
Wnt/Ca2+ signaling: Dichotomous roles in regulating tumor progress (Review)
- Authors:
- Licong Jing
- Hui Wang
- Sheng Xia
- Qixiang Shao
-
Affiliations: Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China - Published online on: June 18, 2025 https://doi.org/10.3892/ol.2025.15145
- Article Number: 399
-
Copyright: © Jing et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Nusse R and Varmus H: Three decades of Wnts: A personal perspective on how a scientific field developed. EMBO J. 31:2670–2684. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G and Yin G: Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 7:32022. View Article : Google Scholar : PubMed/NCBI | |
Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, Wu C, Wang C and Ye L: Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther. 6:3072021. View Article : Google Scholar : PubMed/NCBI | |
Chien AJ, Conrad WH and Moon RT: A Wnt survival guide: From flies to human disease. J Invest Dermatol. 129:1614–1627. 2009. View Article : Google Scholar : PubMed/NCBI | |
Akoumianakis I, Polkinghorne M and Antoniades C: Non-canonical WNT signalling in cardiovascular disease: Mechanisms and therapeutic implications. Nat Rev Cardiol. 19:783–797. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lojk J and Marc J: Roles of non-canonical Wnt signalling pathways in bone biology. Int J Mol Sci. 22:108402021. View Article : Google Scholar : PubMed/NCBI | |
Chae WJ and Bothwell ALM: Canonical and non-canonical Wnt signaling in immune cells. Trends Immunol. 39:830–847. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mehta S, Hingole S and Chaudhary V: The emerging mechanisms of Wnt secretion and signaling in development. Front Cell Dev Biol. 9:7147462021. View Article : Google Scholar : PubMed/NCBI | |
Wolf L and Boutros M: The role of Evi/Wntless in exporting Wnt proteins. Development. 150:dev2013522023. View Article : Google Scholar : PubMed/NCBI | |
McGough IJ, Vecchia L, Bishop B, Malinauskas T, Beckett K, Joshi D, O'Reilly N, Siebold C, Jones EY and Vincent JP: Glypicans shield the Wnt lipid moiety to enable signalling at a distance. Nature. 585:85–90. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu HY, Sun XJ, Xiu SY, Zhang XY, Wang ZQ, Gu YL, Yi CX, Liu JY, Dai YS, Yuan X, et al: Frizzled receptors (FZDs) in Wnt signaling: Potential therapeutic targets for human cancers. Acta Pharmacol Sin. 45:1556–1570. 2024. View Article : Google Scholar : PubMed/NCBI | |
Huang HC and Klein PS: The Frizzled family: Receptors for multiple signal transduction pathways. Genome Biol. 5:2342004. View Article : Google Scholar : PubMed/NCBI | |
Zheng S and Sheng R: The emerging understanding of Frizzled receptors. FEBS Lett. 598:1939–1954. 2024. View Article : Google Scholar : PubMed/NCBI | |
Verkaar F and Zaman GJR: A model for signaling specificity of Wnt/Frizzled combinations through co-receptor recruitment. FEBS Lett. 584:3850–3854. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Zhu R, Wen Z, Fan HJS, Norwood-Jackson T, Jathan D and Lee HJ: Structural and functional insights into dishevelled-Mediated Wnt signaling. Cells. 13:18702024. View Article : Google Scholar : PubMed/NCBI | |
Bowin CF, Inoue A and Schulte G: WNT-3A-induced β-catenin signaling does not require signaling through heterotrimeric G proteins. J Biol Chem. 294:11677–11684. 2019. View Article : Google Scholar : PubMed/NCBI | |
Boligala GP, Yang MV, van Wunnik JC and Pruitt K: Nuclear dishevelled: An enigmatic role in governing cell fate and Wnt signaling. Biochim Biophys Acta Mol Cell Res. 1869:1193052022. View Article : Google Scholar : PubMed/NCBI | |
Aznar N, Midde KK, Dunkel Y, Lopez-Sanchez I, Pavlova Y, Marivin A, Barbazán J, Murray F, Nitsche U, Janssen KP, et al: Daple is a novel non-receptor GEF required for trimeric G protein activation in Wnt signaling. Elife. 4:e070912015. View Article : Google Scholar : PubMed/NCBI | |
Aznar N, Ear J, Dunkel Y, Sun N, Satterfield K, He F, Kalogriopoulos N, Lopez-Sanchez I, Ghassemian M, Sahoo D, et al: Convergence of Wnt, growth factor and trimeric G protein signals on Daple. Sci Signal. 11:eaao42202018. View Article : Google Scholar : PubMed/NCBI | |
Gong B, Shen W, Xiao W, Meng Y, Meng A and Jia S: The Sec14-like phosphatidylinositol transfer proteins Sec14l3/SEC14L2 act as GTPase proteins to mediate Wnt/Ca2+ signaling. Elife. 6:e263622017. View Article : Google Scholar : PubMed/NCBI | |
Sheldahl LC, Slusarski DC, Pandur P, Miller JR, Kühl M and Moon RT: Dishevelled activates Ca2+ flux, PKC, and CamKII in vertebrate embryos. J Cell Biol. 161:769–777. 2003. View Article : Google Scholar : PubMed/NCBI | |
Qin K, Yu M, Fan J, Wang H, Zhao P, Zhao G, Zeng W, Chen C, Wang Y, Wang A, et al: Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Dis. 11:103–134. 2023. View Article : Google Scholar : PubMed/NCBI | |
Bill CA and Vines CM: Phospholipase C. Adv Exp Med Biol. 1131:215–242. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kanemaru K and Nakamura Y: Activation mechanisms and diverse functions of mammalian phospholipase C. Biomolecules. 13:9152023. View Article : Google Scholar : PubMed/NCBI | |
Katti SS, Krieger IV, Ann J, Lee J, Sacchettini JC and Igumenova TI: Structural anatomy of protein kinase C C1 domain interactions with diacylglycerol and other agonists. Nat Commun. 13:26952022. View Article : Google Scholar : PubMed/NCBI | |
Wu L and Chen J: Type 3 IP3 receptor: Its structure, functions, and related disease implications. Channels (Austin). 17:22674162023. View Article : Google Scholar : PubMed/NCBI | |
Derler I, Jardin I and Romanin C: Molecular mechanisms of STIM/Orai communication. Am J Physiol Cell Physiol. 310:C643–C662. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kodakandla G, Akimzhanov AM and Boehning D: Regulatory mechanisms controlling store-operated calcium entry. Front Physiol. 14:13302592023. View Article : Google Scholar : PubMed/NCBI | |
Aquino A, Bianchi N, Terrazzan A and Franzese O: Protein kinase C at the crossroad of mutations, cancer, targeted therapy and immune response. Biology (Basel). 12:10472023.PubMed/NCBI | |
Kawano T, Inokuchi J, Eto M, Murata M and Kang JH: Protein kinase C (PKC) isozymes as diagnostic and prognostic biomarkers and therapeutic targets for cancer. Cancers (Basel). 14:54252022. View Article : Google Scholar : PubMed/NCBI | |
Newton AC: Protein kinase C: Perfectly balanced. Crit Rev Biochem Mol Biol. 53:208–230. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kazanietz MG and Cooke M: Protein kinase C signaling ‘in’ and ‘to’ the nucleus: Master kinases in transcriptional regulation. J Biol Chem. 300:1056922024. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Connelly J, Levitan ES, Sun D and Wang JQ: Calcium/calmodulin-dependent protein kinase II in cerebrovascular diseases. Transl Stroke Res. 12:513–529. 2021. View Article : Google Scholar : PubMed/NCBI | |
Erickson JR: Mechanisms of CaMKII activation in the heart. Front Pharmacol. 5:592014. View Article : Google Scholar : PubMed/NCBI | |
Brown CN and Bayer KU: Studying CaMKII: Tools and standards. Cell Rep. 43:1139822024. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhao R and Zhe H: The emerging role of CaMKII in cancer. Oncotarget. 6:11725–11734. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ishitani T, Kishida S, Hyodo-Miura J, Ueno N, Yasuda J, Waterman M, Shibuya H, Moon RT, Ninomiya-Tsuji J and Matsumoto K: The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. Mol Cell Biol. 23:131–139. 2003. View Article : Google Scholar : PubMed/NCBI | |
Creamer TP: Calcineurin. Cell Commun Signal. 18:1372020. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Song M and Yao C: Calcineurin in development and disease. Genes Dis. 9:915–927. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hogan PG: Calcium-NFAT transcriptional signalling in T cell activation and T cell exhaustion. Cell Calcium. 63:66–69. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Song Y, Zhang Y, Shi M, Hou A and Han S: NFAT signaling dysregulation in cancer: Emerging roles in cancer stem cells. Biomed Pharmacother. 165:1151672023. View Article : Google Scholar : PubMed/NCBI | |
Luna-Ulloa LB, Hernández-Maqueda JG, Castañeda-Patlán MC and Robles-Flores M: Protein kinase C in Wnt signaling: Implications in cancer initiation and progression. IUBMB Life. 63:915–921. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bueno MLP, Saad STO and Roversi FM: WNT5A in tumor development and progression: A comprehensive review. Biomed Pharmacother. 155:1135992022. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Symes AJ, Kane CA, Freeman A, Nariculam J, Munson P, Thrasivoulou C, Masters JRW and Ahmed A: A novel role for Wnt/Ca2+ signaling in actin cytoskeleton remodeling and cell motility in prostate cancer. PLoS One. 5:e104562010. View Article : Google Scholar : PubMed/NCBI | |
Mohapatra P, Yadav V, Toftdahl M and Andersson T: WNT5A-induced activation of the protein kinase C substrate MARCKS is required for melanoma cell invasion. Cancers (Basel). 12:3462020. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Song J, Pan Y, Shi D, Yang C, Wang S and Xiong B: Wnt5a/CaMKII/ERK/CCL2 axis is required for tumor-associated macrophages to promote colorectal cancer progression. Int J Biol Sci. 16:1023–1034. 2020. View Article : Google Scholar : PubMed/NCBI | |
Qi H, Sun B, Zhao X, Du J, Gu Q, Liu Y, Cheng R and Dong X: Wnt5a promotes vasculogenic mimicry and epithelial-mesenchymal transition via protein kinase Cα in epithelial ovarian cancer. Oncol Rep. 32:771–779. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Zhang K, Wu J, Shi J, Xue J, Li J, Chen J, Zhu Y, Wei J, He J and Liu X: Wnt5a increases properties of lung cancer stem cells and resistance to cisplatin through activation of Wnt5a/PKC signaling pathway. Stem Cells Int. 2016:16908962016. View Article : Google Scholar : PubMed/NCBI | |
Liang H, Chen Q, Coles AH, Anderson SJ, Pihan G, Bradley A, Gerstein R, Jurecic R and Jones SN: Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell. 4:349–360. 2003. View Article : Google Scholar : PubMed/NCBI | |
Martín V, Valencia A, Agirre X, Cervera J, Jose-Eneriz ES, Vilas-Zornoza A, Rodriguez-Otero P, Sanz MA, Herrera C, Torres A, et al: Epigenetic regulation of the non-canonical Wnt pathway in acute myeloid leukemia. Cancer Sci. 101:425–432. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zang S, Liu N, Wang H, Wald DN, Shao N, Zhang J, Ma D, Ji C and Tse W: Wnt signaling is involved in 6-benzylthioinosine-induced AML cell differentiation. BMC Cancer. 14:8862014. View Article : Google Scholar : PubMed/NCBI | |
Kremenevskaja N, von Wasielewski R, Rao AS, Schöfl C, Andersson T and Brabant G: Wnt-5a has tumor suppressor activity in thyroid carcinoma. Oncogene. 24:2144–2154. 2005. View Article : Google Scholar : PubMed/NCBI | |
Toyama T, Lee HC, Koga H, Wands JR and Kim M: Noncanonical Wnt11 inhibits hepatocellular carcinoma cell proliferation and migration. Mol Cancer Res. 8:254–265. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sekhoacha M, Riet K, Motloung P, Gumenku L, Adegoke A and Mashele S: Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches. Molecules. 27:57302022. View Article : Google Scholar : PubMed/NCBI | |
Ebrahimi S, Rezaei Fakhrnezhad F, Jahangiri S, Borjkhani M, Behboodi R and Monfaredan A: The IGSF1, Wnt5a, FGF14, and ITPR1 gene expression and prognosis hallmark of prostate cancer. Rep Biochem Mol Biol. 11:44–53. 2022.PubMed/NCBI | |
Ning S, Liu C, Lou W, Yang JC, Lombard AP, D'Abronzo LS, Batra N, Yu AM, Leslie AR, Sharifi M, et al: Bioengineered BERA-Wnt5a siRNA targeting Wnt5a/FZD2 signaling suppresses advanced prostate cancer tumor growth and enhances enzalutamide treatment. Mol Cancer Ther. 21:1594–1607. 2022. View Article : Google Scholar : PubMed/NCBI | |
Garbe C, Amaral T, Peris K, Hauschild A, Arenberger P, Basset-Seguin N, Bastholt L, Bataille V, Del Marmol V, Dréno B, et al: European consensus-based interdisciplinary guideline for melanoma. Part 1: Diagnostics: Update 2022. Eur J Cancer. 170:236–255. 2022. View Article : Google Scholar : PubMed/NCBI | |
Da Forno PD, Pringle JH, Hutchinson P, Osborn J, Huang Q, Potter L, Hancox RA, Fletcher A and Saldanha GS: WNT5A expression increases during melanoma progression and correlates with outcome. Clin Cancer Res. 14:5825–5832. 2008. View Article : Google Scholar : PubMed/NCBI | |
Geng B, Zhu Y, Yuan Y, Bai J, Dou Z, Sui A and Luo W: Artesunate suppresses choroidal melanoma vasculogenic mimicry formation and angiogenesis via the Wnt/CaMKII signaling axis. Front Oncol. 11:7146462021. View Article : Google Scholar : PubMed/NCBI | |
Weeraratna AT, Jiang Y, Hostetter G, Rosenblatt K, Duray P, Bittner M and Trent JM: Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell. 1:279–288. 2002. View Article : Google Scholar : PubMed/NCBI | |
Xiao C, Fengyang B, Song J, Schulman H, Li L and Hao C: Inhibition of CaMKII-mediated c-FLIP expression sensitizes malignant melanoma cells to TRAIL-induced apoptosis. Exp Cell Res. 304:244–255. 2005. View Article : Google Scholar : PubMed/NCBI | |
Baidoun F, Elshiwy K, Elkeraie Y, Merjaneh Z, Khoudari G, Sarmini MT, Gad M, Al-Husseini M and Saad A: Colorectal cancer epidemiology: Recent trends and impact on outcomes. Curr Drug Targets. 22:998–1009. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sarabia-Sánchez MA, Moreno-Londoño AP, Castañeda-Patlán MC, Alvarado-Ortiz E, Martínez-Morales JC and Robles-Flores M: Non-canonical Wnt/Ca2+ signaling is essential to promote self-renewal and proliferation in colon cancer stem cells. Front Oncol. 13:11217872023. View Article : Google Scholar : PubMed/NCBI | |
Flores-Hernández E, Velázquez DM, Castañeda-Patlán MC, Fuentes-García G, Fonseca-Camarillo G, Yamamoto-Furusho JK, Romero-Avila MT, García-Sáinz JA and Robles-Flores M: Canonical and non-canonical Wnt signaling are simultaneously activated by Wnts in colon cancer cells. Cell Signal. 72:1096362020. View Article : Google Scholar : PubMed/NCBI | |
Gorroño-Etxebarria I, Aguirre U, Sanchez S, González N, Escobar A, Zabalza I, Quintana JM, Vivanco MD, Waxman J and Kypta RM: Wnt-11 as a potential prognostic biomarker and therapeutic target in colorectal cancer. Cancers (Basel). 11:9082019. View Article : Google Scholar : PubMed/NCBI | |
Ouko L, Ziegler TR, Gu LH, Eisenberg LM and Yang VW: Wnt11 signaling promotes proliferation, transformation, and migration of IEC6 intestinal epithelial cells. J Biol Chem. 279:26707–26715. 2004. View Article : Google Scholar : PubMed/NCBI | |
Arnaoutoglou C, Dampala K, Anthoulakis C, Papanikolaou EG, Tentas I, Dragoutsos G, Machairiotis N, Zarogoulidis P, Ioannidis A, Matthaios D, et al: Epithelial ovarian cancer: A five year review. Medicina (Kaunas). 59:11832023. View Article : Google Scholar : PubMed/NCBI | |
Ford CE, Punnia-Moorthy G, Henry CE, Llamosas E, Nixdorf S, Olivier J, Caduff R, Ward RL and Heinzelmann-Schwarz V: The non-canonical Wnt ligand, Wnt5a, is upregulated and associated with epithelial to mesenchymal transition in epithelial ovarian cancer. Gynecol Oncol. 134:338–345. 2014. View Article : Google Scholar : PubMed/NCBI | |
Abedini A, Sayed C, Carter LE, Boerboom D and Vanderhyden BC: Non-canonical WNT5a regulates epithelial-to-mesenchymal transition in the mouse ovarian surface epithelium. Sci Rep. 10:96952020. View Article : Google Scholar : PubMed/NCBI | |
Fang Y, Xiao X, Wang J, Dasari S, Pepin D, Nephew KP, Zamarin D and Mitra AK: Cancer associated fibroblasts serve as an ovarian cancer stem cell niche through noncanonical Wnt5a signaling. NPJ Precis Oncol. 8:72024. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lu C, Wang X, Zhu H, Feng J, Ni S and Huang J: Over-expression of ROR2 and Wnt5a cooperatively correlates with unfavorable prognosis in patients with non-small cell lung cancer. Oncotarget. 6:24912. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Zeng S, Yu Z, Zhang G, Xiong Z, Xie F and You Z: Overexpression of activating transcription factor-2 (ATF-2) activates Wnt/Ca2+ Signaling pathways and promotes proliferation and invasion in non-small-cell lung cancer. Dis Markers. 2022:57720892022.PubMed/NCBI | |
Masetti R, Muratore E, Leardini D, Zama D, Turroni S, Brigidi P, Esposito S and Pession A: Gut microbiome in pediatric acute leukemia: From predisposition to cure. Blood Adv. 5:4619–4629. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hatırnaz Ng Ö, Fırtına S, Can İ, Karakaş Z, Ağaoğlu L, Doğru Ö, Celkan T, Akçay A, Yıldırmak Y, Timur Ç, et al: A possible role for WNT5A hypermethylation in pediatric acute lymphoblastic leukemia. Turk J Haematol. 32:127–135. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bueno MLP, Saad STO and Roversi FM: The antitumor effects of WNT5A against hematological malignancies. J Cell Commun Signal. 17:1487–1499. 2023. View Article : Google Scholar : PubMed/NCBI | |
Torre LA, Siegel RL, Ward EM and Jemal A: Global cancer incidence and mortality rates and trends-an update. Cancer Epidemiol Biomarkers Prev. 25:16–27. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sastre-Perona A and Santisteban P: Role of the wnt pathway in thyroid cancer. Front Endocrinol (Lausanne). 3:312012. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Zhao L, Ding M, Yang M, Yang W, Cui G and Shan B: Higher expression level of tyrosine kinase-like orphan receptor 2 and Wnt member 5a in papillary thyroid carcinoma is associated with poor prognosis. Oncol Lett. 14:5966–5972. 2017.PubMed/NCBI | |
Zhou Q, Feng J, Yin S, Ma S, Wang J and Yi H: LncRNA FAM230B promotes the metastasis of papillary thyroid cancer by sponging the miR-378a-3p/WNT5A axis. Biochem Biophys Res Commun. 546:83–89. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, He Y and Gan R: Wnt signaling in hepatocellular carcinoma: Biological mechanisms and therapeutic opportunities. Cells. 13:19902024. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Yao M, Fang M, Zheng WJ, Dong ZZ, Pan LH, Zhang HJ and Yao DF: Expression of hepatic Wnt5a and its clinicopathological features in patients with hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int. 17:227–232. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wakizaka K, Kamiyama T, Kakisaka T, Orimo T, Nagatsu A, Aiyama T, Shichi S and Taketomi A: Expression of Wnt5a and ROR2, components of the noncanonical Wnt-signaling pathway, is associated with tumor differentiation in hepatocellular carcinoma. Ann Surg Oncol. 31:262–271. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Liu X and Wang J: Up-regulation of Wnt5a inhibits proliferation and migration of hepatocellular carcinoma cells. J Can Res Ther. 15:904–908. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wakizaka K, Kamiyama T, Wakayama K, Orimo T, Shimada S, Nagatsu A, Kamachi H, Yokoo H, Fukai M, Kobayashi N, et al: Role of Wnt5a in suppressing invasiveness of hepatocellular carcinoma via epithelial-mesenchymal transition. Oncol Lett. 20:2682020. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Cusimano A, Monga JK, Preziosi ME, Pullara F, Calero G, Lang R, Yamaguchi TP, Nejak-Bowen KN and Monga SP: WNT5A inhibits hepatocyte proliferation and concludes β-catenin signaling in liver regeneration. Am J Pathol. 185:2194–2205. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Xie Y, Li M, Zhou F, Zhong Z, Liu Y, Wang F and Qi J: Association between SFRP promoter hypermethylation and different types of cancer: A systematic review and meta-analysis. Oncol Lett. 18:3481–3492. 2019.PubMed/NCBI | |
Zhou HR, Fu HY, Wu DS, Zhang YY, Huang SH, Chen CJ, Yan JG, Huang JL and Shen JZ: Relationship between epigenetic changes in Wnt antagonists and acute leukemia. Oncol Rep. 37:2663–2671. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li J, Ying J, Fan Y, Wu L, Ying Y, Chan ATC, Srivastava G and Tao Q: WNT5A antagonizes WNT/β-catenin signaling and is frequently silenced by promoter CpG methylation in esophageal squamous cell carcinoma. Cancer Biol Ther. 10:617–624. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wong AMG, Kong KL, Chen L, Liu M, Wong AMG, Zhu C, Tsang JWH and Guan XY: Characterization of CACNA2D3 as a putative tumor suppressor gene in the development and progression of nasopharyngeal carcinoma. Int J Cancer. 133:2284–2295. 2013. View Article : Google Scholar : PubMed/NCBI | |
Choi J, Hwang J, Ramalingam M, Jeong HS and Jang S: Effects of HDAC inhibitors on neuroblastoma SH-SY5Y cell differentiation into mature neurons via the Wnt signaling pathway. BMC Neurosci. 24:282023. View Article : Google Scholar : PubMed/NCBI | |
Choi J, Gang S, Ramalingam M, Hwang J, Jeong H, Yoo J, Cho HH, Kim BC, Jang G, Jeong HS and Jang S: BML-281 promotes neuronal differentiation by modulating Wnt/Ca2+ and Wnt/PCP signaling pathway. Mol Cell Biochem. 479:2391–2403. 2024. View Article : Google Scholar : PubMed/NCBI | |
Makena MR, Ko M, Dang DK and Rao R: Epigenetic modulation of SPCA2 reverses epithelial to mesenchymal transition in breast cancer cells. Cancers (Basel). 13:2592021. View Article : Google Scholar : PubMed/NCBI | |
Derissen EJB, Beijnen JH and Schellens JHM: Concise drug review: Azacitidine and decitabine. Oncologist. 18:619–624. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bondarev AD, Attwood MM, Jonsson J, Chubarev VN, Tarasov VV and Schiöth HB: Recent developments of HDAC inhibitors: Emerging indications and novel molecules. Br J Clin Pharmacol. 87:4577–4597. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shi MQ, Xu Y, Fu X, Pan DS, Lu XP, Xiao Y and Jiang YZ: Advances in targeting histone deacetylase for treatment of solid tumors. J Hematol Oncol. 17:372024. View Article : Google Scholar : PubMed/NCBI | |
Flanagan DJ, Woodcock SA, Phillips C, Eagle C and Sansom OJ: Targeting ligand-dependent wnt pathway dysregulation in gastrointestinal cancers through porcupine inhibition. Pharmacol Ther. 238:1081792022. View Article : Google Scholar : PubMed/NCBI | |
Shah K, Panchal S and Patel B: Porcupine inhibitors: Novel and emerging anti-cancer therapeutics targeting the Wnt signaling pathway. Pharmacol Res. 167:1055322021. View Article : Google Scholar : PubMed/NCBI | |
Säfholm A, Leandersson K, Dejmek J, Nielsen CK, Villoutreix BO and Andersson T: A formylated hexapeptide ligand mimics the ability of Wnt-5a to impair migration of human breast epithelial cells. J Biol Chem. 281:2740–2749. 2006. View Article : Google Scholar : PubMed/NCBI | |
Prasad CP, Manchanda M, Mohapatra P and Andersson T: WNT5A as a therapeutic target in breast cancer. Cancer Metastasis Rev. 37:767–778. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mohapatra P, Prasad CP and Andersson T: Combination therapy targeting the elevated interleukin-6 level reduces invasive migration of BRAF inhibitor-resistant melanoma cells. Mol Oncol. 13:480–494. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gurney A, Axelrod F, Bond CJ, Cain J, Chartier C, Donigan L, Fischer M, Chaudhari A, Ji M, Kapoun AM, et al: Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci USA. 109:11717–11722. 2012. View Article : Google Scholar : PubMed/NCBI | |
Davis SL, Cardin DB, Shahda S, Lenz HJ, Dotan E, O'Neil BH, Kapoun AM, Stagg RJ, Berlin J, Messersmith WA and Cohen SJ: A phase 1b dose escalation study of Wnt pathway inhibitor vantictumab in combination with nab-paclitaxel and gemcitabine in patients with previously untreated metastatic pancreatic cancer. Invest New Drugs. 38:821–830. 2020. View Article : Google Scholar : PubMed/NCBI | |
Diamond JR, Becerra C, Richards D, Mita A, Osborne C, O'Shaughnessy J, Zhang C, Henner R, Kapoun AM, Xu L, et al: Phase Ib clinical trial of the anti-frizzled antibody vantictumab (OMP-18R5) plus paclitaxel in patients with locally advanced or metastatic HER2-negative breast cancer. Breast Cancer Res Treat. 184:53–62. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vlashi R, Zhang X, Wu M and Chen G: Wnt signaling: Essential roles in osteoblast differentiation, bone metabolism and therapeutic implications for bone and skeletal disorders. Genes Dis. 10:1291–1317. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Yang S, Wang M, Zhou Y, Li X, Chen W, Liu W, Huang Y, Wu J, Cao J, et al: A sustainable approach to universal metabolic cancer diagnosis. Nat Sustain. 7:602–615. 2024. View Article : Google Scholar | |
Xie F, Tang S, Zhang Y, Zhao Y, Lin Y, Yao Y, Wang M, Gu Z and Wan J: Designing peptide-based nanoinhibitors of programmed cell death ligand 1 (PD-L1) for enhanced chemo-immunotherapy. ACS Nano. 18:1690–1701. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhan T, Rindtorff N and Boutros M: Wnt signaling in cancer. Oncogene. 36:1461–1473. 2017. View Article : Google Scholar : PubMed/NCBI | |
Parsons MJ, Tammela T and Dow LE: WNT as a driver and dependency in cancer. Cancer Discov. 11:2413–2429. 2021. View Article : Google Scholar : PubMed/NCBI | |
Song P, Gao Z, Bao Y, Chen L, Huang Y, Liu Y, Dong Q and Wei X: Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy. J Hematol Oncol. 17:462024. View Article : Google Scholar : PubMed/NCBI | |
Xue W, Yang L, Chen C, Ashrafizadeh M, Tian Y and Sun R: Wnt/β-catenin-driven EMT regulation in human cancers. Cell Mol Life Sci. 81:792024. View Article : Google Scholar : PubMed/NCBI | |
Shiah SG, Shieh YS and Chang JY: The Role of Wnt signaling in squamous cell carcinoma. J Dent Res. 95:129–134. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F, McKeon F, Bobo T, Franke TF and Reed JC: Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science. 284:339–343. 1999. View Article : Google Scholar : PubMed/NCBI | |
Nakagawa T and Yuan J: Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol. 150:887–894. 2000. View Article : Google Scholar : PubMed/NCBI | |
Qiao X, Niu X, Shi J, Chen L, Wang X, Liu J, Zhu L and Zhong M: Wnt5a regulates ameloblastoma cell migration by modulating mitochondrial and cytoskeletal dynamics. J Cancer. 11:5490–5502. 2020. View Article : Google Scholar : PubMed/NCBI | |
Katoh M and Katoh M: WNT signaling and cancer stemness. Essays Biochem. 66:319–331. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yuan Y, Wu D, Hou Y, Zhang Y, Tan C, Nie X, Zhao Z and Hou J: Wnt signaling: Modulating tumor-associated macrophages and related immunotherapeutic insights. Biochem Pharmacol. 223:1161542024. View Article : Google Scholar : PubMed/NCBI | |
Deng G, Li ZQ, Zhao C, Yuan Y, Niu CC, Zhao C, Pan J and Si WK: WNT5A expression is regulated by the status of its promoter methylation in leukaemia and can inhibit leukemic cell malignant proliferation. Oncol Rep. 25:367–376. 2011.PubMed/NCBI | |
Gajos-Michniewicz A and Czyz M: WNT signaling in melanoma. Int J Mol Sci. 21:48522020. View Article : Google Scholar : PubMed/NCBI | |
Sharma A, Mir R and Galande S: Epigenetic regulation of the Wnt/β-catenin signaling pathway in cancer. Front Genet. 12:6810532021. View Article : Google Scholar : PubMed/NCBI | |
Tufail M, Jiang CH and Li N: Wnt signaling in cancer: From biomarkers to targeted therapies and clinical translation. Mol Cancer. 24:1072025. View Article : Google Scholar : PubMed/NCBI | |
Grumolato L, Liu G, Mong P, Mudbhary R, Biswas R, Arroyave R, Vijayakumar S, Economides AN and Aaronson SA: Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors. Genes Dev. 24:2517–2530. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mikels AJ and Nusse R: Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol. 4:e1152006. View Article : Google Scholar : PubMed/NCBI | |
Xue G, Romano E, Massi D and Mandalà M: Wnt/β-catenin signaling in melanoma: Preclinical rationale and novel therapeutic insights. Cancer Treat Rev. 49:1–12. 2016. View Article : Google Scholar : PubMed/NCBI |