|
1
|
Viani GA, Gouveia AG, Yan M, Matsuura FK
and Moraes FY: Stereotactic body radiotherapy versus surgery for
early-stage non-small cell lung cancer: An updated meta-analysis
involving 29,511 patients included in comparative studies. J Bras
Pneumol. 48:e202103902022.(In English, Portuguese). PubMed/NCBI
|
|
2
|
Zimmermann FB, Geinitz H, Schill S, Grosu
A, Schratzenstaller U, Molls M and Jeremic B: Stereotactic
hypofractionated radiation therapy for stage I non-small cell lung
cancer. Lung Cancer. 48:107–114. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
McGarry RC, Papiez L, Williams M, Whitford
T and Timmerman RD: Stereotactic body radiation therapy of
early-stage non-small-cell lung carcinoma: Phase I study. Int J
Radiat Oncol Biol Phys. 63:1010–1015. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ni J, Wu L, Chu Q, Han C, Ai X, Dong X and
Zhu Z: Sintilimab, SBRT and GM-CSF for metastatic NSCLC: A
prospective, multicenter, phase II trial. Int J Radiat Oncol Biol
Phys. 117 (Suppl):E442023. View Article : Google Scholar
|
|
5
|
Anderson JD, Hu J, Li J, Schild SE and
Fatyga M: Impact of cardiac dose on overall survival in lung
stereotactic body radiotherapy (SBRT) compared to conventionally
fractionated radiotherapy for locally advanced non-small cell lung
cancer (LA-NSCLC). J Cancer Ther. 12:409–423. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Rico M, Martínez M, Rodríguez M, Rosas L,
Barco A and Martínez E: Hypofractionation and stereotactic body
radiation therapy in inoperable locally advanced non-small cell
lung cancer. J Clin Transl Res. 7:199–208. 2021.PubMed/NCBI
|
|
7
|
Sarudis S, Karlsson A, Nyman J and Bäck A:
Dosimetric effects of respiratory motion during stereotactic body
radiation therapy of lung tumors. Acta Oncol. 61:1004–1011. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Koksal C, Donmez Kesen N, Okutan M,
Karaman S, Dagoglu Sakin N and Bilge H: Investigation of approaches
for internal target volume definition using 4-dimensional computed
tomography in stereotactic body radiotherapy of lung cancer. Med
Dosim. 46:136–142. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Al-Batati SM, Alnowami MR, Alhawsawi AM,
Banoqitah EM and Alkhateeb SM: Correlation between
respiratory-induced target motion and dosimetric variance on EBRT.
Radiat Phys Chem. 212:1110982023. View Article : Google Scholar
|
|
10
|
Misa J, Volk A, Bernard ME, Clair WS and
Pokhrel D: Dosimetric impact of intrafraction patient motion on
MLC-based 3D-conformal spatially fractionated radiation therapy
treatment of large and bulky tumors. J Appl Clin Med Phys.
25:e144692024. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Choi YE, Sung K, Dong KS, Shin HB, Kim HJ
and Lim YK: The effect of respiratory motion in breast
intensity-modulated radiation therapy: 3D-printed dynamic phantom
study. Anticancer Res. 43:4425–4433. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Schwarz M, Cattaneo GM and Marrazzo L:
Geometrical and dosimetrical uncertainties in hypofractionated
radiotherapy of the lung: A review. Phys Med. 36:126–139. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Yoon MS, Jeong JU, Nam TK, Ahn SJ, Chung
WK and Song JY: Evaluation of dose distribution in intensity
modulated radiosurgery for lung cancer under condition of
respiratory motion. PLoS One. 11:e01631122016. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kita N, Tomita N, Takaoka T, Okazaki D,
Niwa M, Torii A, Takano S, Mekata Y, Niimi A and Hiwatashi A:
Clinical and dosimetric factors for symptomatic radiation
pneumonitis after stereotactic body radiotherapy for early-stage
non-small cell lung cancer. Clin Transl Radiat Oncol.
41:1006482023.PubMed/NCBI
|
|
15
|
Kraus KM, Oreshko M, Bernhardt D, Combs SE
and Peeken JC: Dosiomics and radiomics to predict pneumonitis after
thoracic stereotactic body radiotherapy and immune checkpoint
inhibition. Front Oncol. 13:11245922023. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zhou X, Zhou L, Yao Z, Huang M, Gong Y,
Zou B, Zhu J, Liu Y, Peng F, Zhang Y, et al: Safety and
tolerability of low-dose radiation and stereotactic body
radiotherapy + sintilimab for treatment-Naïve stage IV PD-L1+
non-small cell lung cancer patients. Clin Cancer Res. 29:4098–4108.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wang C, Rimner A, Gelblum DY, Dick-Godfrey
R, McKnight D, Torres D, Flynn J, Zhang Z, Sidiqi B, Jackson A, et
al: Analysis of pneumonitis and esophageal injury after
stereotactic body radiation therapy for ultra-central lung tumors.
Lung Cancer. 147:45–48. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Thompson M and Rosenzweig KE: The evolving
toxicity profile of SBRT for lung cancer. Transl Lung Cancer Res.
8:48–57. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Li X, Yorke E, Jackson A, Yue Y, Simone CB
II, Apte AP, Rimner A, Gomez DR, Shaverdian N, Gelblum DY, et al:
Clinical and dosimetric risk factors associated with
radiation-induced lung toxicities after multiple courses of lung
stereotactic body radiation therapy. Adv Radiat Oncol.
9:1012842023. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Botticella A, Levy A, Auzac G, Chabert I,
Berthold C and Le Pechoux C: Tumour motion management in lung
cancer: A narrative review. Transl Lung Cancer Res. 10:2011–2017.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Dhont J, Harden SV, Chee LYS, Aitken K,
Hanna GG and Bertholet J: Image-guided radiotherapy to manage
respiratory motion: Lung and liver. Clin Oncol (R Coll Radiol).
32:792–804. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Abulimiti M, Yang X, Li M, Huan F, Zhang Y
and Jun L: Application of four-dimensional cone beam computed
tomography in lung cancer radiotherapy. Radiat Oncol. 18:692023.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Yang Z, Yang X, Cao Y, Shao Q, Tang D,
Peng Z, Di S, Zhao Y and Li S: Deep learning based automatic
internal gross target volume delineation from 4D-CT of
hepatocellular carcinoma patients. J Appl Clin Med Phys.
25:e142112024. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ren XC, Liu YE, Li J and Lin Q: Progress
in image-guided radiotherapy for the treatment of non-small cell
lung cancer. World J Radiol. 11:46–54. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Mørkeset ST, Lervåg C, Lund JÅ and Jensen
C: Clinical experience of volumetric-modulated flattening filter
free stereotactic body radiation therapy of lesions in the lung
with deep inspiration breath-hold. J Appl Clin Med Phys.
23:e137332022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Qi Y, Li J, Zhang Y, Shao Q, Liu X, Li F,
Wang J, Li Z and Wang W: Effect of abdominal compression on target
movement and extension of the external boundary of peripheral lung
tumours treated with stereotactic radiotherapy based on
four-dimensional computed tomography. Radiat Oncol. 16:1732021.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Csiki E, Simon M, Papp J, Barabás M,
Mikáczó J, Gál K, Sipos D and Kovács Á: Stereotactic body
radiotherapy in lung cancer: A contemporary review. Pathol Oncol
Res. 30:16117092024. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Guckenberger M, Krieger T, Richter A,
Baier K, Wilbert J, Sweeney RA and Flentje M: Potential of
image-guidance, gating and real-time tracking to improve accuracy
in pulmonary stereotactic body radiotherapy. Radiother Oncol.
91:288–295. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Aznar MC, Warren S, Hoogeman M and
Josipovic M: The impact of technology on the changing practice of
lung SBRT. Phys Med. 47:129–138. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ocanto A, Torres L, Montijano M, Rincón D,
Fernández C, Sevilla B, Gonsalves D, Teja M, Guijarro M, Glaría L,
et al: MR-LINAC, a new partner in radiation oncology: Current
landscape. Cancers (Basel). 16:2702024. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Chi A, Nguyen NP and Komaki R: The
potential role of respiratory motion management and image guidance
in the reduction of severe toxicities following stereotactic
ablative radiation therapy for patients with centrally located
early stage non-small cell lung cancer or lung metastases. Front
Oncol. 4:1512014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Meyers SM, Kisling K, Atwood TF and Ray X:
A standardized workflow for respiratory-gated motion management
decision-making. J Appl Clin Med Phys. 23:e137052022. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ghani MNHA and Ng WL: Management of
respiratory motion for lung radiotherapy: A review. J Xiangya Med.
3:272018. View Article : Google Scholar
|
|
34
|
Troost EGC: Image-guided high-precision
radiotherapy. Troost EGC: Springer International Publishing; Cham:
2022, View Article : Google Scholar
|
|
35
|
Keall PJ, Mageras GS, Balter JM, Emery RS,
Forster KM, Jiang SB, Kapatoes JM, Low DA, Murphy MJ, Murray BR, et
al: The management of respiratory motion in radiation oncology
report of AAPM task group 76. Med Phys. 33:3874–3900. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Bensenane R, Helfre S, Cao K, Carton M,
Champion L, Girard N, Glorion M, Vieira T, Waissi W, Crehange G and
Beddok A: Optimizing lung cancer radiation therapy: A systematic
review of multifactorial risk assessment for radiation-induced lung
toxicity. Cancer Treat Rev. 124:1026842024. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Mutic S, Pawlicki T and Orton CG:
EPID-based daily quality assurance of linear accelerators will
likely replace other methods within the next ten years. Med Phys.
43:2691–2693. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ding GX, Alaei P, Curran B, Flynn R,
Gossman M, Mackie TR, Miften M, Morin R, Xu XG and Zhu TC: Image
guidance doses delivered during radiotherapy: Quantification,
management, and reduction: Report of the AAPM therapy physics
committee task group 180. Med Phys. 45:e84–e99. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Shanahan L, Ramalingam E and Hill P: Use
of megavoltage (MV) computed tomography (CT) to account for
anatomical variations during radiotherapy treatment. Phys Med.
67:p2092019. View Article : Google Scholar
|
|
40
|
Breitkreutz DY, Weil MD and
Bazalova-Carter M: External beam radiation therapy with kilovoltage
x-rays. Phys Med. 79:103–112. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Heinzerling JH, Hampton CJ, Robinson M,
Bright M, Moeller BJ, Ruiz J, Prabhu R, Burri SH and Foster RD: Use
of surface-guided radiation therapy in combination with IGRT for
setup and intrafraction motion monitoring during stereotactic body
radiation therapy treatments of the lung and abdomen. J Appl Clin
Med Phys. 21:48–55. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Jaccard M, Champion A, Dubouloz A, Picardi
C, Plojoux J, Soccal P, Miralbell R, Dipasquale G and Caparrotti F:
Clinical experience with lung-specific electromagnetic transponders
for real-time tumor tracking in lung stereotactic body
radiotherapy. Phys Imaging Radiat Oncol. 12:0–37. 2019.PubMed/NCBI
|
|
43
|
Lee G, Han Z, Huynh E, Tjong MC, Cagney
DN, Huynh MA, Kann BH, Kozono D, Leeman JE, Singer L, et al:
Widening the therapeutic window for central and ultra-central
thoracic oligometastatic disease with stereotactic MR-guided
adaptive radiation therapy (SMART). Radiother Oncol.
190:1100342024. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Shen Y, Zhang H, Wang J, Zhong R, Jiang X,
Xu Q, Wang X, Bai S and Xu F: Hypofractionated radiotherapy for
lung tumors with online cone beam CT guidance and active breathing
control. Radiat Oncol. 5:192010. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Jasper K, Liu B, Olson R and Matthews Q:
Evidence-based planning target volume margin reduction for modern
lung stereotactic ablative radiation therapy using deformable
registration. Adv Radiat Oncol. 6:1007502021. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Velten C, Goddard L, Jeong K, Garg MK and
Tomé WA: Clinical assessment of a novel ring gantry linear
accelerator-mounted helical fan-beam kVCT system. Adv Radiat Oncol.
7:1008622021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Iwata H, Ishikura S, Murai T, Iwabuchi M,
Inoue M, Tatewaki K, Ohta S, Yokota N and Shibamoto Y: A phase I/II
study on stereotactic body radiotherapy with real-time tumor
tracking using CyberKnife based on the Monte Carlo algorithm for
lung tumors. Int J Clin Oncol. 22:706–714. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Depuydt T, Poels K, Verellen D, Engels B,
Collen C, Buleteanu M, Van den Begin R, Boussaer M, Duchateau M,
Gevaert T, et al: Treating patients with real-time tumor tracking
using the Vero gimbaled linac system: Implementation and first
review. Radiother Oncol. 112:343–351. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wong JW, Sharpe MB, Jaffray DA, Kini VR,
Robertson JM, Stromberg JS and Martinez AA: The use of active
breathing control (ABC) to reduce margin for breathing motion. Int
J Radiat Oncol Biol Phys. 44:911–919. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Lu L, Diaconu C, Djemil T, Videtic GM,
Abdel-Wahab M, Yu N, Greskovich J Jr, Stephans KL and Xia P: Intra-
and inter-fractional liver and lung tumor motions treated with SBRT
under active breathing control. J Appl Clin Med Phys. 19:39–45.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Nguyen D, Reinoso R, Farah J, Yossi S,
Lorchel F, Passerat V, Louet E, Pouchard I, Khodri M and Barbet N:
Reproducibility of surface-based deep inspiration breath-hold
technique for lung stereotactic body radiotherapy on a closed-bore
gantry linac. Phys Imaging Radiat Oncol. 26:1004482023. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Tyagi N, Liang J, Burleson S, Subashi E,
Godoy Scripes P, Tringale KR, Romesser PB, Reyngold M and Crane CH:
Feasibility of ablative stereotactic body radiation therapy of
pancreas cancer patients on a 1.5 Tesla magnetic resonance-linac
system using abdominal compression. Phys Imaging Radiat Oncol.
19:53–59. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Li W, Konishi K, Ohira K, Hirata M,
Wakabayashi K, Aramaki S, Sakamoto M and Nakamura K: Development of
a novel airbag system of abdominal compression for reducing
respiratory motion: Preliminary results in healthy volunteers. J
Radiat Res. 63:699–705. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Baley C, Kirby N, Wagner T, Papanikolaou
N, Myers P, Rasmussen K, Stathakis S and Saenz D: On the evaluation
of mobile target trajectory between four-dimensional computer
tomography and four-dimensional cone-beam computer tomography. J
Appl Clin Med Phys. 22:198–207. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Manabe Y, Shiinoki T, Fujimoto K, Ueda K,
Karita M, Ono T, Kajima M and Tanaka H: Intra- and inter-fractional
variations of tumors with fiducial markers measured using
respiratory-correlated computed tomography images for respiratory
gated lung stereotactic body radiation therapy. J Appl Clin Med
Phys. 25:e142802024. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kraus KM, Simonetto C, Kundrát P, Waitz V,
Borm KJ and Combs SE: Potential morbidity reduction for lung
stereotactic body radiation therapy using respiratory gating.
Cancers (Basel). 13:50922021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Nardone V, Sangiovanni A, Scala F, Mormile
M, Onofrio ID, Giugliano F, Vitale C, Muto M, Reginelli A,
Cappabianca S and Guida C: Choosing the optimal gated window for
defining target volume in lung stereotactic ablative radiotherapy.
Int J Radiat Res. 19:429–435. 2021. View Article : Google Scholar
|
|
58
|
Pan CH, Shiau AC, Li KC, Hsu SH and Liang
JA: The irregular breathing effect on target volume and coverage
for lung stereotactic body radiotherapy. J Appl Clin Med Phys.
20:109–120. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hayashi K, Suzuki O, Shiomi H, Ono H,
Setoguchi A, Nakai M, Nakanishi E, Tatekawa S, Ose N, Hirata T, et
al: Stereotactic ablative body radiotherapy with a central high
dose using CyberKnife for metastatic lung tumors. BMC Cancer.
23:2152023. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sawant A, Venkat R, Srivastava V, Carlson
D, Povzner S, Cattell H and Keall P: Management of
three-dimensional intrafraction motion through real-time DMLC
tracking. Med Phys. 35:2050–2061. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Krauss A, Nill S, Tacke M and Oelfke U:
Electromagnetic real-time tumor position monitoring and dynamic
multileaf collimator tracking using a siemens 160 MLC: Geometric
and dosimetric accuracy of an integrated system. Int J Radiat Oncol
Biol Phys. 79:579–587. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Burghelea M, Verellen D, Gevaert T,
Depuydt T, Poels K, Simon V and De Ridder M: Feasibility of using
the Vero SBRT system for intracranial SRS. J Appl Clin Med Phys.
15:44372014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Green OL, Rankine LJ, Cai B, Curcuru A,
Kashani R, Rodriguez V, Li HH, Parikh PJ, Robinson CG, Olsen JR, et
al: First clinical implementation of real-time, real anatomy
tracking and radiation beam control. Med Phys. 45:3728–3740. 2018.
View Article : Google Scholar
|
|
64
|
Chen GP, Tai A, Puckett L, Gore E, Lim S,
Keiper T, Johnstone C, Shukla M, Lawton C and Li XA: Clinical
implementation and initial experience of real-time motion tracking
with jaws and multileaf collimator during helical tomotherapy
delivery. Pract Radiat Oncol. 11:e486–e495. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
ICRU, . ICRU report 62: Prescribing,
recording and reporting photon beam therapy (Supplement to ICRU
Report 50). ICRU; Bethesda: 1999
|
|
66
|
Ezhil M, Vedam S, Balter P, Choi B,
Mirkovic D, Starkschall G and Chang JY: Determination of
patient-specific internal gross tumor volumes for lung cancer using
four-dimensional computed tomography. Radiat Oncol. 4:42009.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Slotman BJ, Lagerwaard FJ and Senan S: 4D
imaging for target definition in stereotactic radiotherapy for lung
cancer. Acta Oncol. 45:966–972. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Han C, Sampath S, Schultheisss TE and Wong
JYC: Variations of target volume definition and daily target volume
localization in stereotactic body radiotherapy for early-stage
non-small cell lung cancer patients under abdominal compression.
Med Dosim. 42:116–121. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kraus KM, Oechsner M, Wilkens JJ, Kessel
KA, Münch S and Combs SE: Patient individual phase gating for
stereotactic radiation therapy of early stage non-small cell lung
cancer (NSCLC). Sci Rep. 11:58702021. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Chapman CH, McGuinness C, Gottschalk AR,
Yom SS, Garsa AA, Anwar M, Braunstein SE, Sudhyadhom A, Keall P and
Descovich M: Influence of respiratory motion management technique
on radiation pneumonitis risk with robotic stereotactic body
radiation therapy. J Appl Clin Med Phys. 19:48–57. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Uijtewaal P, Borman PTS, Woodhead PL,
Hackett SL, Raaymakers BW and Fast MF: Dosimetric evaluation of
MRI-guided multi-leaf collimator tracking and trailing for lung
stereotactic body radiation therapy. Med Phys. 48:1520–1532. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Matsuo Y, Hiraoka M, Karasawa K, Kokubo M,
Sakamoto T, Mukumoto N, Nakamura M, Morita S and Mizowaki T:
Multi-institutional phase II study on the safety and efficacy of
dynamic tumor tracking-stereotactic body radiotherapy for lung
tumors. Radiother Oncol. 172:18–22. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Tsang MWK: Stereotactic body radiotherapy:
Current strategies and future development. J Thorac Dis. 8 (Suppl
6):S517–S527. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Tian S, Switchenko JM, Cassidy RJ, Escott
CE, Castillo R, Patel PR, Curran WJ and Higgins KA: Predictors of
pneumonitis-free survival following lung stereotactic body
radiation therapy. Transl Lung Cancer Res. 8:15–23. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kang KH, Okoye CC, Patel RB, Siva S,
Biswas T, Ellis RJ, Yao M, Machtay M and Lo SS: Complications from
stereotactic body radiotherapy for lung cancer. Cancers (Basel).
7:981–1004. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Bongers EM, Haasbeek CJA, Lagerwaard FJ,
Slotman BJ and Senan S: Incidence and risk factors for chest wall
toxicity after risk-adapted stereotactic radiotherapy for
early-stage lung cancer. J Thorac Oncol. 6:2052–2057. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Chi A, Liao Z, Nguyen NP, Xu J, Stea B and
Komaki R: Systemic review of the patterns of failure following
stereotactic body radiation therapy in early-stage non-small-cell
lung cancer: Clinical implications. Radiother Oncol. 94:1–11. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Timmerman R, McGarry R, Yiannoutsos C,
Papiez L, Tudor K, DeLuca J, Ewing M, Abdulrahman R, DesRosiers C,
Williams M and Fletcher J: Excessive toxicity when treating central
tumors in a phase II study of stereotactic body radiation therapy
for medically inoperable early-stage lung cancer. J Clin Oncol.
24:4833–4839. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Li W, Purdie TG, Taremi M, Fung S, Brade
A, Cho BC, Hope A, Sun A, Jaffray DA, Bezjak A and Bissonnette JP:
Effect of immobilization and performance status on intrafraction
motion for stereotactic lung radiotherapy: Analysis of 133
patients. Int J Radiat Oncol Biol Phys. 81:1568–1575. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zhao J, Yorke ED, Li L, Kavanagh BD, Li
XA, Das S, Miften M, Rimner A, Campbell J, Xue J, et al: Simple
factors associated with radiation-induced lung toxicity after
stereotactic body radiation therapy of the thorax: A pooled
analysis of 88 studies. Int J Radiat Oncol Biol Phys. 95:1357–1366.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Butler-Xu YS, Sood SS, Yap W, Tennapel MJ,
Jiang H, Badkul RK, Chen AM and Wang F:
Breathing-motion-compensated stereotactic body radiation therapy
for moving targets of the lung: A patterns of failure analysis. Int
J Radiat Oncol Biol Phys. 102 (Suppl):S2342018. View Article : Google Scholar
|
|
82
|
Prunaretty J, Boisselier P, Aillères N,
Riou O, Simeon S, Bedos L, Azria D and Fenoglietto P: Tracking,
gating, free-breathing, which technique to use for lung
stereotactic treatments? A dosimetric comparison. Rep Pract Oncol
Radiother. 24:97–104. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Bellec J, Arab-Ceschia F, Castelli J,
Lafond C and Chajon E: ITV versus mid-ventilation for treatment
planning in lung SBRT: A comparison of target coverage and PTV
adequacy by using in-treatment 4D cone beam CT. Radiat Oncol.
15:542020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Valdes G, Solberg TD, Heskel M, Ungar L
and Simone CB II: Using machine learning to predict radiation
pneumonitis in patients with stage I non-small cell lung cancer
treated with stereotactic body radiation therapy. Phys Med Biol.
61:6105–6120. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Xiao Y, Papiez L, Paulus R, Timmerman R,
Straube WL, Bosch WR, Michalski J and Galvin JM: Dosimetric
evaluation of heterogeneity corrections for RTOG 0236: stereotactic
body radiotherapy of inoperable stage I–II non-small-cell lung
cancer. Int J Radiat Oncol Biol Phys. 73:1235–1242. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Bezjak A, Paulus R, Gaspar LE, Timmerman
RD, Straube WL, Ryan WF, Garces YI, Pu AT, Singh AK, Videtic GM, et
al: Safety and efficacy of a five-fraction stereotactic body
radiotherapy schedule for centrally located non-small-cell lung
cancer: NRG oncology/RTOG 0813 trial. J Clin Oncol. 37:1316–1325.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Videtic GMM, Hu C, Singh AK, Chang JY,
Parker W, Olivier KR, Schild SE, Komaki R, Urbanic JJ, Timmerman RD
and Choy H: A randomized phase 2 study comparing 2 stereotactic
body radiation therapy schedules for medically inoperable patients
with stage I peripheral non-small cell lung cancer: NRG oncology
RTOG 0915 (NCCTG N0927). Int J Radiat Oncol Biol Phys. 93:757–764.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Beluffi G: Advances in radiation oncology
in lung cancer. Second edition. Radiol Med. 118:1252–1253. 2013.
View Article : Google Scholar
|
|
89
|
Owen D and Sio TT: Stereotactic body
radiotherapy (SBRT) for central and ultracentral node-negative lung
tumors. J Thorac Dis. 12:7024–7031. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Bezjak A, Paulus R, Gaspar LE, Timmerman
RD, Straube WL, Ryan WF, Garces Y, Pu AT, Singh AK, Videtic GM, et
al: Efficacy and toxicity analysis of NRG oncology/RTOG 0813 trial
of stereotactic body radiation therapy (SBRT) for centrally located
non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys.
96 (Suppl):S82016. View Article : Google Scholar
|
|
91
|
Nguyen KNB, Hause D, Novak J, Monjazeb AM
and Daly ME: Tumor control and toxicity following SBRT for
ultracentral, central and paramediastinal lung tumors. Int J Radiat
Oncol Biol Phys. 102 (Suppl):e6992018. View Article : Google Scholar
|
|
92
|
Hanley J, Debois MM, Mah D, Mageras GS,
Raben A, Rosenzweig K, Mychalczak B, Schwartz LH, Gloeggler PJ,
Lutz W, et al: Deep inspiration breath-hold technique for lung
tumors: The potential value of target immobilization and reduced
lung density in dose escalation. Int J Radiat Oncol Biol Phys.
45:603–611. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Cilla S, Romano C, Craus M, Viola P,
Macchia G, Boccardi M, De Vivo LP, Buwenge M, Morganti AG and
Deodato F: Reproducibility and stability of spirometer-guided deep
inspiration breath-hold in left-breast treatments using an optical
surface monitoring system. J Appl Clin Med Phys. 24:e139222023.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Yamauchi R, Mizuno N, Itazawa T, Masuda T,
Akiyama S and Kawamori J: Assessment of visual feedback system for
reproducibility of voluntary deep inspiration breath hold in
left-sided breast radiotherapy. J Med Imaging Radiat Sci.
52:544–551. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Dipasquale G, Jaccard M, Caparrotti F,
Dubouloz A, Rakotomiaramanana B, Picardi C, Plojoux J, Gasche P and
Miralbell R: Deep inspiration breath hold for lung stereotactic
body radiation therapy with electromagnetic transponders for
real-time tracking. Int J Radiat Oncol Biol Phys. 102
(Suppl):e508–e509. 2018. View Article : Google Scholar
|
|
96
|
Kaestner L, Abo-Madyan Y, Huber L, Spaniol
M, Siebenlist K, Sacks MK, Ehmann M, Stieler F, Clausen S, Lohr F,
et al: Motion management in a patient with tracheostomy during lung
stereotactic body radiation therapy: Breath hold is worth a try.
Adv Radiat Oncol. 7:1008952022. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Vaithianathan H and Harris B: Transmission
study of the abdominal compression plate (BodyFIX Diaphragm
Control) for abdominal and stereotactic body radiotherapy. J Appl
Clin Med Phys. 22:232–241. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Mampuya WA, Matsuo Y, Ueki N, Nakamura M,
Mukumoto N, Nakamura A, Iizuka Y, Kishi T, Mizowaki T and Hiraoka
M: The impact of abdominal compression on outcome in patients
treated with stereotactic body radiotherapy for primary lung
cancer. J Radiat Res. 55:934–939. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Fakir H, Randhawa GK, Millman B and Laba
J: Improving geometric sparing and therapeutic effectiveness of
lung SBRT for central and ultra-central tumors. Med Dosim.
46:398–403. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Aridgides P, Nsouli T, Chaudhari R,
Kincaid R, Rosenbaum PF, Tanny S, Mix M and Bogart J: Clinical
outcomes following advanced respiratory motion management
(respiratory gating or dynamic tumor tracking) with stereotactic
body radiation therapy for stage I non-small-cell lung cancer. Lung
Cancer (Auckl). 9:103–110. 2018.PubMed/NCBI
|
|
101
|
Riboldi M, Orecchia R and Baroni G:
Real-time tumour tracking in particle therapy: Technological
developments and future perspectives. Lancet Oncol. 13:e383–e391.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Shirato H, Shimizu S, Kunieda T, Kitamura
K, van Herk M, Kagei K, Nishioka T, Hashimoto S, Fujita K, Aoyama
H, et al: Physical aspects of a real-time tumor-tracking system for
gated radiotherapy. Int J Radiat Oncol Biol Phys. 48:1187–1195.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Zhang W, Oraiqat I, Litzenberg D, Chang
KW, Hadley S, Sunbul NB, Matuszak MM, Tichacek CJ, Moros EG, Carson
PL, et al: Real-time, volumetric imaging of radiation dose delivery
deep into the liver during cancer treatment. Nat Biotechnol.
41:1160–1167. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Seregni M, Pella A, Riboldi M, Orecchia R,
Cerveri P and Baroni G: Real-time tumor tracking with an artificial
neural networks-based method: A feasibility study. Phys Med.
29:48–59. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Bibault JE, Prevost B, Dansin E, Mirabel
X, Lacornerie T and Lartigau E: Image-guided robotic stereotactic
radiation therapy with fiducial-free tumor tracking for lung
cancer. Radiat Oncol. 7:1022012. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Lombardo E, Rabe M, Xiong Y, Nierer L,
Cusumano D, Placidi L, Boldrini L, Corradini S, Niyazi M, Reiner M,
et al: Evaluation of real-time tumor contour prediction using LSTM
networks for MR-guided radiotherapy. Radiother Oncol.
182:1095552023. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Booth J, Caillet V, Briggs A, Hardcastle
N, Angelis G, Jayamanne D, Shepherd M, Podreka A, Szymura K, Nguyen
DT, et al: MLC tracking for lung SABR is feasible, efficient and
delivers high-precision target dose and lower normal tissue dose.
Radiother Oncol. 155:131–137. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Trémolières P, Gonzalez-Moya A, Paumier A,
Mege M, Blanchecotte J, Theotime C, Autret D and Dufreneix S: Lung
stereotactic body radiation therapy: Personalized PTV margins
according to tumor location and number of four-dimensional CT
scans. Radiat Oncol. 17:52022. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Mirzapour SA, Mazur TR, Harold Li H,
Salari E and Sharp GC: Technical Note: Cumulative dose modeling for
organ motion management in MRI-guided radiation therapy. Med Phys.
48:597–604. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
De Costa AMA, Mittauer KE, Hill PM,
Bassetti MF, Bayouth J and Baschnagel AM: Outcomes of real-time
mri-guided lung stereotactic body radiation therapy. Int J Radiat
Oncol Biol Phy. 102 (Suppl):e679–e680. 2018. View Article : Google Scholar
|
|
111
|
Stera S, Balermpas P, Chan MKH,
Huttenlocher S, Wurster S, Keller C, Imhoff D, Rades D, Dunst J,
Rödel C, et al: Breathing-motion-compensated robotic guided
stereotactic body radiation therapy: Patterns of failure analysis.
Strahlenther Onkol. 194:143–155. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Tanabe Y, Kiritani M, Deguchi T, Hira N
and Tomimoto S: Patient-specific respiratory motion management
using lung tumors vs fiducial markers for real-time tumor-tracking
stereotactic body radiotherapy. Phys Imaging Radiat Oncol.
25:1004052022. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Fu Y, Zhang P, Fan Q, Cai W, Pham H,
Rimner A, Cuaron J, Cervino L, Moran JM, Li T and Li X: Deep
learning-based target decomposition for markerless lung tumor
tracking in radiotherapy. Med Phys. 51:4271–4282. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Mueller M, Poulsen P, Hansen R, Verbakel
W, Berbeco R, Ferguson D, Mori S, Ren L, Roeske JC, Wang L, et al:
The markerless lung target tracking AAPM grand challenge (MATCH)
results. Med Phys. 49:1161–1180. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Korreman SS: Image-guided radiotherapy and
motion management in lung cancer. Br J Radiol. 88:201501002015.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Videtic GM, Woody NM, Reddy CA, Djemil T
and Stephans KL: Does motion management technique for lung SBRT
influence local control: A single-institutional experience
comparing abdominal compression to breath hold technique. Int J
Radiat Oncol Biol Phy. 93 (Suppl):E444–E445. 2015. View Article : Google Scholar
|
|
117
|
Caillet V, Booth JT and Keall P: IGRT and
motion management during lung SBRT delivery. Phys Med. 44:113–122.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Benedict SH, Yenice KM, Followill D,
Galvin JM, Hinson W, Kavanagh B, Keall P, Lovelock M, Meeks S,
Papiez L, et al: Stereotactic body radiation therapy: The report of
AAPM task group 101. Med Phys. 37:4078–4101. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Fu W, Zhang Y, Mehta K, Chen A, Musunuru
HB, Pucci P, Kubis J and Huq MS: Evaluating intra-fractional tumor
motion in lung stereotactic radiotherapy with deep inspiration
breath-hold. J Appl Clin Med Phys. 25:e144142024. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Fast MF, Cao M, Parikh P and Sonke JJ:
Intrafraction motion management with MR-guided radiation therapy.
Semin Radiat Oncol. 34:92–106. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Zhou D, Nakamura M, Mukumoto N, Tanabe H,
Iizuka Y, Yoshimura M, Kokubo M, Matsuo Y and Mizowaki T:
Development of AI-driven prediction models to realize real-time
tumor tracking during radiotherapy. Radiat Oncol. 17:422022.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Kim T, Laugeman E, Kiser K, Schiff J,
Marasini S, Price A, Gach HM, Knutson N, Samson P, Robinson C, et
al: Feasibility of surface-guidance combined with CBCT for
intra-fractional breath-hold motion management during Ethos RT. J
Appl Clin Med Phys. 25:e142422024. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Salari E, Wang J, Wynne JF, Chang CW, Wu Y
and Yang X: Artificial intelligence-based motion tracking in cancer
radiotherapy: A review. J Appl Clin Med Phys. 25:e145002024.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Zhang X, Yan D, Xiao H and Zhong R:
Modeling of artificial intelligence-based respiratory motion
prediction in MRI-guided radiotherapy: A review. Radiat Oncol.
19:1402024. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Lombardo E, Liu PZY, Waddington DEJ,
Grover J, Whelan B, Wong E, Reiner M, Corradini S, Belka C, Riboldi
M, et al: Experimental comparison of linear regression and LSTM
motion prediction models for MLC-tracking on an MRI-linac. Med
Phys. 50:7083–7092. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Takao S, Miyamoto N, Matsuura T, Onimaru
R, Katoh N, Inoue T, Sutherland KL, Suzuki R, Shirato H and Shimizu
S: Intrafractional baseline shift or drift of lung tumor motion
during gated radiation therapy with a real-time tumor-tracking
system. Int J Radiat Oncol Biol Phys. 94:172–180. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Dhont J, Vandemeulebroucke J, Burghelea M,
Poels K, Depuydt T, Van Den Begin R, Jaudet C, Collen C, Engels B,
Reynders T, et al: The long- and short-term variability of
breathing induced tumor motion in lung and liver over the course of
a radiotherapy treatment. Radiother Oncol. 126:339–346. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Balasubramanian A, Shamsuddin R,
Prabhakaran B and Sawant A: Predictive modeling of respiratory
tumor motion for real-time prediction of baseline shifts. Phys Med
Biol. 62:1791–1809. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Bissonnette JP, Franks KN, Purdie TG,
Moseley DJ, Sonke JJ, Jaffray DA, Dawson LA and Bezjak A:
Quantifying interfraction and intrafraction tumor motion in lung
stereotactic body radiotherapy using respiration-correlated cone
beam computed tomography. Int J Radiat Oncol Biol Phys. 75:688–695.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Ono T, Nakamura M, Hirose Y, Kitsuda K,
Ono Y, Ishigaki T and Hiraoka M: Estimation of lung tumor position
from multiple anatomical features on 4D-CT using multiple
regression analysis. J Appl Clin Med Phys. 18:36–42. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Yan M, Louie AV, Kotecha R, Ashfaq Ahmed
M, Zhang Z, Guckenberger M, Kim MS, Lo SS, Scorsetti M, Tree AC, et
al: Stereotactic body radiotherapy for ultra-central lung tumors: A
systematic review and meta-analysis and international stereotactic
radiosurgery society practice guidelines. Lung Cancer.
182:1072812023. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Giuliani M, Mathew AS, Bahig H, Bratman
SV, Filion E, Glick D, Louie AV, Raman S, Swaminath A, Warner A, et
al: SUNSET: Stereotactic radiation for ultracentral non-small-cell
lung cancer-a safety and efficacy trial. Clin Lung Cancer.
19:e529–e532. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Park HS, Rimner A, Amini A, Chang JY, Chun
SG, Donington J, Edelman MJ, Gubens MA, Higgins KA, Iyengar P, et
al: Appropriate use criteria (AUC) for the management of non-small
cell lung cancer in a central/ultra-central location: Guidelines
from the American radium society. J Thorac Oncol. 19:1640–1653.
1640–1653. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Foster RD, Moeller BJ, Robinson M, Bright
M, Ruiz JL, Hampton CJ and Heinzerling JH: Dosimetric analysis of
intra-fraction motion detected by surface-guided radiation therapy
during linac stereotactic radiosurgery. Adv Radiat Oncol.
8:1011512022. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Homma N, Takai Y, Endo H, Ichiji K, Narita
Y, Zhang X, Sakai M, Osanai M, Abe M, Sugita N and Yoshizawa M:
Markerless lung tumor motion tracking by dynamic decomposition of
X-ray image intensity. J Med Eng. 2013:3408212013. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Teske H, Mercea P, Schwarz M, Nicolay NH,
Sterzing F and Bendl R: Real-time markerless lung tumor tracking in
fluoroscopic video: Handling overlapping of projected structures.
Med Phys. 42:2540–2549. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Zhang F, Kelsey CR, Yoo D, Yin FF and Cai
J: Uncertainties of 4-dimensional computed tomography-based tumor
motion measurement for lung stereotactic body radiation therapy.
Pract Radiat Oncol. 4:e59–e65. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Rijken J, Hu Y and Hiscoke K:
Individualized breathing trace quality assurance for lung
radiotherapy patients undergoing 4DCT simulation. J Appl Clin Med
Phys. 24:e139292023. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Chen X, Qiu RLJ, Peng J, Shelton JW, Chang
CW, Yang X and Kesarwala AH: CBCT-based synthetic CT image
generation using a diffusion model for CBCT-guided lung
radiotherapy. Med Phys. 51:8168–8178. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Zhang Z, Huang M, Jiang Z, Chang Y, Lu K,
Yin FF, Tran P, Wu D, Beltran C and Ren L: Patient-specific deep
learning model to enhance 4D-CBCT image for radiomics analysis.
Phys Med Biol. 67:10.1088/1361–6560/ac5f6e. 2022. View Article : Google Scholar
|
|
141
|
Kaidar-Person O and Chen R:
Hypofractionated and stereotactic radiation therapy a practical
guide. 2nd Edition. Springer; Berlin, Heidelberg: 2024
|
|
142
|
Ladbury C, Amini A, Schwer A, Liu A,
Williams T and Lee P: Clinical applications of magnetic
resonance-guided radiotherapy: A narrative review. Cancers (Basel).
15:29162023. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Finazzi T, Haasbeek CJA, Spoelstra FOB,
Palacios MA, Admiraal MA, Bruynzeel AME, Slotman BJ, Lagerwaard FJ
and Senan S: Clinical outcomes of stereotactic MR-guided adaptive
radiation therapy for high-risk lung tumors. Int J Radiat Oncol
Biol Phys. 107:270–278. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Kishan AU, Ma TM, Lamb JM, Casado M,
Wilhalme H, Low DA, Sheng K, Sharma S, Nickols NG, Pham J, et al:
Magnetic resonance imaging-guided vs computed tomography-guided
stereotactic body radiotherapy for prostate cancer: The MIRAGE
randomized clinical trial. JAMA Oncol. 9:365–373. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Mylonas A, Booth J and Nguyen DT: A review
of artificial intelligence applications for motion tracking in
radiotherapy. J Med Imaging Radiat Oncol. 65:596–611. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Keall PJ, Sawant A, Berbeco RI, Booth JT,
Cho B, Cerviño LI, Cirino E, Dieterich S, Fast MF, Greer PB, et al:
AAPM task group 264: The safe clinical implementation of MLC
tracking in radiotherapy. Med Phys. 48:e44–e64. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Grama D, Dahele M, van Rooij W, Slotman B,
Gupta DK and Verbakel WFAR: Deep learning-based markerless lung
tumor tracking in stereotactic radiotherapy using Siamese networks.
Med Phys. 50:6881–6893. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Sindoni A, Minutoli F, Pontoriero A, Iatì
G, Baldari S and Pergolizzi S: Usefulness of four dimensional (4D)
PET/CT imaging in the evaluation of thoracic lesions and in
radiotherapy planning: Review of the literature. Lung Cancer.
96:78–86. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Molitoris JK, Diwanji T, Snider JW III,
Mossahebi S, Samanta S, Badiyan SN, Simone CB II and Mohindra P:
Advances in the use of motion management and image guidance in
radiation therapy treatment for lung cancer. J Thorac Dis. 10
(Suppl 21):S2437–S2450. 2018. View Article : Google Scholar : PubMed/NCBI
|