF, Lan YX, Yan XR, Wang ZH, Fan H and Xia HC: Lycium
barbarum glycopeptide targets PER2 to inhibit lipogenesis in
glioblastoma by downregulating SREBP1c. Cancer Gene Ther.
30:1084–1093. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Zhanfeng N, Chengquan W, Hechun X, Jun W,
Lijian Z, Dede M, Wenbin L and Lei Y: Period2 downregulation
inhibits glioma cell apoptosis by activating the MDM2-TP53 pathway.
Oncotarget. 7:27350–27362. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Ma D, Hou L, Xia H, Li H, Fan H, Jia X and
Niu Z: PER2 inhibits proliferation and stemness of glioma stem
cells via the Wnt/β-catenin signaling pathway. Oncol Rep.
44:533–542. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Su X, Chen D, Yang K, Zhao Q, Zhao D, Lv X
and Ao Y: The circadian clock gene PER2 plays an important role in
tumor suppression through regulating tumor-associated genes in
human oral squamous cell carcinoma. Oncol Rep. 38:472–480. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Xiong H, Yang Y, Yang K, Zhao D, Tang H
and Ran X: Loss of the clock gene PER2 is associated with cancer
development and altered expression of important Tumor-related genes
in oral cancer. Int J Oncol. 52:279–287. 2018.PubMed/NCBI
|
|
111
|
Guo F, Tang Q, Chen G, Sun J, Zhu J, Jia Y
and Zhang W: Aberrant expression and subcellular localization of
PER2 promote the progression of oral squamous cell carcinoma.
Biomed Res Int. 2020:85874582020. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Wang Q, Ao Y, Yang K, Tang H and Chen D:
Circadian clock gene Per2 plays an important role in cell
proliferation, apoptosis and cell cycle progression in human oral
squamous cell carcinoma. Oncol Rep. 35:3387–3394. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
McQueen CM, Schmitt EE, Sarkar TR, Elswood
J, Metz RP, Earnest D, Rijnkels M and Porter WW: PER2 regulation of
mammary gland development. Development. 145:dev1579662018.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Hwang-Verslues WW, Chang PH, Jeng YM, Kuo
WH, Chiang PH, Chang YC, Hsieh TH, Su FY, Lin LC, Abbondante S, et
al: Loss of corepressor PER2 under hypoxia up-regulates
OCT1-mediated EMT gene expression and enhances tumor malignancy.
Proc Natl Acad Sci USA. 110:12331–12336. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Yang C, Wu J, Liu X, Wang Y, Liu B, Chen
X, Wu X, Yan D, Han L, Liu S, et al: Circadian rhythm is disrupted
by ZNF704 in breast carcinogenesis. Cancer Res. 80:4114–4128. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Wang Z, Wang H, Guo H, Li F, Wu W, Zhang S
and Wang T: The circadian rhythm and core gene Period2 regulate the
chemotherapy effect and multidrug resistance of ovarian cancer
through the PI3K signaling pathway. Biosci Rep. 40:BSR202026832020.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Wang Z, Li L and Wang Y: Effects of Per2
overexpression on growth inhibition and metastasis, and on MTA1,
nm23-H1 and the autophagy-associated PI3K/PKB signaling pathway in
nude mice xenograft models of ovarian cancer. Mol Med Rep.
13:4561–4568. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Wang Z, Li F, He S, Zhao L and Wang F:
Period circadian regulator 2 suppresses drug resistance to
cisplatin by PI3K/AKT pathway and improves chronochemotherapeutic
efficacy in cervical cancer. Gene. 809:1460032022. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Lee J, Sul HJ, Choi H, Oh DH and Shong M:
Loss of thyroid gland circadian PER2 rhythmicity in aged mice and
its potential association with thyroid cancer development. Cell
Death Dis. 13:8982022. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Alam H, Tang M, Maitituoheti M, Dhar SS,
Kumar M, Han CY, Ambati CR, Amin SB, Gu B, Chen TY, et al: KMT2D
deficiency impairs Super-enhancers to confer a glycolytic
vulnerability in lung cancer. Cancer Cell. 37:599–617.e7. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Li Z, You Q and Zhang X: Small-molecule
modulators of the Hypoxia-inducible factor pathway: Development and
therapeutic applications. J Med Chem. 62:5725–5749. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Okabe T, Kumagai M, Nakajima Y, Shirotake
S, Kodaira K, Oyama M, Ueno M and Ikeda M: The impact of HIF1α on
the Per2 circadian rhythm in renal cancer cell lines. PLoS One.
9:e1096932014. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Yuan H, Xu R, Li S, Zheng M, Tong Q, Xiang
M and Zhang Y: The malignant transformation of viral hepatitis to
hepatocellular carcinoma: Mechanisms and interventions. MedComm.
6:e701212025. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Mteyrek A, Filipski E, Guettier C, Okyar A
and Lévi F: Clock gene Per2 as a controller of liver
carcinogenesis. Oncotarget. 7:85832–85847. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Minciuna I, van Kleef LA, Stefanescu H and
Procopet B: Is fasting good when one is at risk of liver cancer?
Cancers (Basel). 14:50842022. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Hong Z, Feng Z, Sai Z and Tao S: PER3, a
novel target of miR-103, plays a suppressive role in colorectal
cancer in vitro. BMB Rep. 47:500–555. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Zhang F, Su T and Xiao M: RUNX3-regulated
circRNA METTL3 inhibits colorectal cancer proliferation and
metastasis via miR-107/PER3 axis. Cell Death Dis. 13:5502022.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Kawamura G, Hattori M, Takamatsu K,
Tsukada T, Ninomiya Y, Benjamin I, Sassone-Corsi P, Ozawa T and
Tamaru T: Cooperative interaction among BMAL1, HSF1, and p53
protects mammalian cells from UV stress. Commun Biol. 1:2042018.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Wang J, Huang Q, Hu X, Zhang S, Jiang Y,
Yao G, Hu K, Xu X, Liang B, Wu Q, et al: Disrupting Circadian
rhythm via the PER1-HK2 axis reverses trastuzumab resistance in
gastric cancer. Cancer Res. 82:1503–1517. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Wang Z, Wang Z, Li F, Wei M, Zhang S and
Wang T: Circadian clock protein PERIOD2 suppresses the PI3K/Akt
pathway and promotes cisplatin sensitivity in ovarian cancer.
Cancer Manag Res. 12:11897–11908. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Katamune C, Koyanagi S, Hashikawa KI,
Kusunose N, Akamine T, Matsunaga N and Ohdo S: Mutation of the gene
encoding the circadian clock component PERIOD2 in oncogenic cells
confers chemoresistance by up-regulating the Aldh3a1 gene. J Biol
Chem. 294:547–558. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Zhao X, Fan J, Wu P, Wei C, Chen Q, Ming
Z, Yan J and Yang L: Chronic chemotherapy with paclitaxel
nanoparticles induced apoptosis in lung cancer in vitro and in
vivo. Int J Nanomedicine. 14:1299–1309. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Webb AJ, Harper E, Rattay T,
Aguado-Barrera ME, Azria D, Bourgier C, Brengues M, Briers E,
Bultijnck R, Chang-Claude J, et al: Treatment time and circadian
genotype interact to influence radiotherapy side-effects. A
prospective European validation study using the REQUITE cohort.
EBioMedicine. 84:1042692022. View Article : Google Scholar : PubMed/NCBI
|