Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
August-2025 Volume 30 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2025 Volume 30 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of the period family in mediating the interplay between circadian disruption and cancer (Review)

  • Authors:
    • Pengfei Gu
    • Wenjian Xu
    • Xiaorui Fan
    • Qiang Gao
    • Yukun Wei
    • Haojie Zhang
    • Yuzhen Cui
    • Yong Han
  • View Affiliations / Copyright

    Affiliations: Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
    Copyright: © Gu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 391
    |
    Published online on: June 10, 2025
       https://doi.org/10.3892/ol.2025.15137
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The circadian clock, which is based on 24‑h cyclical changes in the external environment, can be detected in almost all cells and regulates several vital physiological processes. The circadian rhythm is disrupted in numerous individuals for several reasons, such as shift work, chronic jet lag, high fat intake and abnormal sleep patterns. Disruption of the circadian rhythm can increase the risk of cancer, affecting its development and treatment. The Period gene family is a core component of the circadian rhythm cycle, and the mechanisms by which its changes affect cancer progression are unclear. The present study reviewed the current research on the intricate relationship between disruption of the circadian clock, particularly focusing on the Period gene family, and its effect on the occurrence, progression and therapeutic approaches for cancer.
View Figures

Figure 1

Figure 2

View References

1 

Wright KP Jr, McHill AW, Birks BR, Griffin BR, Rusterholz T and Chinoy ED: Entrainment of the human circadian clock to the natural light-dark cycle. Curr Biol. 23:1554–1558. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Malik S, Stokes J III, Manne U, Singh R and Mishra MK: Understanding the significance of biological clock and its impact on cancer incidence. Cancer Lett. 527:80–94. 2022. View Article : Google Scholar : PubMed/NCBI

3 

Pariollaud M and Lamia KA: Cancer in the fourth dimension: What is the impact of circadian disruption? Cancer Discov. 10:1455–1464. 2020. View Article : Google Scholar : PubMed/NCBI

4 

Sulli G, Lam MTY and Panda S: Interplay between circadian clock and cancer: New frontiers for cancer treatment. Trends Cancer. 5:475–494. 2019. View Article : Google Scholar : PubMed/NCBI

5 

Takahashi JS: Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 18:164–179. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Ruan W, Yuan X and Eltzschig HK: Circadian rhythm as a therapeutic target. Nat Rev Drug Discov. 20:287–307. 2021. View Article : Google Scholar : PubMed/NCBI

7 

Vasey C, McBride J and Penta K: Circadian rhythm dysregulation and restoration: The role of melatonin. Nutrients. 13:34802021. View Article : Google Scholar : PubMed/NCBI

8 

Behrens T, Rabstein S, Wichert K, Erbel R, Eisele L, Arendt M, Dragano N, Brüning T and Jöckel KH: Shift work and the incidence of prostate cancer: A 10-year follow-up of a German population-based cohort study. Scand J Work Environ Health. 43:560–568. 2017.PubMed/NCBI

9 

Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I and Colditz GA: Rotating night shifts and risk of breast cancer in women participating in the nurses' health study. J Natl Cancer Inst. 93:1563–1568. 2001. View Article : Google Scholar : PubMed/NCBI

10 

Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Fuchs CS and Colditz GA: Night-shift work and risk of colorectal cancer in the nurses' health study. J Natl Cancer Inst. 95:825–828. 2003. View Article : Google Scholar : PubMed/NCBI

11 

Travis RC, Balkwill A, Fensom GK, Appleby PN, Reeves GK, Wang XS, Roddam AW, Gathani T, Peto R, Green J, et al: Night shift work and breast cancer incidence: Three prospective studies and meta-analysis of published studies. J Natl Cancer Inst. 108:djw1692016. View Article : Google Scholar : PubMed/NCBI

12 

IARC Monographs Vol 124 Group, : Carcinogenicity of night shift work. Lancet Oncol. 20:1058–1059. 2019. View Article : Google Scholar : PubMed/NCBI

13 

Rijo-Ferreira F and Takahashi JS: Genomics of circadian rhythms in health and disease. Genome Med. 11:822019. View Article : Google Scholar : PubMed/NCBI

14 

Shafi AA and Knudsen KE: Cancer and the circadian clock. Cancer Res. 79:3806–3814. 2019. View Article : Google Scholar : PubMed/NCBI

15 

Walker WH II, Walton JC, DeVries AC and Nelson RJ: Circadian rhythm disruption and mental health. Transl Psychiatry. 10:282020. View Article : Google Scholar : PubMed/NCBI

16 

Mohawk JA, Green CB and Takahashi JS: Central and peripheral circadian clocks in mammals. Ann Rev Neurosci. 35:445–462. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Gabriel BM and Zierath JR: Circadian rhythms and exercise-re-setting the clock in metabolic disease. Nat Rev Endocrinol. 15:197–206. 2019. View Article : Google Scholar : PubMed/NCBI

18 

Haupt S, Eckstein ML, Wolf A, Zimmer RT, Wachsmuth NB and Moser O: Eat, train, sleep-retreat? Hormonal interactions of intermittent fasting, exercise and circadian rhythm. Biomolecules. 11:5162021. View Article : Google Scholar : PubMed/NCBI

19 

Panagiotou M, Michel S, Meijer JH and Deboer T: The aging brain: Sleep, the circadian clock and exercise. Biochem Pharmacol. 191:1145632021. View Article : Google Scholar : PubMed/NCBI

20 

Buhr ED, Yoo SH and Takahashi JS: Temperature as a universal resetting cue for mammalian circadian oscillators. Science. 330:379–385. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Schroeder AM and Colwell CS: How to fix a broken clock. Trends Pharmacol Sci. 34:605–519. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Patke A, Young MW and Axelrod S: Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol. 21:67–84. 2020. View Article : Google Scholar : PubMed/NCBI

23 

Scheiermann C, Gibbs J, Ince L and Loudon A: Clocking in to immunity. Nat Rev Immunol. 18:423–437. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Nagoshi E, Saini C, Bauer C, Laroche T, Naef F and Schibler U: Circadian gene expression in individual fibroblasts: Cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell. 119:693–705. 2004. View Article : Google Scholar : PubMed/NCBI

25 

Barber LE, VoPham T, White LF, Roy HK, Palmer JR and Bertrand KA: Circadian disruption and colorectal cancer incidence in black women. Cancer Epidemiol Biomarkers Prev. 32:927–935. 2023. View Article : Google Scholar : PubMed/NCBI

26 

Papantoniou K, Konrad P, Haghayegh S, Strohmaier S, Eliassen AH and Schernhammer E: Rotating night shift work, sleep, and thyroid cancer risk in the nurses' health study 2. Cancers (Basel). 15:56732023. View Article : Google Scholar : PubMed/NCBI

27 

Yang G, Yang Y, Lv K, Wu Y, Song T and Yuan Q: Night shift work and prostate cancer: A large cohort study from UK Biobank and Mendelian randomisation study. BMJ Open. 14:e0844012024. View Article : Google Scholar : PubMed/NCBI

28 

National Toxicology Program, . NTP Cancer Hazard Assessment Report on Night Shift Work and Light at Night. Research Triangle Park (NC), National Toxicology Program, . 2021.

29 

Papantoniou K, Devore EE, Massa J, Strohmaier S, Vetter C, Yang L, Shi Y, Giovannucci E, Speizer F and Schernhammer ES: Rotating night shift work and colorectal cancer risk in the nurses' health studies. Int J Cancer. 143:2709–2717. 2018. View Article : Google Scholar : PubMed/NCBI

30 

Yousef E, Mitwally N, Noufal N and Tahir MR: Shift work and risk of skin cancer: A systematic review and meta-analysis. Sci Rep. 10:20122020. View Article : Google Scholar : PubMed/NCBI

31 

Carter BD, Diver WR, Hildebrand JS, Patel AV and Gapstur SM: Circadian disruption and fatal ovarian cancer. Am J Prev Med. 46 (3 Suppl 1):S34–S41. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Garcia-Saenz A, Sánchez de Miguel A, Espinosa A, Valentin A, Aragonés N, Llorca J, Amiano P, Martín Sánchez V, Guevara M, Capelo R, et al: Evaluating the Association between artificial light-at-night exposure and breast and prostate cancer risk in spain (MCC-Spain study). Environ Health Perspect. 126:0470112018. View Article : Google Scholar : PubMed/NCBI

33 

Garcia-Saenz A, de Miguel AS, Espinosa A, Costas L, Aragonés N, Tonne C, Moreno V, Pérez-Gómez B, Valentin A, Pollán M, et al: Association between outdoor Light-at-night exposure and colorectal cancer in spain. Epidemiology. 31:718–727. 2020. View Article : Google Scholar : PubMed/NCBI

34 

Zhang D, Jones RR, James P, Kitahara CM and Xiao Q: Associations between artificial light at night and risk for thyroid cancer: A large US cohort study. Cancer. 127:1448–1458. 2021. View Article : Google Scholar : PubMed/NCBI

35 

Xiao Q, Jones RR, James P and Stolzenberg-Solomon RZ: Light at night and risk of pancreatic cancer in the NIH-AARP diet and health study. Cancer Res. 81:1616–1622. 2021. View Article : Google Scholar : PubMed/NCBI

36 

Sirhan-Atalla M, Gabinet NM and Portnov BA: Disaggregating the effects of daytime and nighttime light exposures on obesity, overweight, prostate and breast cancer morbidity worldwide. Chronobiol Int. 40:483–514. 2023. View Article : Google Scholar : PubMed/NCBI

37 

Jones RR: Exposure to artificial light at night and risk of cancer: Where do we go from here? Br J Cancer. 124:1467–1468. 2021. View Article : Google Scholar : PubMed/NCBI

38 

Turner MC, Gracia-Lavedan E, Papantoniou K, Aragonés N, Castaño-Vinyals G, Dierssen-Sotos T, Amiano P, Ardanaz E, Marcos-Delgado A, Molina-Barceló A, et al: Sleep and breast and prostate cancer risk in the MCC-Spain study. Sci Rep. 12:218072022. View Article : Google Scholar : PubMed/NCBI

39 

Wong ATY, Heath AK, Tong TYN, Reeves GK, Floud S, Beral V and Travis RC: Sleep duration and breast cancer incidence: Results from the Million Women Study and meta-analysis of published prospective studies. Sleep. 44:zsaa1662021. View Article : Google Scholar : PubMed/NCBI

40 

Chen Y, Tan F, Wei L, Li X, Lyu Z, Feng X, Wen Y, Guo L, He J, Dai M and Li N: Sleep duration and the risk of cancer: A systematic review and meta-analysis including dose-response relationship. BMC Cancer. 18:11492018. View Article : Google Scholar : PubMed/NCBI

41 

Li X, Hu Y and Aslanbeigi F: Genetic and epigenetic alterations in night shift nurses with breast cancer: A narrative review. Cancer Cell International. 25:202025. View Article : Google Scholar : PubMed/NCBI

42 

Ning D, Fang Y and Zhang W: Association of habitual sleep duration and its trajectory with the risk of cancer according to sex and body mass index in a population-based cohort. Cancer. 129:3582–3594. 2023. View Article : Google Scholar : PubMed/NCBI

43 

Vatsyayan A, Mathur P, Bhoyar RC, Imran M, Senthivel V, Divakar MK, Mishra A, Jolly B, Sivasubbu S and Scaria V: Understanding the genetic epidemiology of hereditary breast cancer in India using whole genome data from 1029 healthy individuals. Cancer Causes Control. Mar 1–2025.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

44 

Yin X, Shen H, Wang H, Wang Q, Zhang S, Zhang C, Jia Q, Guo S, Xu X, Zhang W, et al: Pathogenic germline variants in Chinese pancreatic adenocarcinoma patients. Nat Commun. 16:22142025. View Article : Google Scholar : PubMed/NCBI

45 

Srour B, Plancoulaine S, Andreeva VA, Fassier P, Julia C, Galan P, Hercberg S, Deschasaux M, Latino-Martel P and Touvier M: Circadian nutritional behaviours and cancer risk: New insights from the NutriNet-santé prospective cohort study: Disclaimers. Int J Cancer. 143:2369–2379. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Kogevinas M, Espinosa A, Castelló A, Gómez-Acebo I, Guevara M, Martin V, Amiano P, Alguacil J, Peiro R, Moreno V, et al: Effect of mistimed eating patterns on breast and prostate cancer risk (MCC-Spain Study). Int J Cancer. 143:2380–2389. 2018. View Article : Google Scholar : PubMed/NCBI

47 

Bishehsari F, Engen PA, Voigt RM, Swanson G, Shaikh M, Wilber S, Naqib A, Green SJ, Shetuni B, Forsyth CB, et al: Abnormal eating patterns cause circadian disruption and promote alcohol-associated colon carcinogenesis. Cell Mol Gastroenterol Hepatol. 9:219–237. 2020. View Article : Google Scholar : PubMed/NCBI

48 

Marinac CR, Nelson SH, Breen CI, Hartman SJ, Natarajan L, Pierce JP, Flatt SW, Sears DD and Patterson RE: Prolonged nightly fasting and breast cancer prognosis. JAMA Oncol. 2:1049–1055. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Verbanac D, Maleš Ž and Barišić K: Nutrition-facts and myths. Acta Pharm. 69:497–510. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Munt AE, Partridge SR and Allman-Farinelli M: The barriers and enablers of healthy eating among young adults: A missing piece of the obesity puzzle: A scoping review. Obes Revi. 18:1–17. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Wang Y, Guo H and He F: Circadian disruption: From mouse models to molecular mechanisms and cancer therapeutic targets. Cancer Metastasis Rev. 42:297–322. 2023. View Article : Google Scholar : PubMed/NCBI

52 

Pariollaud M, Ibrahim LH, Irizarry E, Mello RM, Chan AB, Altman BJ, Shaw RJ, Bollong MJ, Wiseman RL and Lamia KA: Circadian disruption enhances HSF1 signaling and tumorigenesis in Kras-driven lung cancer. Sci Adv. 8:eabo11232022. View Article : Google Scholar : PubMed/NCBI

53 

Hadadi E, Taylor W, Li XM, Aslan Y, Villote M, Rivière J, Duvallet G, Auriau C, Dulong S, Raymond-Letron I, et al: Chronic circadian disruption modulates breast cancer stemness and immune microenvironment to drive metastasis in mice. Nat Commun. 11:31932020. View Article : Google Scholar : PubMed/NCBI

54 

Koritala BSC, Porter KI, Sarkar S and Gaddameedhi S: Circadian disruption and cisplatin chronotherapy for mammary carcinoma. Toxicol Appl Pharmacol. 436:1158632022. View Article : Google Scholar : PubMed/NCBI

55 

Milićević N, Bergen AA and Felder-Schmittbuhl MP: Per1 mutation enhances masking responses in mice. Chronobiol Int. 39:1533–1538. 2022. View Article : Google Scholar : PubMed/NCBI

56 

Oosthuizen T, Pillay N and Oosthuizen MK: A mouse in the spotlight: Response capacity to artificial light at night in a rodent pest species, the southern multimammate mouse (Mastomys coucha). J Environ Manage. 372:1233732024. View Article : Google Scholar : PubMed/NCBI

57 

Viljoen A and Oosthuizen MK: Dim light at night affects the locomotor activity of nocturnal African pygmy mice (Mus minutoides) in an intensity-dependent manner. Proc Biol Sci. 290:202305262023.PubMed/NCBI

58 

Datta S, Samanta D, Tiwary B, Chaudhuri AG and Chakrabarti N: Sex and estrous cycle dependent changes in locomotor activity, anxiety and memory performance in aged mice after exposure of light at night. Behav Brain Res. 365:198–209. 2019. View Article : Google Scholar : PubMed/NCBI

59 

Schoonderwoerd RA, de Torres Gutiérrez P, Blommers R, van Beurden AW, Coenen TCJJ, Klett NJ, Michel SH and Meijer JH: Inhibitory responses to retinohypothalamic tract stimulation in the circadian clock of the diurnal rodent Rhabdomys pumilio. FASEB J. 36:e224152022. View Article : Google Scholar : PubMed/NCBI

60 

Tir S, Foster RG and Peirson SN: Evaluation of the digital ventilated Cage® system for circadian phenotyping. Sci Rep. 15:36742025. View Article : Google Scholar : PubMed/NCBI

61 

Walker WH II, Kvadas RM, May LE, Liu JA, Bumgarner JR, Walton JC, DeVries AC, Dauchy RT, Blask DE and Nelson RJ: Artificial light at night reduces anxiety-like behavior in female mice with exacerbated mammary tumor growth. Cancers (Basel). 13:48602021. View Article : Google Scholar : PubMed/NCBI

62 

Agbaria S, Haim A, Fares F and Zubidat AE: Epigenetic modification in 4T1 mouse breast cancer model by artificial light at night and melatonin-the role of DNA-methyltransferase. Chronobiol Int. 36:629–643. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Schwartz PB, Nukaya M, Berres ME, Rubinstein CD, Wu G, Hogenesch JB, Bradfield CA and Ronnekleiv-Kelly SM: The circadian clock is disrupted in pancreatic cancer. PLoS Genet. 19:e10107702023. View Article : Google Scholar : PubMed/NCBI

64 

Walker WH II, Kaper AL, Meléndez-Fernández OH, Bumgarner JR, Liu JA, Walton JC, DeVries AC and Nelson RJ: Time-restricted feeding alters the efficiency of mammary tumor growth. Chronobiol Int. 39:535–546. 2022. View Article : Google Scholar : PubMed/NCBI

65 

Lawther AJ, Phillips AJK, Chung NC, Chang A, Ziegler AI, Debs S, Sloan EK and Walker AK: Disrupting circadian rhythms promotes cancer-induced inflammation in mice. Brain Behav Immun Health. 21:1004282022. View Article : Google Scholar : PubMed/NCBI

66 

Koritala BSC, Porter KI, Arshad OA, Gajula RP, Mitchell HD, Arman T, Manjanatha MG, Teeguarden J, Van Dongen HPA, McDermott JE and Gaddameedhi S: Night shift schedule causes circadian dysregulation of DNA repair genes and elevated DNA damage in humans. J Pineal Res. 70:e127262021. View Article : Google Scholar : PubMed/NCBI

67 

Mishra A, Lin H, Singla R, Le N, Oraebosi M, Liu D and Cao R: Circadian desynchrony in early life leads to enduring autistic-like behavioral changes in adulthood. Commun Biol. 7:14852024. View Article : Google Scholar : PubMed/NCBI

68 

Aiello I, Mul Fedele ML, Román F, Marpegan L, Caldart C, Chiesa JJ, Golombek DA, Finkielstein CV and Paladino N: Circadian disruption promotes tumor-immune microenvironment remodeling favoring tumor cell proliferation. Sci Adv. 6:eaaz45302020. View Article : Google Scholar : PubMed/NCBI

69 

Zeng X, Liang C and Yao J: Chronic shift-lag promotes NK cell ageing and impairs immunosurveillance in mice by decreasing the expression of CD122. J Cell Mol Med. 24:14583–14595. 2020. View Article : Google Scholar : PubMed/NCBI

70 

Tian R, Li Y and Shu M: Circadian regulation patterns with distinct immune landscapes in gliomas aid in the development of a risk model to predict prognosis and therapeutic response. Front Immunol. 12:7974502021. View Article : Google Scholar : PubMed/NCBI

71 

Jones AA and Arble DM: Loss of endogenous circadian clock function in mice alters respiratory cycle timing in a time of day- and sex-specific manner. Respir Physiol Neurobiol. 331:1043372025. View Article : Google Scholar : PubMed/NCBI

72 

Ma C, Li H, Li W, Yang G and Chen L: Adaptive differences in cellular and behavioral responses to circadian disruption between C57BL/6 and BALB/c strains. Int J Mol Sci. 25:104042024. View Article : Google Scholar : PubMed/NCBI

73 

Peng Y, Tsuno Y, Matsui A, Hiraoka Y, Tanaka K, Horike SI, Daikoku T and Mieda M: Cell Type-specific genetic manipulation and impaired circadian rhythms in vip tTA Knock-In mice. Front Physiol. 13:8956332022. View Article : Google Scholar : PubMed/NCBI

74 

Du NH, Kompotis K, Sato M, Pedron E, Androvic S and Brown S: Behavioural phenotypes of Dicer knockout in the mouse SCN. Eur J Neurosci. 60:6634–6651. 2024. View Article : Google Scholar : PubMed/NCBI

75 

Teeple K, Rajput P, Gonzalez M, Han-Hallett Y, Fernández-Juricic E and Casey T: High fat diet induces obesity, alters eating pattern and disrupts corticosterone circadian rhythms in female ICR mice. PLoS One. 18:e02792092023. View Article : Google Scholar : PubMed/NCBI

76 

Aroca-Siendones MI, Moreno-SanJuan S, Puentes-Pardo JD, Verbeni M, Arnedo J, Escudero-Feliu J, García-Costela M, García-Robles A, Carazo Á and León J: Core circadian clock proteins as biomarkers of progression in colorectal cancer. Biomedicines. 9:9672021. View Article : Google Scholar : PubMed/NCBI

77 

Qiu MJ, Liu LP, Jin S, Fang XF, He XX, Xiong ZF and Yang SL: Research on circadian clock genes in common abdominal malignant tumors. Chronobiol Int. 36:906–918. 2019. View Article : Google Scholar : PubMed/NCBI

78 

Deng F, Yang K and Zheng G: Period family of clock genes as novel predictors of survival in human cancer: A systematic review and Meta-analysis. Dis Markers. 2020:64862382020. View Article : Google Scholar : PubMed/NCBI

79 

Zhao H, Zeng ZL, Yang J, Jin Y, Qiu MZ, Hu XY, Han J, Liu KY, Liao JW, Xu RH and Zou QF: Prognostic relevance of Period1 (Per1) and Period2 (Per2) expression in human gastric cancer. Int J Clin Exp Pathol. 7:619–630. 2014.PubMed/NCBI

80 

Shafi AA, McNair CM, McCann JJ, Alshalalfa M, Shostak A, Severson TM, Zhu Y, Bergman A, Gordon N, Mandigo AC, et al: The circadian cryptochrome, CRY1, is a pro-tumorigenic factor that rhythmically modulates DNA repair. Nat Commun. 12:4012021. View Article : Google Scholar : PubMed/NCBI

81 

Sulli G, Rommel A, Wang X, Kolar MJ, Puca F, Saghatelian A, Plikus MV, Verma IM and Panda S: Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence. Nature. 553:351–355. 2018. View Article : Google Scholar : PubMed/NCBI

82 

Liang Y, Wang S, Huang X, Chai R, Tang Q, Yang R, Huang X, Wang X and Zheng K: Dysregulation of circadian clock genes as significant clinic factor in the tumorigenesis of hepatocellular carcinoma. Comput Math Methods Med. 2021:82388332021. View Article : Google Scholar : PubMed/NCBI

83 

Heng J and Heng HH: Genome chaos: Creating new genomic information essential for cancer macroevolution. Semin Cancer Biol. 81:160–175. 2022. View Article : Google Scholar : PubMed/NCBI

84 

Park J, Lee K, Kim H, Shin H and Lee C: Endogenous circadian reporters reveal functional differences of PERIOD paralogs and the significance of PERIOD:CK1 stable interaction. Proc Natl Acad Sci USA. 120:e22122551202023. View Article : Google Scholar : PubMed/NCBI

85 

Yin S, Zhang Z, Tang H and Yang K: The biological clock gene PER1 affects the development of oral squamous cell carcinoma by altering the circadian rhythms of cell proliferation and apoptosis. Chronobiol Int. 39:1206–1219. 2022. View Article : Google Scholar : PubMed/NCBI

86 

Lellupitiyage Don SS, Lin HH, Furtado JJ, Qraitem M, Taylor SR and Farkas ME: Circadian oscillations persist in low malignancy breast cancer cells. Cell Cycle. 18:2447–2453. 2019. View Article : Google Scholar : PubMed/NCBI

87 

Lin HH, Qraitem M, Lian Y, Taylor SR and Farkas ME: Analyses of BMAL1 and PER2 oscillations in a model of breast cancer progression reveal changes with malignancy. Integr Cancer Ther. 18:15347354198364942019. View Article : Google Scholar : PubMed/NCBI

88 

Ye H, Yang K, Tan X, Zhao D, Lü X and Wang Q: Circadian variation of clock gene Per2 and cancer-related clock-controlled genes in buccal mucosa carcinoma of golden hamster at different cancer stages. Hua Xi Kou Qiang Yi Xue Za Zhi. 33:513–518. 2015.(In Chinese). PubMed/NCBI

89 

Liu B, Xu K, Jiang Y and Li X: Aberrant expression of Per1, Per2 and Per3 and their prognostic relevance in non-small cell lung cancer. Int J Clin Exp Pathol. 7:7863–7871. 2014.PubMed/NCBI

90 

Liu Y, Wu Z, Li Y, Zhang J, Gao Y, Yuan G and Han M: PER3 plays anticancer roles in the oncogenesis and progression of breast cancer via regulating MEK/ERK signaling pathway. J Chin Med Assoc. 85:1051–1060. 2022. View Article : Google Scholar : PubMed/NCBI

91 

Zhang F, Sun H, Zhang S, Yang X, Zhang G and Su T: Overexpression of PER3 inhibits Self-renewal capability and chemoresistance of colorectal cancer Stem-Like cells via inhibition of notch and β-Catenin signaling. Oncol Res. 25:709–719. 2017. View Article : Google Scholar : PubMed/NCBI

92 

Hasakova K, Reis R, Vician M, Zeman M and Herichova I: Expression of miR-34a-5p is up-regulated in human colorectal cancer and correlates with survival and clock gene PER2 expression. PLoS One. 14:e02243962019. View Article : Google Scholar : PubMed/NCBI

93 

Yang MY, Lin PM, Hsiao HH, Hsu JF, Lin HY, Hsu CM, Chen IY, Su SW, Liu YC and Lin SF: Up-regulation of PER3 expression is correlated with better clinical outcome in acute leukemia. Anticancer Res. 35:6615–6622. 2015.PubMed/NCBI

94 

Rajendran S, Benna C, Marchet A, Nitti D and Mocellin S: Germline polymorphisms of circadian genes and gastric cancer predisposition. Cancer Commun (Lond). 40:234–238. 2020. View Article : Google Scholar : PubMed/NCBI

95 

Benna C, Rajendran S, Spiro G, Tropea S, Del Fiore P, Rossi CR and Mocellin S: Associations of clock genes polymorphisms with soft tissue sarcoma susceptibility and prognosis. J Transl Med. 16:3382018. View Article : Google Scholar : PubMed/NCBI

96 

Hinoura T, Mukai S, Kamoto T and Kuroda Y: PER3 polymorphisms and their association with prostate cancer risk in Japanese men. J Prev Med Hyg. 62:E489–E495. 2021.PubMed/NCBI

97 

Couto P, Miranda D, Vieira R, Vilhena A, De Marco L and Bastos-Rodrigues L: Association between CLOCK, PER3 and CCRN4L with non-small cell lung cancer in Brazilian patients. Mol Med Rep. 10:435–440. 2014. View Article : Google Scholar : PubMed/NCBI

98 

Dagmura H, Yiğit S, Nursal AF, Duman E and Gumusay O: Possible association of PER2/PER3 variable number tandem repeat polymorphism variants with susceptibility and clinical characteristics in pancreatic cancer. Genet Test Mol Biomarkers. 25:124–130. 2021. View Article : Google Scholar : PubMed/NCBI

99 

Zhao Q, Zheng G, Yang K, Ao YR, Su XL, Li Y and Lv XQ: The clock gene PER1 plays an important role in regulating the clock gene network in human oral squamous cell carcinoma cells. Oncotarget. 7:70290–70302. 2016. View Article : Google Scholar : PubMed/NCBI

100 

Xiaojuan F, Kai Y, Hanxue L, Qin Z and Dan C: Effects and mechanism of the circadian clock gene Per1 on the proliferation, apoptosis, cycle, and tumorigenicity in vivo of human oral squamous cell carcinoma. Hua Xi Kou Qiang Yi Xue Za Zhi. 34:255–261, (In Chinese). PubMed/NCBI

101 

Yang G, Yang Y, Tang H and Yang K: Loss of the clock gene Per1 promotes oral squamous cell carcinoma progression via the AKT/mTOR pathway. Cancer Sci. 111:1542–1554. 2020. View Article : Google Scholar : PubMed/NCBI

102 

Bellet MM, Stincardini C, Costantini C, Gargaro M, Pieroni S, Castelli M, Piobbico D, Sassone-Corsi P, Della-Fazia MA, Romani L and Servillo G: The circadian protein PER1 modulates the cellular response to anticancer treatments. Int J Mol Sci. 22:29742021. View Article : Google Scholar : PubMed/NCBI

103 

Kastenhuber ER and Lowe SW: Putting p53 in Context. Cell. 170:1062–1078. 2017. View Article : Google Scholar : PubMed/NCBI

104 

Han Y, Meng F, Venter J, Wu N, Wan Y, Standeford H, Francis H, Meininger C, Greene J Jr, Trzeciakowski JP, et al: miR-34a-dependent overexpression of Per1 decreases cholangiocarcinoma growth. J Hepatol. 64:1295–1304. 2016. View Article : Google Scholar : PubMed/NCBI

105 

Guo X, Li K, Jiang W, Hu Y, Xiao W, Huang Y, Feng Y, Pan Q and Wan R: RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner. Mol Cancer. 19:912020. View Article : Google Scholar : PubMed/NCBI

106 

Yao J, Hui JW, Chen YJ, Luo DY, Yan JS, Zhang YF, Lan YX, Yan XR, Wang ZH, Fan H and Xia HC: Lycium barbarum glycopeptide targets PER2 to inhibit lipogenesis in glioblastoma by downregulating SREBP1c. Cancer Gene Ther. 30:1084–1093. 2023. View Article : Google Scholar : PubMed/NCBI

107 

Zhanfeng N, Chengquan W, Hechun X, Jun W, Lijian Z, Dede M, Wenbin L and Lei Y: Period2 downregulation inhibits glioma cell apoptosis by activating the MDM2-TP53 pathway. Oncotarget. 7:27350–27362. 2016. View Article : Google Scholar : PubMed/NCBI

108 

Ma D, Hou L, Xia H, Li H, Fan H, Jia X and Niu Z: PER2 inhibits proliferation and stemness of glioma stem cells via the Wnt/β-catenin signaling pathway. Oncol Rep. 44:533–542. 2020. View Article : Google Scholar : PubMed/NCBI

109 

Su X, Chen D, Yang K, Zhao Q, Zhao D, Lv X and Ao Y: The circadian clock gene PER2 plays an important role in tumor suppression through regulating tumor-associated genes in human oral squamous cell carcinoma. Oncol Rep. 38:472–480. 2017. View Article : Google Scholar : PubMed/NCBI

110 

Xiong H, Yang Y, Yang K, Zhao D, Tang H and Ran X: Loss of the clock gene PER2 is associated with cancer development and altered expression of important Tumor-related genes in oral cancer. Int J Oncol. 52:279–287. 2018.PubMed/NCBI

111 

Guo F, Tang Q, Chen G, Sun J, Zhu J, Jia Y and Zhang W: Aberrant expression and subcellular localization of PER2 promote the progression of oral squamous cell carcinoma. Biomed Res Int. 2020:85874582020. View Article : Google Scholar : PubMed/NCBI

112 

Wang Q, Ao Y, Yang K, Tang H and Chen D: Circadian clock gene Per2 plays an important role in cell proliferation, apoptosis and cell cycle progression in human oral squamous cell carcinoma. Oncol Rep. 35:3387–3394. 2016. View Article : Google Scholar : PubMed/NCBI

113 

McQueen CM, Schmitt EE, Sarkar TR, Elswood J, Metz RP, Earnest D, Rijnkels M and Porter WW: PER2 regulation of mammary gland development. Development. 145:dev1579662018. View Article : Google Scholar : PubMed/NCBI

114 

Hwang-Verslues WW, Chang PH, Jeng YM, Kuo WH, Chiang PH, Chang YC, Hsieh TH, Su FY, Lin LC, Abbondante S, et al: Loss of corepressor PER2 under hypoxia up-regulates OCT1-mediated EMT gene expression and enhances tumor malignancy. Proc Natl Acad Sci USA. 110:12331–12336. 2013. View Article : Google Scholar : PubMed/NCBI

115 

Yang C, Wu J, Liu X, Wang Y, Liu B, Chen X, Wu X, Yan D, Han L, Liu S, et al: Circadian rhythm is disrupted by ZNF704 in breast carcinogenesis. Cancer Res. 80:4114–4128. 2020. View Article : Google Scholar : PubMed/NCBI

116 

Wang Z, Wang H, Guo H, Li F, Wu W, Zhang S and Wang T: The circadian rhythm and core gene Period2 regulate the chemotherapy effect and multidrug resistance of ovarian cancer through the PI3K signaling pathway. Biosci Rep. 40:BSR202026832020. View Article : Google Scholar : PubMed/NCBI

117 

Wang Z, Li L and Wang Y: Effects of Per2 overexpression on growth inhibition and metastasis, and on MTA1, nm23-H1 and the autophagy-associated PI3K/PKB signaling pathway in nude mice xenograft models of ovarian cancer. Mol Med Rep. 13:4561–4568. 2016. View Article : Google Scholar : PubMed/NCBI

118 

Wang Z, Li F, He S, Zhao L and Wang F: Period circadian regulator 2 suppresses drug resistance to cisplatin by PI3K/AKT pathway and improves chronochemotherapeutic efficacy in cervical cancer. Gene. 809:1460032022. View Article : Google Scholar : PubMed/NCBI

119 

Lee J, Sul HJ, Choi H, Oh DH and Shong M: Loss of thyroid gland circadian PER2 rhythmicity in aged mice and its potential association with thyroid cancer development. Cell Death Dis. 13:8982022. View Article : Google Scholar : PubMed/NCBI

120 

Alam H, Tang M, Maitituoheti M, Dhar SS, Kumar M, Han CY, Ambati CR, Amin SB, Gu B, Chen TY, et al: KMT2D deficiency impairs Super-enhancers to confer a glycolytic vulnerability in lung cancer. Cancer Cell. 37:599–617.e7. 2020. View Article : Google Scholar : PubMed/NCBI

121 

Li Z, You Q and Zhang X: Small-molecule modulators of the Hypoxia-inducible factor pathway: Development and therapeutic applications. J Med Chem. 62:5725–5749. 2019. View Article : Google Scholar : PubMed/NCBI

122 

Okabe T, Kumagai M, Nakajima Y, Shirotake S, Kodaira K, Oyama M, Ueno M and Ikeda M: The impact of HIF1α on the Per2 circadian rhythm in renal cancer cell lines. PLoS One. 9:e1096932014. View Article : Google Scholar : PubMed/NCBI

123 

Yuan H, Xu R, Li S, Zheng M, Tong Q, Xiang M and Zhang Y: The malignant transformation of viral hepatitis to hepatocellular carcinoma: Mechanisms and interventions. MedComm. 6:e701212025. View Article : Google Scholar : PubMed/NCBI

124 

Mteyrek A, Filipski E, Guettier C, Okyar A and Lévi F: Clock gene Per2 as a controller of liver carcinogenesis. Oncotarget. 7:85832–85847. 2016. View Article : Google Scholar : PubMed/NCBI

125 

Minciuna I, van Kleef LA, Stefanescu H and Procopet B: Is fasting good when one is at risk of liver cancer? Cancers (Basel). 14:50842022. View Article : Google Scholar : PubMed/NCBI

126 

Hong Z, Feng Z, Sai Z and Tao S: PER3, a novel target of miR-103, plays a suppressive role in colorectal cancer in vitro. BMB Rep. 47:500–555. 2014. View Article : Google Scholar : PubMed/NCBI

127 

Zhang F, Su T and Xiao M: RUNX3-regulated circRNA METTL3 inhibits colorectal cancer proliferation and metastasis via miR-107/PER3 axis. Cell Death Dis. 13:5502022. View Article : Google Scholar : PubMed/NCBI

128 

Kawamura G, Hattori M, Takamatsu K, Tsukada T, Ninomiya Y, Benjamin I, Sassone-Corsi P, Ozawa T and Tamaru T: Cooperative interaction among BMAL1, HSF1, and p53 protects mammalian cells from UV stress. Commun Biol. 1:2042018. View Article : Google Scholar : PubMed/NCBI

129 

Wang J, Huang Q, Hu X, Zhang S, Jiang Y, Yao G, Hu K, Xu X, Liang B, Wu Q, et al: Disrupting Circadian rhythm via the PER1-HK2 axis reverses trastuzumab resistance in gastric cancer. Cancer Res. 82:1503–1517. 2022. View Article : Google Scholar : PubMed/NCBI

130 

Wang Z, Wang Z, Li F, Wei M, Zhang S and Wang T: Circadian clock protein PERIOD2 suppresses the PI3K/Akt pathway and promotes cisplatin sensitivity in ovarian cancer. Cancer Manag Res. 12:11897–11908. 2020. View Article : Google Scholar : PubMed/NCBI

131 

Katamune C, Koyanagi S, Hashikawa KI, Kusunose N, Akamine T, Matsunaga N and Ohdo S: Mutation of the gene encoding the circadian clock component PERIOD2 in oncogenic cells confers chemoresistance by up-regulating the Aldh3a1 gene. J Biol Chem. 294:547–558. 2019. View Article : Google Scholar : PubMed/NCBI

132 

Zhao X, Fan J, Wu P, Wei C, Chen Q, Ming Z, Yan J and Yang L: Chronic chemotherapy with paclitaxel nanoparticles induced apoptosis in lung cancer in vitro and in vivo. Int J Nanomedicine. 14:1299–1309. 2019. View Article : Google Scholar : PubMed/NCBI

133 

Webb AJ, Harper E, Rattay T, Aguado-Barrera ME, Azria D, Bourgier C, Brengues M, Briers E, Bultijnck R, Chang-Claude J, et al: Treatment time and circadian genotype interact to influence radiotherapy side-effects. A prospective European validation study using the REQUITE cohort. EBioMedicine. 84:1042692022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Gu P, Xu W, Fan X, Gao Q, Wei Y, Zhang H, Cui Y and Han Y: Role of the period family in mediating the interplay between circadian disruption and cancer (Review). Oncol Lett 30: 391, 2025.
APA
Gu, P., Xu, W., Fan, X., Gao, Q., Wei, Y., Zhang, H. ... Han, Y. (2025). Role of the period family in mediating the interplay between circadian disruption and cancer (Review). Oncology Letters, 30, 391. https://doi.org/10.3892/ol.2025.15137
MLA
Gu, P., Xu, W., Fan, X., Gao, Q., Wei, Y., Zhang, H., Cui, Y., Han, Y."Role of the period family in mediating the interplay between circadian disruption and cancer (Review)". Oncology Letters 30.2 (2025): 391.
Chicago
Gu, P., Xu, W., Fan, X., Gao, Q., Wei, Y., Zhang, H., Cui, Y., Han, Y."Role of the period family in mediating the interplay between circadian disruption and cancer (Review)". Oncology Letters 30, no. 2 (2025): 391. https://doi.org/10.3892/ol.2025.15137
Copy and paste a formatted citation
x
Spandidos Publications style
Gu P, Xu W, Fan X, Gao Q, Wei Y, Zhang H, Cui Y and Han Y: Role of the period family in mediating the interplay between circadian disruption and cancer (Review). Oncol Lett 30: 391, 2025.
APA
Gu, P., Xu, W., Fan, X., Gao, Q., Wei, Y., Zhang, H. ... Han, Y. (2025). Role of the period family in mediating the interplay between circadian disruption and cancer (Review). Oncology Letters, 30, 391. https://doi.org/10.3892/ol.2025.15137
MLA
Gu, P., Xu, W., Fan, X., Gao, Q., Wei, Y., Zhang, H., Cui, Y., Han, Y."Role of the period family in mediating the interplay between circadian disruption and cancer (Review)". Oncology Letters 30.2 (2025): 391.
Chicago
Gu, P., Xu, W., Fan, X., Gao, Q., Wei, Y., Zhang, H., Cui, Y., Han, Y."Role of the period family in mediating the interplay between circadian disruption and cancer (Review)". Oncology Letters 30, no. 2 (2025): 391. https://doi.org/10.3892/ol.2025.15137
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team