|
1
|
Nusse R and Varmus H: Three decades of
Wnts: A personal perspective on how a scientific field developed.
EMBO J. 31:2670–2684. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang
X, Zhou Z, Shu G and Yin G: Wnt/β-catenin signalling: function,
biological mechanisms, and therapeutic opportunities. Signal
Transduct Target Ther. 7:32022. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, Wu
C, Wang C and Ye L: Wnt/β-catenin signaling in cancers and targeted
therapies. Signal Transduct Target Ther. 6:3072021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Chien AJ, Conrad WH and Moon RT: A Wnt
survival guide: From flies to human disease. J Invest Dermatol.
129:1614–1627. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Akoumianakis I, Polkinghorne M and
Antoniades C: Non-canonical WNT signalling in cardiovascular
disease: Mechanisms and therapeutic implications. Nat Rev Cardiol.
19:783–797. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lojk J and Marc J: Roles of non-canonical
Wnt signalling pathways in bone biology. Int J Mol Sci.
22:108402021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Chae WJ and Bothwell ALM: Canonical and
non-canonical Wnt signaling in immune cells. Trends Immunol.
39:830–847. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Mehta S, Hingole S and Chaudhary V: The
emerging mechanisms of Wnt secretion and signaling in development.
Front Cell Dev Biol. 9:7147462021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Wolf L and Boutros M: The role of
Evi/Wntless in exporting Wnt proteins. Development.
150:dev2013522023. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
McGough IJ, Vecchia L, Bishop B,
Malinauskas T, Beckett K, Joshi D, O'Reilly N, Siebold C, Jones EY
and Vincent JP: Glypicans shield the Wnt lipid moiety to enable
signalling at a distance. Nature. 585:85–90. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Liu HY, Sun XJ, Xiu SY, Zhang XY, Wang ZQ,
Gu YL, Yi CX, Liu JY, Dai YS, Yuan X, et al: Frizzled receptors
(FZDs) in Wnt signaling: Potential therapeutic targets for human
cancers. Acta Pharmacol Sin. 45:1556–1570. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Huang HC and Klein PS: The Frizzled
family: Receptors for multiple signal transduction pathways. Genome
Biol. 5:2342004. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zheng S and Sheng R: The emerging
understanding of Frizzled receptors. FEBS Lett. 598:1939–1954.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Verkaar F and Zaman GJR: A model for
signaling specificity of Wnt/Frizzled combinations through
co-receptor recruitment. FEBS Lett. 584:3850–3854. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Wang L, Zhu R, Wen Z, Fan HJS,
Norwood-Jackson T, Jathan D and Lee HJ: Structural and functional
insights into dishevelled-Mediated Wnt signaling. Cells.
13:18702024. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bowin CF, Inoue A and Schulte G:
WNT-3A-induced β-catenin signaling does not require signaling
through heterotrimeric G proteins. J Biol Chem. 294:11677–11684.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Boligala GP, Yang MV, van Wunnik JC and
Pruitt K: Nuclear dishevelled: An enigmatic role in governing cell
fate and Wnt signaling. Biochim Biophys Acta Mol Cell Res.
1869:1193052022. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Aznar N, Midde KK, Dunkel Y, Lopez-Sanchez
I, Pavlova Y, Marivin A, Barbazán J, Murray F, Nitsche U, Janssen
KP, et al: Daple is a novel non-receptor GEF required for trimeric
G protein activation in Wnt signaling. Elife. 4:e070912015.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Aznar N, Ear J, Dunkel Y, Sun N,
Satterfield K, He F, Kalogriopoulos N, Lopez-Sanchez I, Ghassemian
M, Sahoo D, et al: Convergence of Wnt, growth factor and trimeric G
protein signals on Daple. Sci Signal. 11:eaao42202018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Gong B, Shen W, Xiao W, Meng Y, Meng A and
Jia S: The Sec14-like phosphatidylinositol transfer proteins
Sec14l3/SEC14L2 act as GTPase proteins to mediate
Wnt/Ca2+ signaling. Elife. 6:e263622017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Sheldahl LC, Slusarski DC, Pandur P,
Miller JR, Kühl M and Moon RT: Dishevelled activates
Ca2+ flux, PKC, and CamKII in vertebrate embryos. J Cell
Biol. 161:769–777. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Qin K, Yu M, Fan J, Wang H, Zhao P, Zhao
G, Zeng W, Chen C, Wang Y, Wang A, et al: Canonical and
noncanonical Wnt signaling: Multilayered mediators, signaling
mechanisms and major signaling crosstalk. Genes Dis. 11:103–134.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Bill CA and Vines CM: Phospholipase C. Adv
Exp Med Biol. 1131:215–242. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kanemaru K and Nakamura Y: Activation
mechanisms and diverse functions of mammalian phospholipase C.
Biomolecules. 13:9152023. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Katti SS, Krieger IV, Ann J, Lee J,
Sacchettini JC and Igumenova TI: Structural anatomy of protein
kinase C C1 domain interactions with diacylglycerol and other
agonists. Nat Commun. 13:26952022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wu L and Chen J: Type 3 IP3 receptor: Its
structure, functions, and related disease implications. Channels
(Austin). 17:22674162023. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Derler I, Jardin I and Romanin C:
Molecular mechanisms of STIM/Orai communication. Am J Physiol Cell
Physiol. 310:C643–C662. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kodakandla G, Akimzhanov AM and Boehning
D: Regulatory mechanisms controlling store-operated calcium entry.
Front Physiol. 14:13302592023. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Aquino A, Bianchi N, Terrazzan A and
Franzese O: Protein kinase C at the crossroad of mutations, cancer,
targeted therapy and immune response. Biology (Basel).
12:10472023.PubMed/NCBI
|
|
30
|
Kawano T, Inokuchi J, Eto M, Murata M and
Kang JH: Protein kinase C (PKC) isozymes as diagnostic and
prognostic biomarkers and therapeutic targets for cancer. Cancers
(Basel). 14:54252022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Newton AC: Protein kinase C: Perfectly
balanced. Crit Rev Biochem Mol Biol. 53:208–230. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kazanietz MG and Cooke M: Protein kinase C
signaling ‘in’ and ‘to’ the nucleus: Master kinases in
transcriptional regulation. J Biol Chem. 300:1056922024. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zhang X, Connelly J, Levitan ES, Sun D and
Wang JQ: Calcium/calmodulin-dependent protein kinase II in
cerebrovascular diseases. Transl Stroke Res. 12:513–529. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Erickson JR: Mechanisms of CaMKII
activation in the heart. Front Pharmacol. 5:592014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Brown CN and Bayer KU: Studying CaMKII:
Tools and standards. Cell Rep. 43:1139822024. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wang Y, Zhao R and Zhe H: The emerging
role of CaMKII in cancer. Oncotarget. 6:11725–11734. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Ishitani T, Kishida S, Hyodo-Miura J, Ueno
N, Yasuda J, Waterman M, Shibuya H, Moon RT, Ninomiya-Tsuji J and
Matsumoto K: The TAK1-NLK mitogen-activated protein kinase cascade
functions in the Wnt-5a/Ca(2+) pathway to antagonize
Wnt/beta-catenin signaling. Mol Cell Biol. 23:131–139. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Creamer TP: Calcineurin. Cell Commun
Signal. 18:1372020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Chen L, Song M and Yao C: Calcineurin in
development and disease. Genes Dis. 9:915–927. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Hogan PG: Calcium-NFAT transcriptional
signalling in T cell activation and T cell exhaustion. Cell
Calcium. 63:66–69. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lin Y, Song Y, Zhang Y, Shi M, Hou A and
Han S: NFAT signaling dysregulation in cancer: Emerging roles in
cancer stem cells. Biomed Pharmacother. 165:1151672023. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Luna-Ulloa LB, Hernández-Maqueda JG,
Castañeda-Patlán MC and Robles-Flores M: Protein kinase C in Wnt
signaling: Implications in cancer initiation and progression. IUBMB
Life. 63:915–921. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Bueno MLP, Saad STO and Roversi FM: WNT5A
in tumor development and progression: A comprehensive review.
Biomed Pharmacother. 155:1135992022. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wang Q, Symes AJ, Kane CA, Freeman A,
Nariculam J, Munson P, Thrasivoulou C, Masters JRW and Ahmed A: A
novel role for Wnt/Ca2+ signaling in actin cytoskeleton
remodeling and cell motility in prostate cancer. PLoS One.
5:e104562010. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Mohapatra P, Yadav V, Toftdahl M and
Andersson T: WNT5A-induced activation of the protein kinase C
substrate MARCKS is required for melanoma cell invasion. Cancers
(Basel). 12:3462020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Liu Q, Song J, Pan Y, Shi D, Yang C, Wang
S and Xiong B: Wnt5a/CaMKII/ERK/CCL2 axis is required for
tumor-associated macrophages to promote colorectal cancer
progression. Int J Biol Sci. 16:1023–1034. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Qi H, Sun B, Zhao X, Du J, Gu Q, Liu Y,
Cheng R and Dong X: Wnt5a promotes vasculogenic mimicry and
epithelial-mesenchymal transition via protein kinase Cα in
epithelial ovarian cancer. Oncol Rep. 32:771–779. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Yang J, Zhang K, Wu J, Shi J, Xue J, Li J,
Chen J, Zhu Y, Wei J, He J and Liu X: Wnt5a increases properties of
lung cancer stem cells and resistance to cisplatin through
activation of Wnt5a/PKC signaling pathway. Stem Cells Int.
2016:16908962016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Liang H, Chen Q, Coles AH, Anderson SJ,
Pihan G, Bradley A, Gerstein R, Jurecic R and Jones SN: Wnt5a
inhibits B cell proliferation and functions as a tumor suppressor
in hematopoietic tissue. Cancer Cell. 4:349–360. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Martín V, Valencia A, Agirre X, Cervera J,
Jose-Eneriz ES, Vilas-Zornoza A, Rodriguez-Otero P, Sanz MA,
Herrera C, Torres A, et al: Epigenetic regulation of the
non-canonical Wnt pathway in acute myeloid leukemia. Cancer Sci.
101:425–432. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zang S, Liu N, Wang H, Wald DN, Shao N,
Zhang J, Ma D, Ji C and Tse W: Wnt signaling is involved in
6-benzylthioinosine-induced AML cell differentiation. BMC Cancer.
14:8862014. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Kremenevskaja N, von Wasielewski R, Rao
AS, Schöfl C, Andersson T and Brabant G: Wnt-5a has tumor
suppressor activity in thyroid carcinoma. Oncogene. 24:2144–2154.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Toyama T, Lee HC, Koga H, Wands JR and Kim
M: Noncanonical Wnt11 inhibits hepatocellular carcinoma cell
proliferation and migration. Mol Cancer Res. 8:254–265. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Sekhoacha M, Riet K, Motloung P, Gumenku
L, Adegoke A and Mashele S: Prostate cancer review: Genetics,
diagnosis, treatment options, and alternative approaches.
Molecules. 27:57302022. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ebrahimi S, Rezaei Fakhrnezhad F,
Jahangiri S, Borjkhani M, Behboodi R and Monfaredan A: The IGSF1,
Wnt5a, FGF14, and ITPR1 gene expression and prognosis hallmark of
prostate cancer. Rep Biochem Mol Biol. 11:44–53. 2022.PubMed/NCBI
|
|
56
|
Ning S, Liu C, Lou W, Yang JC, Lombard AP,
D'Abronzo LS, Batra N, Yu AM, Leslie AR, Sharifi M, et al:
Bioengineered BERA-Wnt5a siRNA targeting Wnt5a/FZD2 signaling
suppresses advanced prostate cancer tumor growth and enhances
enzalutamide treatment. Mol Cancer Ther. 21:1594–1607. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Garbe C, Amaral T, Peris K, Hauschild A,
Arenberger P, Basset-Seguin N, Bastholt L, Bataille V, Del Marmol
V, Dréno B, et al: European consensus-based interdisciplinary
guideline for melanoma. Part 1: Diagnostics: Update 2022. Eur J
Cancer. 170:236–255. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Da Forno PD, Pringle JH, Hutchinson P,
Osborn J, Huang Q, Potter L, Hancox RA, Fletcher A and Saldanha GS:
WNT5A expression increases during melanoma progression and
correlates with outcome. Clin Cancer Res. 14:5825–5832. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Geng B, Zhu Y, Yuan Y, Bai J, Dou Z, Sui A
and Luo W: Artesunate suppresses choroidal melanoma vasculogenic
mimicry formation and angiogenesis via the Wnt/CaMKII signaling
axis. Front Oncol. 11:7146462021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Weeraratna AT, Jiang Y, Hostetter G,
Rosenblatt K, Duray P, Bittner M and Trent JM: Wnt5a signaling
directly affects cell motility and invasion of metastatic melanoma.
Cancer Cell. 1:279–288. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Xiao C, Fengyang B, Song J, Schulman H, Li
L and Hao C: Inhibition of CaMKII-mediated c-FLIP expression
sensitizes malignant melanoma cells to TRAIL-induced apoptosis. Exp
Cell Res. 304:244–255. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Baidoun F, Elshiwy K, Elkeraie Y, Merjaneh
Z, Khoudari G, Sarmini MT, Gad M, Al-Husseini M and Saad A:
Colorectal cancer epidemiology: Recent trends and impact on
outcomes. Curr Drug Targets. 22:998–1009. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Sarabia-Sánchez MA, Moreno-Londoño AP,
Castañeda-Patlán MC, Alvarado-Ortiz E, Martínez-Morales JC and
Robles-Flores M: Non-canonical Wnt/Ca2+ signaling is
essential to promote self-renewal and proliferation in colon cancer
stem cells. Front Oncol. 13:11217872023. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Flores-Hernández E, Velázquez DM,
Castañeda-Patlán MC, Fuentes-García G, Fonseca-Camarillo G,
Yamamoto-Furusho JK, Romero-Avila MT, García-Sáinz JA and
Robles-Flores M: Canonical and non-canonical Wnt signaling are
simultaneously activated by Wnts in colon cancer cells. Cell
Signal. 72:1096362020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Gorroño-Etxebarria I, Aguirre U, Sanchez
S, González N, Escobar A, Zabalza I, Quintana JM, Vivanco MD,
Waxman J and Kypta RM: Wnt-11 as a potential prognostic biomarker
and therapeutic target in colorectal cancer. Cancers (Basel).
11:9082019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ouko L, Ziegler TR, Gu LH, Eisenberg LM
and Yang VW: Wnt11 signaling promotes proliferation,
transformation, and migration of IEC6 intestinal epithelial cells.
J Biol Chem. 279:26707–26715. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Arnaoutoglou C, Dampala K, Anthoulakis C,
Papanikolaou EG, Tentas I, Dragoutsos G, Machairiotis N,
Zarogoulidis P, Ioannidis A, Matthaios D, et al: Epithelial ovarian
cancer: A five year review. Medicina (Kaunas). 59:11832023.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ford CE, Punnia-Moorthy G, Henry CE,
Llamosas E, Nixdorf S, Olivier J, Caduff R, Ward RL and
Heinzelmann-Schwarz V: The non-canonical Wnt ligand, Wnt5a, is
upregulated and associated with epithelial to mesenchymal
transition in epithelial ovarian cancer. Gynecol Oncol.
134:338–345. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Abedini A, Sayed C, Carter LE, Boerboom D
and Vanderhyden BC: Non-canonical WNT5a regulates
epithelial-to-mesenchymal transition in the mouse ovarian surface
epithelium. Sci Rep. 10:96952020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Fang Y, Xiao X, Wang J, Dasari S, Pepin D,
Nephew KP, Zamarin D and Mitra AK: Cancer associated fibroblasts
serve as an ovarian cancer stem cell niche through noncanonical
Wnt5a signaling. NPJ Precis Oncol. 8:72024. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Lu C, Wang X, Zhu H, Feng J, Ni S and
Huang J: Over-expression of ROR2 and Wnt5a cooperatively correlates
with unfavorable prognosis in patients with non-small cell lung
cancer. Oncotarget. 6:24912. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhang L, Zeng S, Yu Z, Zhang G, Xiong Z,
Xie F and You Z: Overexpression of activating transcription
factor-2 (ATF-2) activates Wnt/Ca2+ Signaling pathways
and promotes proliferation and invasion in non-small-cell lung
cancer. Dis Markers. 2022:57720892022.PubMed/NCBI
|
|
74
|
Masetti R, Muratore E, Leardini D, Zama D,
Turroni S, Brigidi P, Esposito S and Pession A: Gut microbiome in
pediatric acute leukemia: From predisposition to cure. Blood Adv.
5:4619–4629. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Hatırnaz Ng Ö, Fırtına S, Can İ, Karakaş
Z, Ağaoğlu L, Doğru Ö, Celkan T, Akçay A, Yıldırmak Y, Timur Ç, et
al: A possible role for WNT5A hypermethylation in pediatric acute
lymphoblastic leukemia. Turk J Haematol. 32:127–135. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Bueno MLP, Saad STO and Roversi FM: The
antitumor effects of WNT5A against hematological malignancies. J
Cell Commun Signal. 17:1487–1499. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Torre LA, Siegel RL, Ward EM and Jemal A:
Global cancer incidence and mortality rates and trends-an update.
Cancer Epidemiol Biomarkers Prev. 25:16–27. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Sastre-Perona A and Santisteban P: Role of
the wnt pathway in thyroid cancer. Front Endocrinol (Lausanne).
3:312012. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Chen L, Zhao L, Ding M, Yang M, Yang W,
Cui G and Shan B: Higher expression level of tyrosine kinase-like
orphan receptor 2 and Wnt member 5a in papillary thyroid carcinoma
is associated with poor prognosis. Oncol Lett. 14:5966–5972.
2017.PubMed/NCBI
|
|
80
|
Zhou Q, Feng J, Yin S, Ma S, Wang J and Yi
H: LncRNA FAM230B promotes the metastasis of papillary thyroid
cancer by sponging the miR-378a-3p/WNT5A axis. Biochem Biophys Res
Commun. 546:83–89. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhu Y, He Y and Gan R: Wnt signaling in
hepatocellular carcinoma: Biological mechanisms and therapeutic
opportunities. Cells. 13:19902024. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wang L, Yao M, Fang M, Zheng WJ, Dong ZZ,
Pan LH, Zhang HJ and Yao DF: Expression of hepatic Wnt5a and its
clinicopathological features in patients with hepatocellular
carcinoma. Hepatobiliary Pancreat Dis Int. 17:227–232. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Wakizaka K, Kamiyama T, Kakisaka T, Orimo
T, Nagatsu A, Aiyama T, Shichi S and Taketomi A: Expression of
Wnt5a and ROR2, components of the noncanonical Wnt-signaling
pathway, is associated with tumor differentiation in hepatocellular
carcinoma. Ann Surg Oncol. 31:262–271. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Wang T, Liu X and Wang J: Up-regulation of
Wnt5a inhibits proliferation and migration of hepatocellular
carcinoma cells. J Can Res Ther. 15:904–908. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wakizaka K, Kamiyama T, Wakayama K, Orimo
T, Shimada S, Nagatsu A, Kamachi H, Yokoo H, Fukai M, Kobayashi N,
et al: Role of Wnt5a in suppressing invasiveness of hepatocellular
carcinoma via epithelial-mesenchymal transition. Oncol Lett.
20:2682020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Yang J, Cusimano A, Monga JK, Preziosi ME,
Pullara F, Calero G, Lang R, Yamaguchi TP, Nejak-Bowen KN and Monga
SP: WNT5A inhibits hepatocyte proliferation and concludes β-catenin
signaling in liver regeneration. Am J Pathol. 185:2194–2205. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Yu J, Xie Y, Li M, Zhou F, Zhong Z, Liu Y,
Wang F and Qi J: Association between SFRP promoter hypermethylation
and different types of cancer: A systematic review and
meta-analysis. Oncol Lett. 18:3481–3492. 2019.PubMed/NCBI
|
|
88
|
Zhou HR, Fu HY, Wu DS, Zhang YY, Huang SH,
Chen CJ, Yan JG, Huang JL and Shen JZ: Relationship between
epigenetic changes in Wnt antagonists and acute leukemia. Oncol
Rep. 37:2663–2671. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Li J, Ying J, Fan Y, Wu L, Ying Y, Chan
ATC, Srivastava G and Tao Q: WNT5A antagonizes WNT/β-catenin
signaling and is frequently silenced by promoter CpG methylation in
esophageal squamous cell carcinoma. Cancer Biol Ther. 10:617–624.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Wong AMG, Kong KL, Chen L, Liu M, Wong
AMG, Zhu C, Tsang JWH and Guan XY: Characterization of CACNA2D3 as
a putative tumor suppressor gene in the development and progression
of nasopharyngeal carcinoma. Int J Cancer. 133:2284–2295. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Choi J, Hwang J, Ramalingam M, Jeong HS
and Jang S: Effects of HDAC inhibitors on neuroblastoma SH-SY5Y
cell differentiation into mature neurons via the Wnt signaling
pathway. BMC Neurosci. 24:282023. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Choi J, Gang S, Ramalingam M, Hwang J,
Jeong H, Yoo J, Cho HH, Kim BC, Jang G, Jeong HS and Jang S:
BML-281 promotes neuronal differentiation by modulating
Wnt/Ca2+ and Wnt/PCP signaling pathway. Mol Cell
Biochem. 479:2391–2403. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Makena MR, Ko M, Dang DK and Rao R:
Epigenetic modulation of SPCA2 reverses epithelial to mesenchymal
transition in breast cancer cells. Cancers (Basel). 13:2592021.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Derissen EJB, Beijnen JH and Schellens
JHM: Concise drug review: Azacitidine and decitabine. Oncologist.
18:619–624. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Bondarev AD, Attwood MM, Jonsson J,
Chubarev VN, Tarasov VV and Schiöth HB: Recent developments of HDAC
inhibitors: Emerging indications and novel molecules. Br J Clin
Pharmacol. 87:4577–4597. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Shi MQ, Xu Y, Fu X, Pan DS, Lu XP, Xiao Y
and Jiang YZ: Advances in targeting histone deacetylase for
treatment of solid tumors. J Hematol Oncol. 17:372024. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Flanagan DJ, Woodcock SA, Phillips C,
Eagle C and Sansom OJ: Targeting ligand-dependent wnt pathway
dysregulation in gastrointestinal cancers through porcupine
inhibition. Pharmacol Ther. 238:1081792022. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Shah K, Panchal S and Patel B: Porcupine
inhibitors: Novel and emerging anti-cancer therapeutics targeting
the Wnt signaling pathway. Pharmacol Res. 167:1055322021.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Säfholm A, Leandersson K, Dejmek J,
Nielsen CK, Villoutreix BO and Andersson T: A formylated
hexapeptide ligand mimics the ability of Wnt-5a to impair migration
of human breast epithelial cells. J Biol Chem. 281:2740–2749. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Prasad CP, Manchanda M, Mohapatra P and
Andersson T: WNT5A as a therapeutic target in breast cancer. Cancer
Metastasis Rev. 37:767–778. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Mohapatra P, Prasad CP and Andersson T:
Combination therapy targeting the elevated interleukin-6 level
reduces invasive migration of BRAF inhibitor-resistant melanoma
cells. Mol Oncol. 13:480–494. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Gurney A, Axelrod F, Bond CJ, Cain J,
Chartier C, Donigan L, Fischer M, Chaudhari A, Ji M, Kapoun AM, et
al: Wnt pathway inhibition via the targeting of Frizzled receptors
results in decreased growth and tumorigenicity of human tumors.
Proc Natl Acad Sci USA. 109:11717–11722. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Davis SL, Cardin DB, Shahda S, Lenz HJ,
Dotan E, O'Neil BH, Kapoun AM, Stagg RJ, Berlin J, Messersmith WA
and Cohen SJ: A phase 1b dose escalation study of Wnt pathway
inhibitor vantictumab in combination with nab-paclitaxel and
gemcitabine in patients with previously untreated metastatic
pancreatic cancer. Invest New Drugs. 38:821–830. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Diamond JR, Becerra C, Richards D, Mita A,
Osborne C, O'Shaughnessy J, Zhang C, Henner R, Kapoun AM, Xu L, et
al: Phase Ib clinical trial of the anti-frizzled antibody
vantictumab (OMP-18R5) plus paclitaxel in patients with locally
advanced or metastatic HER2-negative breast cancer. Breast Cancer
Res Treat. 184:53–62. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Vlashi R, Zhang X, Wu M and Chen G: Wnt
signaling: Essential roles in osteoblast differentiation, bone
metabolism and therapeutic implications for bone and skeletal
disorders. Genes Dis. 10:1291–1317. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Wang R, Yang S, Wang M, Zhou Y, Li X, Chen
W, Liu W, Huang Y, Wu J, Cao J, et al: A sustainable approach to
universal metabolic cancer diagnosis. Nat Sustain. 7:602–615. 2024.
View Article : Google Scholar
|
|
107
|
Xie F, Tang S, Zhang Y, Zhao Y, Lin Y, Yao
Y, Wang M, Gu Z and Wan J: Designing peptide-based nanoinhibitors
of programmed cell death ligand 1 (PD-L1) for enhanced
chemo-immunotherapy. ACS Nano. 18:1690–1701. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Zhan T, Rindtorff N and Boutros M: Wnt
signaling in cancer. Oncogene. 36:1461–1473. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Parsons MJ, Tammela T and Dow LE: WNT as a
driver and dependency in cancer. Cancer Discov. 11:2413–2429. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Song P, Gao Z, Bao Y, Chen L, Huang Y, Liu
Y, Dong Q and Wei X: Wnt/β-catenin signaling pathway in
carcinogenesis and cancer therapy. J Hematol Oncol. 17:462024.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Xue W, Yang L, Chen C, Ashrafizadeh M,
Tian Y and Sun R: Wnt/β-catenin-driven EMT regulation in human
cancers. Cell Mol Life Sci. 81:792024. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Shiah SG, Shieh YS and Chang JY: The Role
of Wnt signaling in squamous cell carcinoma. J Dent Res.
95:129–134. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Wang HG, Pathan N, Ethell IM, Krajewski S,
Yamaguchi Y, Shibasaki F, McKeon F, Bobo T, Franke TF and Reed JC:
Ca2+-induced apoptosis through calcineurin
dephosphorylation of BAD. Science. 284:339–343. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Nakagawa T and Yuan J: Cross-talk between
two cysteine protease families. Activation of caspase-12 by calpain
in apoptosis. J Cell Biol. 150:887–894. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Qiao X, Niu X, Shi J, Chen L, Wang X, Liu
J, Zhu L and Zhong M: Wnt5a regulates ameloblastoma cell migration
by modulating mitochondrial and cytoskeletal dynamics. J Cancer.
11:5490–5502. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Katoh M and Katoh M: WNT signaling and
cancer stemness. Essays Biochem. 66:319–331. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Yuan Y, Wu D, Hou Y, Zhang Y, Tan C, Nie
X, Zhao Z and Hou J: Wnt signaling: Modulating tumor-associated
macrophages and related immunotherapeutic insights. Biochem
Pharmacol. 223:1161542024. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Deng G, Li ZQ, Zhao C, Yuan Y, Niu CC,
Zhao C, Pan J and Si WK: WNT5A expression is regulated by the
status of its promoter methylation in leukaemia and can inhibit
leukemic cell malignant proliferation. Oncol Rep. 25:367–376.
2011.PubMed/NCBI
|
|
119
|
Gajos-Michniewicz A and Czyz M: WNT
signaling in melanoma. Int J Mol Sci. 21:48522020. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Sharma A, Mir R and Galande S: Epigenetic
regulation of the Wnt/β-catenin signaling pathway in cancer. Front
Genet. 12:6810532021. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Tufail M, Jiang CH and Li N: Wnt signaling
in cancer: From biomarkers to targeted therapies and clinical
translation. Mol Cancer. 24:1072025. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Grumolato L, Liu G, Mong P, Mudbhary R,
Biswas R, Arroyave R, Vijayakumar S, Economides AN and Aaronson SA:
Canonical and noncanonical Wnts use a common mechanism to activate
completely unrelated coreceptors. Genes Dev. 24:2517–2530. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Mikels AJ and Nusse R: Purified Wnt5a
protein activates or inhibits beta-catenin-TCF signaling depending
on receptor context. PLoS Biol. 4:e1152006. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Xue G, Romano E, Massi D and Mandalà M:
Wnt/β-catenin signaling in melanoma: Preclinical rationale and
novel therapeutic insights. Cancer Treat Rev. 49:1–12. 2016.
View Article : Google Scholar : PubMed/NCBI
|