Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
August-2025 Volume 30 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2025 Volume 30 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Machine learning‑based radiomics models for the prediction of metachronous liver metastases in patients with colorectal cancer: 
A multimodal study

  • Authors:
    • Jian-Ping Wang
    • Ze-Ning Zhang
    • Ding-Bo Shu
    • Ya-Nan Huang
    • Wei Tang
    • Hong-Bo Zhao
    • Zhen-Hua Zhao
    • Ji-Hong Sun
  • View Affiliations / Copyright

    Affiliations: Department of Radiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China, Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 394
    |
    Published online on: June 11, 2025
       https://doi.org/10.3892/ol.2025.15140
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The aim of the present study was to investigate whether a multimodal radiomics model powered by machine learning could accurately predict the occurrence of metachronous liver metastasis (MLM) in patients with colorectal cancer (CRC). A total of 157 patients diagnosed with CRC between 2010 and 2020 were retrospectively included in the present study; of these patients, 67 patients developed liver metastases within 2 years of treatment, while the remaining patients (n=90) did not. Radiomics features were extracted from annotated MR images of the tumor and portal venous phase CT images of the liver in each patient. Subsequently, machine learning‑based radiomics models were developed and integrated with the clinical features for MLM prediction, employing Least Absolute Shrinkage and Selection Operator and Random Forest algorithms. The performance of the models were evaluated using the receiver operating characteristic curve analysis, while the clinical utility was measured using the decision curve analysis. A total of 922 and 1,082 radiomics features were extracted from the MR and CT images of each patient, respectively, which quantified the intensity, shape, orientation and texture of the tumor and liver. The mean area under the curve (AUC) values for the prediction of MLM were 0.80, 0.68 and 0.82 for the CT, MRI and merged models, respectively. For the clinical and clinical‑merged models, the AUC values were 0.62 and 0.75, respectively. There was no significant difference between the CT model and the merged model (P>0.05). In conclusion, the preliminary results of the present study demonstrated the utility of machine learning‑based radiomics models in the prediction of MLM in patients with CRC. However, further research is warranted to explore the potential of multimodal fusion models, due to the minimal improvement observed in diagnostic performance.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Han B, Zheng R, Zeng H, Wang S, Sun K, Chen R, Li L, Wei W and He J: Cancer incidence and mortality in China, 2022. J Natl Cancer Cen. 4:47–53. 2024. View Article : Google Scholar

2 

Wang Z, Kim SY, Tu W, Kim J, Xu A, Yang YM, Matsuda M, Reolizo L, Tsuchiya T, Billet S, et al: Extracellular vesicles in fatty liver promote a metastatic tumor microenvironment. Cell Metab. 35:1209–1226.e13. 2023. View Article : Google Scholar : PubMed/NCBI

3 

Liang M, Ma X, Wang L, Li D, Wang S, Zhang H and Zhao X: Whole-liver enhanced CT radiomics analysis to predict metachronous liver metastases after rectal cancer surgery. Cancer Imaging. 22:502022. View Article : Google Scholar : PubMed/NCBI

4 

Horak J, Kubecek O, Siskova A, Honkova K, Chvojkova I, Krupova M, Manethova M, Vodenkova S, García-Mulero S, John S, et al: Differences in genome, transcriptome, miRNAome, and methylome in synchronous and metachronous liver metastasis of colorectal cancer. Front Oncol. 13:11335982023. View Article : Google Scholar : PubMed/NCBI

5 

Xu N, Gao Z, Wu D, Chen H, Zhang Z, Zhang L, Wang Y, Lu X, Yao X, Liu X, et al: 5-hydroxymethylcytosine features of portal venous blood predict metachronous liver metastases of colorectal cancer and reveal phosphodiesterase 4 as a therapeutic target. Clin Transl Med. 15:e701892025. View Article : Google Scholar : PubMed/NCBI

6 

Trailin A, Ali E, Ye W, Pavlov S, Červenková L, Vyčítal O, Ambrozkiewicz F, Hošek P, Daum O, Liška V and Hemminki K: Prognostic assessment of T-cells in primary colorectal cancer and paired synchronous or metachronous liver metastasis. Int J Cancer. 156:1282–1292. 2025. View Article : Google Scholar : PubMed/NCBI

7 

Veen T, Kanani A, Zaharia C, Lea D and Søreide K: Treatment-sequencing before and after index hepatectomy with either synchronous or metachronous colorectal liver metastasis: Comparison of recurrence risk, repeat hepatectomy and overall survival in a population-derived cohort. Eur J Surg Oncol. 51:1095402025. View Article : Google Scholar : PubMed/NCBI

8 

Inchingolo R, Maino C, Cannella R, Vernuccio F, Cortese F, Dezio M, Pisani AR, Giandola T, Gatti M, Giannini V, et al: Radiomics in colorectal cancer patients. World J Gastroenterol. 29:2888–2904. 2023. View Article : Google Scholar : PubMed/NCBI

9 

Hao M, Wang K, Ding Y, Li H, Liu Y and Ding L: Which patients are prone to suffer liver metastasis? A review of risk factors of metachronous liver metastasis of colorectal cancer. Eur J Med Res. 27:1302022. View Article : Google Scholar : PubMed/NCBI

10 

Taghavi M, Trebeschi S, Simões R, Meek DB, Beckers RCJ, Lambregts DMJ, Verhoef C, Houwers JB, van der Heide UA, Beets-Tan RGH and Maas M: Machine learning-based analysis of CT radiomics model for prediction of colorectal metachronous liver metastases. Abdom Radiol (NY). 46:249–256. 2021. View Article : Google Scholar : PubMed/NCBI

11 

Bera K, Braman N, Gupta A, Velcheti V and Madabhushi A: Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat Rev Clin Oncol. 19:132–146. 2022. View Article : Google Scholar : PubMed/NCBI

12 

Bo Z, Song J, He Q, Chen B, Chen Z, Xie X, Shu D, Chen K, Wang Y and Chen G: Application of artificial intelligence radiomics in the diagnosis, treatment, and prognosis of hepatocellular carcinoma. Comput Biol Med. 173:1083372024. View Article : Google Scholar : PubMed/NCBI

13 

Prelaj A, Miskovic V, Zanitti M, Trovo F, Genova C, Viscardi G, Rebuzzi SE, Mazzeo L, Provenzano L, Kosta S, et al: Artificial intelligence for predictive biomarker discovery in immuno-oncology: A systematic review. Ann Oncol. 35:29–65. 2024. View Article : Google Scholar : PubMed/NCBI

14 

Valladares A, Beyer T, Papp L, Salomon E and Rausch I: A multi-modality physical phantom for mimicking tumor heterogeneity patterns in PET/CT and PET/MRI. Med Phys. 49:5819–5829. 2022. View Article : Google Scholar : PubMed/NCBI

15 

Kalisvaart GM, van Velden FHP, Hernández-Girón I, Meijer KM, Ghesquiere-Dierickx LMH, Brink WM, Webb A, de Geus-Oei LF, Slump CH, Kuznetsov DV, et al: Design and evaluation of a modular multimodality imaging phantom to simulate heterogeneous uptake and enhancement patterns for radiomic quantification in hybrid imaging: A feasibility study. Med Phys. 49:3093–3106. 2022. View Article : Google Scholar : PubMed/NCBI

16 

Xie Z, Zhang Q, Wang X, Chen Y, Deng Y, Lin H, Wu J, Huang X, Xu Z and Chi P: Development and validation of a novel radiomics nomogram for prediction of early recurrence in colorectal cancer. Eur J Surg Oncol. 49:1071182023. View Article : Google Scholar : PubMed/NCBI

17 

Luo X, Deng H, Xie F, Wang L, Liang J, Zhu X, Li T, Tang X, Liang W, Xiang Z and He J: Prognostication of colorectal cancer liver metastasis by CE-based radiomics and machine learning. Transl Oncol. 47:1019972024. View Article : Google Scholar : PubMed/NCBI

18 

Glynne-Jones R, Wyrwicz L, Tiret E, Brown G, Rödel C, Cervantes A and Arnold D; ESMO Guidelines Committee, : Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 28 (Suppl_4):iv22–iv40. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Vogel JD, Felder SI, Bhama AR, Hawkins AT, Langenfeld SJ, Shaffer VO, Thorsen AJ, Weiser MR, Chang GJ, Lightner AL, et al: The American society of colon and rectal surgeons clinical practice guidelines for the management of colon cancer. Dis Colon Rectum. 65:148–177. 2022. View Article : Google Scholar : PubMed/NCBI

20 

Katipally RR, Martinez CA, Pugh SA, Bridgewater JA, Primrose JN, Domingo E, Maughan TS, Talamonti MS, Posner MC, Weichselbaum RR, et al: Integrated Clinical-molecular classification of colorectal liver metastases: A biomarker analysis of the phase 3 new EPOC randomized clinical trial. JAMA Oncol. 9:1245–1254. 2023. View Article : Google Scholar : PubMed/NCBI

21 

Siriwardena AK, Serrablo A, Fretland ÅA, Wigmore SJ, Ramia-Angel JM, Malik HZ, Stättner S, Søreide K, Zmora O, Meijerink M, et al: Multisocietal European consensus on the terminology, diagnosis, and management of patients with synchronous colorectal cancer and liver metastases: An E-AHPBA consensus in partnership with ESSO, ESCP, ESGAR, and CIRSE. Br J Surg. 110:1161–1170. 2023. View Article : Google Scholar : PubMed/NCBI

22 

Kim K, Kim S, Han K, Bae H, Shin J and Lim JS: Diagnostic performance of deep learning-based lesion detection algorithm in CT for detecting hepatic metastasis from colorectal cancer. Korean J Radiol. 22:912–921. 2021. View Article : Google Scholar : PubMed/NCBI

23 

Creasy JM, Cunanan KM, Chakraborty J, McAuliffe JC, Chou J, Gonen M, Kingham VS, Weiser MR, Balachandran VP, Drebin JA, et al: Differences in liver parenchyma are measurable with CT radiomics at initial colon resection in patients that develop hepatic metastases from stage II/III colon cancer. Ann Surg Oncol. 28:1982–1989. 2021. View Article : Google Scholar : PubMed/NCBI

24 

Chandra P and Sacks GD: Contemporary Surgical Management of Colorectal Liver Metastases. Cancers (Basel). 16:9412024. View Article : Google Scholar : PubMed/NCBI

25 

Ciracì P, Studiale V, Taravella A, Antoniotti C and Cremolini C: Late-line options for patients with metastatic colorectal cancer: A review and evidence-based algorithm. Nat Rev Clin Oncol. 22:28–45. 2025. View Article : Google Scholar : PubMed/NCBI

26 

Zheng W, Mu R, Liu F, Qin X, Li X, Yang P, Li X, Liang Y and Zhu X: Textural features of the frontal white matter could be used to discriminate amnestic mild cognitive impairment patients from the normal population. Brain Behav. 13:e32222023. View Article : Google Scholar : PubMed/NCBI

27 

Zhou Y, Wu D, Yan S, Xie Y, Zhang S, Lv W, Qin Y, Liu Y, Liu C, Lu J, et al: Feasibility of a Clinical-radiomics model to predict the outcomes of acute ischemic stroke. Korean J Radiol. 23:811–820. 2022. View Article : Google Scholar : PubMed/NCBI

28 

Grossmann P, Stringfield O, El-Hachem N, Bui MM, Rios Velazquez E, Parmar C, Leijenaar RT, Haibe-Kains B, Lambin P, Gillies RJ and Aerts HJ: Defining the biological basis of radiomic phenotypes in lung cancer. Elife. 6:e234212017. View Article : Google Scholar : PubMed/NCBI

29 

Davnall F, Yip CS, Ljungqvist G, Selmi M, Ng F, Sanghera B, Ganeshan B, Miles KA, Cook GJ and Goh V: Assessment of tumor heterogeneity: An emerging imaging tool for clinical practice? Insights Imaging. 3:573–589. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Zhang H, Liao M, Guo Q, Chen J, Wang S, Liu S and Xiao F: Predicting N2 lymph node metastasis in presurgical stage I–II non-small cell lung cancer using multiview radiomics and deep learning method. Med Phys. 50:2049–2060. 2023. View Article : Google Scholar : PubMed/NCBI

31 

Li Y, Gong J, Shen X, Li M, Zhang H, Feng F and Tong T: Assessment of primary colorectal Cancer CT radiomics to predict metachronous liver metastasis. Front Oncol. 12:8618922022. View Article : Google Scholar : PubMed/NCBI

32 

Hao M, Li H, Wang K, Liu Y, Liang X and Ding L: Predicting metachronous liver metastasis in patients with colorectal cancer: Development and assessment of a new nomogram. World J Surg Oncol. 20:802022. View Article : Google Scholar : PubMed/NCBI

33 

Ma YQ, Wen Y, Liang H, Zhong JG and Pang PP: Magnetic resonance imaging-radiomics evaluation of response to chemotherapy for synchronous liver metastasis of colorectal cancer. World J Gastroenterol. 27:6465–6475. 2021. View Article : Google Scholar : PubMed/NCBI

34 

Radiya K, Joakimsen HL, Mikalsen K, Aahlin EK, Lindsetmo RO and Mortensen KE: Performance and clinical applicability of machine learning in liver computed tomography imaging: A systematic review. Eur Radiol. 33:6689–6717. 2023. View Article : Google Scholar : PubMed/NCBI

35 

Liang M, Cai Z, Zhang H, Huang C, Meng Y, Zhao L, Li D, Ma X and Zhao X: Machine Learning-based analysis of rectal cancer MRI Radiomics for prediction of metachronous liver metastasis. Acad Radiol. 26:1495–1504. 2019. View Article : Google Scholar : PubMed/NCBI

36 

Li ZF, Kang LQ, Liu FH, Zhao M, Guo SY, Lu S and Quan S: Radiomics based on preoperative rectal cancer MRI to predict the metachronous liver metastasis. Abdom Radiol (NY). 48:833–843. 2023.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang J, Zhang Z, Shu D, Huang Y, Tang W, Zhao H, Zhao Z and Sun J: Machine learning‑based radiomics models for the prediction of metachronous liver metastases in patients with colorectal cancer:&nbsp;<br />A multimodal study. Oncol Lett 30: 394, 2025.
APA
Wang, J., Zhang, Z., Shu, D., Huang, Y., Tang, W., Zhao, H. ... Sun, J. (2025). Machine learning‑based radiomics models for the prediction of metachronous liver metastases in patients with colorectal cancer:&nbsp;<br />A multimodal study. Oncology Letters, 30, 394. https://doi.org/10.3892/ol.2025.15140
MLA
Wang, J., Zhang, Z., Shu, D., Huang, Y., Tang, W., Zhao, H., Zhao, Z., Sun, J."Machine learning‑based radiomics models for the prediction of metachronous liver metastases in patients with colorectal cancer:&nbsp;<br />A multimodal study". Oncology Letters 30.2 (2025): 394.
Chicago
Wang, J., Zhang, Z., Shu, D., Huang, Y., Tang, W., Zhao, H., Zhao, Z., Sun, J."Machine learning‑based radiomics models for the prediction of metachronous liver metastases in patients with colorectal cancer:&nbsp;<br />A multimodal study". Oncology Letters 30, no. 2 (2025): 394. https://doi.org/10.3892/ol.2025.15140
Copy and paste a formatted citation
x
Spandidos Publications style
Wang J, Zhang Z, Shu D, Huang Y, Tang W, Zhao H, Zhao Z and Sun J: Machine learning‑based radiomics models for the prediction of metachronous liver metastases in patients with colorectal cancer:&nbsp;<br />A multimodal study. Oncol Lett 30: 394, 2025.
APA
Wang, J., Zhang, Z., Shu, D., Huang, Y., Tang, W., Zhao, H. ... Sun, J. (2025). Machine learning‑based radiomics models for the prediction of metachronous liver metastases in patients with colorectal cancer:&nbsp;<br />A multimodal study. Oncology Letters, 30, 394. https://doi.org/10.3892/ol.2025.15140
MLA
Wang, J., Zhang, Z., Shu, D., Huang, Y., Tang, W., Zhao, H., Zhao, Z., Sun, J."Machine learning‑based radiomics models for the prediction of metachronous liver metastases in patients with colorectal cancer:&nbsp;<br />A multimodal study". Oncology Letters 30.2 (2025): 394.
Chicago
Wang, J., Zhang, Z., Shu, D., Huang, Y., Tang, W., Zhao, H., Zhao, Z., Sun, J."Machine learning‑based radiomics models for the prediction of metachronous liver metastases in patients with colorectal cancer:&nbsp;<br />A multimodal study". Oncology Letters 30, no. 2 (2025): 394. https://doi.org/10.3892/ol.2025.15140
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team