|
1
|
World Health Organization, . International
Agency for Research on Cancer. Global Cancer Observatory: Cancer
Today. IARC; Lyon: 2022, Available from:. https://gco.iarc.fr/today
|
|
2
|
Zhong C, Xiong G, Yang H, Du X, Du J, Yao
F, Fang W and Deng Y: Phosphorylation by IKKβ promotes the
degradation of HMGCL via NEDD4 in lung cancer. Int J Biol Sci.
19:1110–1122. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Altman BJ, Stine ZE and Dang CV: From
krebs to clinic: Glutamine metabolism to cancer therapy. Nat Rev
Cancer. 16:619–634. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ge T, Gu X, Jia R, Ge S, Chai P, Zhuang A
and Fan X: Crosstalk between metabolic reprogramming and
epigenetics in cancer: Updates on mechanisms and therapeutic
opportunities. Cancer Commun (Lond). 42:1049–1082. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Zhang Z, Huang Y, Li S and Hong L:
Comprehensive analysis based on glycolytic and glutaminolytic
pathways signature for predicting prognosis and immunotherapy in
ovarian cancer. J Cancer. 15:383–400. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zhang HL, Chen P, Yan HX, Fu GB, Luo FF,
Zhang J, Zhao SM, Zhai B, Yu JH, Chen L, et al: Targeting
mTORC2/HDAC3 inhibits stemness of liver cancer cells against
glutamine starvation. Adv Sci (Weinh). 9:e21038872022. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Li S, Xu L, Wu G, Huang Z, Huang L, Zhang
F, Wei C, Shen Q, Li R, Zhang L and Xu X: Remodeling serine
synthesis and metabolism via nanoparticles (NPs)-mediated CFL1
silencing to enhance the sensitivity of hepatocellular carcinoma to
sorafenib. Adv Sci (Weinh). 10:e22071182023. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Park JM, Peng JM, Shen YS, Lin CY, Hsu TW,
Su YH, Chen HA, Saengboonmee C, Chang JS, Chiu CF, et al:
Phosphomimetic dicer S1016E triggers a switch to glutamine
metabolism in gemcitabine-resistant pancreatic cancer. Mol Metab.
65:1015762022. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
He J, Chen Z, Xue Q, Sun P, Wang Y, Zhu C
and Shi W: Identification of molecular subtypes and a novel
prognostic model of diffuse large B-cell lymphoma based on a
metabolism-associated gene signature. J Transl Med. 20:1862022.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Yu Z, Li J, Ren Z, Sun R, Zhou Y, Zhang Q,
Wang Q, Cui G, Li J, Li A, et al: Switching from fatty acid
oxidation to glycolysis improves the outcome of acute-on-chronic
liver failure. Adv Sci (Weinh). 7:19029962020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Huang M, Xiong D, Pan J, Zhang Q, Sei S,
Shoemaker RH, Lubet RA, Montuenga LM, Wang Y, Slusher BS and You M:
Targeting glutamine metabolism to enhance immunoprevention of
EGFR-Driven lung cancer. Adv Sci (Weinh). 9:e21058852022.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Curthoys NP and Watford M: Regulation of
glutaminase activity and glutamine metabolism. Annu Rev Nutr.
15:133–159. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
GTEx Consortium: Human genomics. The
genotype-tissue expression (GTEx) pilot analysis: Multitissue gene
regulation in humans. Science. 348:648–660. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Nishikawa G, Kawada K, Hanada K, Maekawa
H, Itatani Y, Miyoshi H, Taketo MM and Obama K: Targeting
asparagine synthetase in tumorgenicity using patient-derived
tumor-initiating cells. Cells. 11:32732022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Yao Z, Zhu G, Too J, Duan M and Wang Z:
Feature selection of OMIC data by ensemble swarm intelligence based
approaches. Front Genet. 12:7936292021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Wang H, Yao Z, Luo R, Liu J, Wang Z and
Zhang G: LaCOme: Learning the latent convolutional patterns among
transcriptomic features to improve classifications. Gene.
862:1472462023. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Liu X, Wan J, Wei M, Tong Y and Yao Z:
Edaravone protects trophoblast cells from hypoxic injury in
preeclampsia: Inhibition of the PI3K/AKT pathway as a promising
therapeutic approach. Immun Inflamm Dis. 12:e700972024. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Harshitha R and Arunraj DR: Real-time
quantitative PCR: A tool for absolute and relative quantification.
Biochem Mol Biol Educ. 49:800–812. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
McGlynn KA, Petrick JL and El-Serag HB:
Epidemiology of hepatocellular carcinoma. Hepatology. 73 (Suppl
1):S4–S13. 2021. View Article : Google Scholar
|
|
20
|
Vogel A, Meyer T, Sapisochin G, Salem R
and Saborowski A: Hepatocellular carcinoma. Lancet. 400:1345–1362.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Pavlova NN and Thompson CB: The emerging
hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Fonseca LMD, Diniz-Lima I, da Costa Santos
MAR, Franklim TN, da Costa KM, Santos ACD, Morrot A, Decote-Ricardo
D, Valente RDC, Freire-de-Lima CG, et al: Bittersweet sugars: How
unusual glycan structures may connect epithelial-to-mesenchymal
transition and multidrug resistance in cancer. Medicines (Basel).
10:362023.PubMed/NCBI
|
|
23
|
Warburg O: On the origin of cancer cells.
Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Warburg O: On respiratory impairment in
cancer cells. Science. 124:269–270. 1956. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Kouidhi S, Ayed FB and Elgaaied AB:
Targeting tumor metabolism: A new challenge to improve
immunotherapy. Front Immunol. 9:3532018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zhao E, Maj T, Kryczek I, Li W, Wu K, Zhao
L, Wei S, Crespo J, Wan S, Vatan L, et al: Cancer mediates effector
T cell dysfunction by targeting microRNAs and EZH2 via glycolysis
restriction. Nat Immunol. 17:95–103. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Tsun ZY and Possemato R: Amino acid
management in cancer. Semin Cell Dev Biol. 43:22–32. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Sivanand S and Heiden MG: Emerging roles
for branched-chain amino acid metabolism in cancer. Cancer Cell.
37:147–156. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Krall AS and Christofk HR: Rethinking
glutamine addiction. Nat Cell Biol. 17:1515–1517. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Fernandez-de-Cossio-Diaz J and Vazquez A:
Limits of aerobic metabolism in cancer cells. Sci Rep. 7:134882017.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Nakagawa H and Fujita M: Whole genome
sequencing analysis for cancer genomics and precision medicine.
Cancer Sci. 109:513–522. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Li F, Liu S, Li K, Zhang Y, Duan M, Yao Z,
Zhu G, Guo Y, Wang Y, Huang L and Zhou F: EpiTEAmDNA: Sequence
feature representation via transfer learning and ensemble learning
for identifying multiple DNA epigenetic modification types across
species. Comput Biol Med. 160:1070302023. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Yao Z, Li F, Xie W, Chen J, Wu J, Zhan Y,
Wu X, Wang Z and Zhang G: DeepSF-4mC: A deep learning model for
predicting DNA cytosine 4mC methylation sites leveraging sequence
features. Comput Biol Med. 171:1081662024. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Sun L, Zhang H and Gao P: Metabolic
reprogramming and epigenetic modifications on the path to cancer.
Protein Cell. 13:877–919. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Yao Z, Shangguan H, Xie W, Liu J, He S,
Huang H, Li F, Chen J, Zhan Y, Wu X, et al: SIPSC-Kac: Integrating
swarm intelligence and protein spatial characteristics for enhanced
lysine acetylation site identification. Int J Biol Macromol.
282:1372372024. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Xie W, Yao Z, Yuan Y, Too J, Li F, Wang H,
Zhan Y, Wu X, Wang Z and Zhang G: W2V-repeated index: Prediction of
enhancers and their strength based on repeated fragments. Genomics.
116:1109062024. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Reinfeld BI, Madden MZ, Wolf MM, Chytil A,
Bader JE, Patterson AR, Sugiura A, Cohen AS, Ali A, Do BT, et al:
Cell-programmed nutrient partitioning in the tumour
microenvironment. Nature. 593:282–288. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Jin J, Byun JK, Choi YK and Park KG:
Targeting glutamine metabolism as a therapeutic strategy for
cancer. Exp Mol Med. 55:706–715. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhang J, Pavlova NN and Thompson CB:
Cancer cell metabolism: The essential role of the nonessential
amino acid, glutamine. EMBO J. 36:1302–1315. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Leone RD, Zhao L, Englert JM, Sun IM, Oh
MH, Sun IH, Oh MH, Sun IH, Arwood ML, Bettencourt IA, et al:
Glutamine blockade induces divergent metabolic programs to overcome
tumor immune evasion. Science. 366:1013–1021. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ren H, Li W, Liu X, Li S, Guo H, Wang W
and Zhao N: Identification and validation of an
6-metabolism-related gene signature and its correlation with immune
checkpoint in hepatocellular carcinoma. Front Oncol. 11:7839342021.
View Article : Google Scholar : PubMed/NCBI
|