|
1
|
Siegel RL, Giaquinto AN and Jemal A:
Cancer statistics, 2024. CA Cancer J Clin. 74:12–49. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Nocini R, Molteni G, Mattiuzzi C and Lippi
G: Updates on larynx cancer epidemiology. Chin J Cancer Res.
32:18–25. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Liberale C, Soloperto D, Marchioni A,
Monzani D and Sacchetto L: Updates on larynx cancer: risk factors
and oncogenesis. Int J Mol Sci. 24:129132023. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Molina-Fernández E, Palacios-García JM,
Moreno-Luna R, Herrero-Salado T, Ventura-Díaz J, Sánchez-Gómez S
and Vilches-Arenas Á: Survival Analysis in patients with laryngeal
cancer: A retrospective cohort study. Life (Basel).
13:2952023.PubMed/NCBI
|
|
6
|
Yu X, Zhao H, Wang R, Chen Y, Ouyang X, Li
W, Sun Y and Peng A: Cancer epigenetics: From laboratory studies
and clinical trials to precision medicine. Cell Death Discov.
10:282024. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Shvedunova M and Akhtar A: Modulation of
cellular processes by histone and non-histone protein acetylation.
Nat Rev Mol Cell Biol. 23:329–349. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Li Y, Chen X and Lu C: The interplay
between DNA and histone methylation: molecular mechanisms and
disease implications. EMBO Rep. 22:e518032021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Armache A, Yang S, Martínez de Paz A,
Robbins LE, Durmaz C, Cheong JQ, Ravishankar A, Daman AW, Ahimovic
DJ, Klevorn T, et al: Histone H3.3 phosphorylation amplifies
stimulation-induced transcription. Nature. 583:852–857. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Mattiroli F and Penengo L: Histone
ubiquitination: An integrative signaling platform in genome
stability. Trends Genet. 37:566–581. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Qu J, Li P and Sun Z: Histone lactylation
regulates cancer progression by reshaping the tumor
microenvironment. Front Immunol. 14:12843442023. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zhang D, Tang Z, Huang H, Zhou G, Cui C,
Weng Y, Liu W, Kim S, Lee S, Perez-Neut M, et al: Metabolic
regulation of gene expression by histone lactylation. Nature.
574:575–580. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Jing F, Zhu L, Zhang J, Zhou X, Bai J, Li
X, Zhang H and Li T: Multi-omics reveals lactylation-driven
regulatory mechanisms promoting tumor progression in oral squamous
cell carcinoma. Genome Biol. 25:2722024. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Huang G, Chen S, He J, Li H, Ma Z, Lubamba
GP, Wang L, Guo Z and Li C: Histone lysine lactylation
(Kla)-induced BCAM promotes OSCC progression and Cis-Platinum
resistance. Oral Dis. 31:1116–1132. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Song F, Hou C, Huang Y, Liang J, Cai H,
Tian G, Jiang Y, Wang Z and Hou J: Lactylome analyses suggest
systematic lysine-lactylated substrates in oral squamous cell
carcinoma under normoxia and hypoxia. Cell Signal. 120:1112282024.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zang Y, Wang A, Zhang J, Xia M, Jiang Z,
Jia B, Lu C, Chen C, Wang S, Zhang Y, et al: Hypoxia promotes
histone H3K9 lactylation to enhance LAMC2 transcription in
esophageal squamous cell carcinoma. iScience. 27:1101882024.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Fu C, Jiang W, Wang C, Song SJ, Tao H,
Zhang XG, Li WT, Jin X, Yu BB, Hao JJ, et al: AP001885.4 promotes
the proliferation of esophageal squamous cell carcinoma cells by
histone lactylation- and NF-κB (p65)-dependent transcription
activation and METTL3-mediated mRNA stability of c-myc. Anim Cells
Syst (Seoul). 28:536–550. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Wang R, Li C, Cheng Z, Li M, Shi J, Zhang
Z, Jin S and Ma H: H3K9 lactylation in malignant cells facilitates
CD8(+) T cell dysfunction and poor immunotherapy response. Cell
Rep. 43:1146862024. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Huang C, Xue L, Lin X, Shen Y and Wang X:
Histone lactylation-driven GPD2 Mediates M2 macrophage polarization
to promote malignant transformation of cervical cancer progression.
DNA Cell Biol. 43:605–618. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Li Y and Lu C: Targeting epigenetic
Dysregulations in head and neck squamous cell carcinoma. J Dent
Res. 104:225–234. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Davalos V and Esteller M: Cancer
epigenetics in clinical practice. CA Cancer J Clin. 73:376–424.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Pierini S, Jordanov SH, Mitkova AV,
Chalakov IJ, Melnicharov MB, Kunev KV, Mitev VI, Kaneva RP and
Goranova TE: Promoter hypermethylation of CDKN2A, MGMT, MLH1, and
DAPK genes in laryngeal squamous cell carcinoma and their
associations with clinical profiles of the patients. Head Neck.
36:1103–1108. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Gallus R, Gheit T, Holzinger D, Petrillo
M, Rizzo D, Petrone G, Miccichè F, Mattiucci GC, Arciuolo D,
Capobianco G, et al: Prevalence of HPV infection and p16(INK4a)
overexpression in surgically treated laryngeal squamous cell
carcinoma. Vaccines (Basel). 10:2042022. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
López F, Sampedro T, Llorente JL,
Domínguez F, Hermsen M, Suárez C and Alvarez-Marcos C: Utility of
MS-MLPA in DNA methylation profiling in primary laryngeal squamous
cell carcinoma. Oral Oncol. 50:291–297. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Weigel C, Chaisaingmongkol J, Assenov Y,
Kuhmann C, Winkler V, Santi I, Bogatyrova O, Kaucher S, Bermejo JL,
Leung SY, et al: DNA methylation at an enhancer of the three prime
repair exonuclease 2 gene (TREX2) is linked to gene expression and
survival in laryngeal cancer. Clin Epigenetics. 11:672019.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Xiao Y, Zhang Y, Hu Y, Zhang X, Tan J, Yao
S, Wang X and Qin Y: Advances in the study of posttranslational
modifications of histones in head and neck squamous cell carcinoma.
Clin Epigenetics. 16:1652024. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Li L, Cui J, Li X, Zhu Y, Wu H and Zhou L:
Prmt1-mediated histone H4R3me2a methylation regulates the
proliferation, migration and invasion of laryngeal cancer cells by
affecting the expression level of NCOA5. Front Oncol.
14:14891642024. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wang J, Wang N, Zheng Z, Che Y, Suzuki M,
Kano S, Lu J, Wang P, Sun Y and Homma A: Exosomal lncRNA HOTAIR
induce macrophages to M2 polarization via PI3K/p-AKT/AKT pathway
and promote EMT and metastasis in laryngeal squamous cell
carcinoma. BMC Cancer. 22:12082022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Banta A, Bratosin F, Golu I, Toma AO and
Domuta EM: A systematic review of circulating miRNAs by multiple
independent validated studies in laryngeal cancer. Diagnostics
(Basel). 15:3942025. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Cui W, Meng W, Zhao L, Cao H, Chi W and
Wang B: TGF-β-induced long non-coding RNA MIR155HG promotes the
progression and EMT of laryngeal squamous cell carcinoma by
regulating the miR-155-5p/SOX10 axis. Int J Oncol. 54:2005–2018.
2019.PubMed/NCBI
|
|
31
|
Jiang R, Gao MZ, Chen M, Weatherspoon DJ,
Watts TL and Osazuwa-Peters N: Genetic and molecular differences in
head and neck cancer based on smoking history. JAMA Otolaryngol
Head Neck Surg. 151:379–388. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Ferraguti G, Terracina S, Petrella C,
Greco A, Minni A, Lucarelli M, Agostinelli E, Ralli M, de
Vincentiis M, Raponi G, et al: Alcohol and head and neck cancer:
Updates on the role of oxidative stress, genetic, epigenetics, oral
microbiota, antioxidants, and alkylating agents. Antioxidants
(Basel). 11:1452022. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zhou YQ, Jiang JX, He S, Li YQ, Cheng XX,
Liu SQ, Wei PP, Guan XY, Ong CK, Wang VY, et al: Epstein-Barr virus
hijacks histone demethylase machinery to drive epithelial
malignancy progression through KDM5B upregulation. Signal Transduct
Target Ther. 10:832025. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ge J, Meng Y, Guo J, Chen P, Wang J, Shi
L, Wang D, Qu H, Wu P, Fan C, et al: Human papillomavirus-encoded
circular RNA circE7 promotes immune evasion in head and neck
squamous cell carcinoma. Nat Commun. 15:86092024. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Motoc GV, Juncar RI, Moca AE, Motoc O,
Vaida LL and Juncar M: The relationship between age, gender, BMI,
diet, salivary pH and periodontal pathogenic bacteria in children
and adolescents: A cross-sectional study. Biomedicines.
11:23742023. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Chen F, He X, Xu W, Zhou L, Liu Q, Chen W,
Zhu WG and Zhang J: Chromatin lysine acylation: On the path to
chromatin homeostasis and genome integrity. Cancer Sci.
115:3506–3519. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang H and Helin K: Roles of H3K4
methylation in biology and disease. Trends Cell Biol. 35:115–128.
2025. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Guo Y, Zhao S and Wang GG: Polycomb gene
silencing mechanisms: PRC2 chromatin targeting, H3K27me3 ‘Readout’,
and phase separation-based compaction. Trends Genet. 37:547–565.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Gong P, Guo Z, Wang S, Gao S and Cao Q:
Histone phosphorylation in DNA damage response. Int J Mol Sci.
26:24052025. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Shu Q, Liu Y and Ai H: The emerging role
of the histone H2AK13/15 ubiquitination: Mechanisms of writing,
reading, and erasing in DNA damage repair and disease. Cells.
14:3072025. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Rabinowitz JD and Enerbäck S: Lactate: the
ugly duckling of energy metabolism. Nat Metab. 2:566–571. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Fendt SM: 100 years of the Warburg effect:
A cancer metabolism endeavor. Cell. 187:3824–3828. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Liao M, Yao D, Wu L, Luo C, Wang Z, Zhang
J and Liu B: Targeting the Warburg effect: A revisited perspective
from molecular mechanisms to traditional and innovative therapeutic
strategies in cancer. Acta Pharm Sin B. 14:953–1008. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Chen J, Huang Z, Chen Y, Tian H, Chai P,
Shen Y, Yao Y, Xu S, Ge S and Jia R: Lactate and lactylation in
cancer. Signal Transduct Target Ther. 10:382025. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhong X, He X, Wang Y, Hu Z, Huang H, Zhao
S, Wei P and Li D: Warburg effect in colorectal cancer: The
emerging roles in tumor microenvironment and therapeutic
implications. J Hematol Oncol. 15:1602022. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Zhi S, Chen C, Huang H, Zhang Z, Zeng F
and Zhang S: Hypoxia-inducible factor in breast cancer: Role and
target for breast cancer treatment. Front Immunol. 15:13708002024.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhao LP, Zheng RR, Kong RJ, Huang CY, Rao
XN, Yang N, Chen AL, Yu XY, Cheng H and Li SY: Self-delivery
ternary bioregulators for photodynamic amplified immunotherapy by
tumor microenvironment reprogramming. ACS Nano. 16:1182–1197. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Galle E, Wong CW, Ghosh A, Desgeorges T,
Melrose K, Hinte LC, Castellano-Castillo D, Engl M, de Sousa JA,
Ruiz-Ojeda FJ, et al: H3K18 lactylation marks tissue-specific
active enhancers. Genome Biol. 23:2072022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Chu X, Di C, Chang P, Li L, Feng Z, Xiao
S, Yan X, Xu X, Li H, Qi R, et al: Lactylated histone H3K18 as a
potential biomarker for the diagnosis and predicting the severity
of septic shock. Front Immunol. 12:7866662022. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Xu Y, Meng W, Dai Y, Xu L, Ding N, Zhang J
and Zhuang X: Anaerobic metabolism promotes breast cancer survival
via Histone-3 Lysine-18 lactylation mediating PPARD axis. Cell
Death Discov. 11:542025. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wang J, Wang Z, Wang Q, Li X and Guo Y:
Ubiquitous protein lactylation in health and diseases. Cell Mol
Biol Lett. 29:232024. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Duan X, Xing Z, Qiao L, Qin S, Zhao X,
Gong Y and Li X: The role of histone post-translational
modifications in cancer and cancer immunity: Functions, mechanisms
and therapeutic implications. Front Immunol. 15:14952212024.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Hu Y, He Z, Li Z, Wang Y, Wu N, Sun H,
Zhou Z, Hu Q and Cong X: Lactylation: the novel histone
modification influence on gene expression, protein function, and
disease. Clin Epigenetics. 16:722024. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
He W, Li Q and Li X: Acetyl-CoA regulates
lipid metabolism and histone acetylation modification in cancer.
Biochim Biophys Acta Rev Cancer. 1878:1888372023. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Neganova ME, Klochkov SG, Aleksandrova YR
and Aliev G: Histone modifications in epigenetic regulation of
cancer: Perspectives and achieved progress. Semin Cancer Biol.
83:452–471. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lv M, Huang Y, Chen Y and Ding K:
Lactylation modification in cancer: Mechanisms, functions, and
therapeutic strategies. Exp Hematol Oncol. 14:322025. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Liu J, Zhao F and Qu Y: Lactylation: A
novel post-translational modification with clinical implications in
CNS diseases. Biomolecules. 14:11752024. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhu R, Ye X, Lu X, Xiao L, Yuan M, Zhao H,
Guo D, Meng Y, Han H, Luo S, et al: ACSS2 acts as a lactyl-CoA
synthetase and couples KAT2A to function as a lactyltransferase for
histone lactylation and tumor immune evasion. Cell Metab.
37:361–376.e7. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Chen J, Feng Q, Qiao Y, Pan S, Liang L,
Liu Y, Zhang X, Liu D and Liu Z and Liu Z: ACSF2 and lysine
lactylation contribute to renal tubule injury in diabetes.
Diabetologia. 67:1429–1443. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sun W, Jia M, Feng Y and Cheng X: Lactate
is a bridge linking glycolysis and autophagy through lactylation.
Autophagy. 19:3240–3241. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Li H, Liu C, Li R, Zhou L, Ran Y, Yang Q,
Huang H, Lu H, Song H, Yang B, et al: AARS1 and AARS2 sense
L-lactate to regulate cGAS as global lysine lactyltransferases.
Nature. 634:1229–1237. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL,
Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, et al: The sirtuin family
in health and disease. Signal Transduct Target Ther. 7:4022022.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Fan Z, Liu Z, Zhang N, Wei W, Cheng K, Sun
H and Hao Q: Identification of SIRT3 as an eraser of H4K16la.
iScience. 26:1077572023. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zu H, Li C, Dai C, Pan Y, Ding C, Sun H,
Zhang X, Yao X, Zang J and Mo X: SIRT2 functions as a histone
delactylase and inhibits the proliferation and migration of
neuroblastoma cells. Cell Discov. 8:542022. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Wang T, Ye Z, Li Z, Jing DS, Fan GX, Liu
MQ, Zhuo QF, Ji SR, Yu XJ, Xu XW and Qin Y: Lactate-induced protein
lactylation: A bridge between epigenetics and metabolic
reprogramming in cancer. Cell Prolif. 56:e134782023. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Liu C, Jin Y and Fan Z: The mechanism of
warburg effect-induced chemoresistance in cancer. Front Oncol.
11:6980232021. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wang W, Wang H, Wang Q, Yu X and Ouyang L:
Lactate-induced protein lactylation in cancer: Functions,
biomarkers and immunotherapy strategies. Front Immunol.
15:15130472025. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Xia J, Qiao Z, Hao X and Zhang Y:
LDHA-induced histone lactylation mediates the development of
osteoarthritis through regulating the transcription activity of
TPI1 gene. Autoimmunity. 57:23848892024. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Pucino V, Certo M, Bulusu V, Cucchi D,
Goldmann K, Pontarini E, Haas R, Smith J, Headland SE, Blighe K, et
al: Lactate buildup at the site of chronic inflammation promotes
disease by inducing CD4(+) T cell metabolic rewiring. Cell Metab.
30:1055–1074.e8. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Xu K, Zhang K, Wang Y and Gu Y:
Comprehensive review of histone lactylation: Structure, function,
and therapeutic targets. Biochem Pharmacol. 225:1163312024.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Chen X, Huang W and Zhang J, Li Y, Xing Z,
Guo L, Jiang H and Zhang J: High-intensity interval training
induces lactylation of fatty acid synthase to inhibit lipid
synthesis. BMC Biol. 21:1962023. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yoo HC, Park SJ, Nam M, Kang J, Kim K, Yeo
JH, Kim JK, Heo Y, Lee HS, Lee MY, et al: A variant of SLC1A5 is a
mitochondrial glutamine transporter for metabolic reprogramming in
cancer cells. Cell Metab. 31:267–283.e12. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Luo Y, Li L, Chen X, Gou H, Yan K and Xu
Y: Effects of lactate in immunosuppression and inflammation:
Progress and prospects. Int Rev Immunol. 41:19–29. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Gómez-Valenzuela F, Escobar E, Pérez-Tomás
R and Montecinos VP: The inflammatory profile of the tumor
microenvironment, orchestrated by cyclooxygenase-2, promotes
epithelial-mesenchymal transition. Front Oncol. 11:6867922021.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Wang X, Qu Y, Ji J, Liu H, Luo H, Li J and
Han X: Colorectal cancer cells establish metabolic reprogramming
with cancer-associated fibroblasts (CAFs) through lactate shuttle
to enhance invasion, migration, and angiogenesis. Int
Immunopharmacol 143(Pt 2). 1134702024. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Sun K, Zhang X, Shi J, Huang J, Wang S, Li
X, Lin H, Zhao D, Ye M, Zhang S, et al: Elevated protein
lactylation promotes immunosuppressive microenvironment and
therapeutic resistance in pancreatic ductal adenocarcinoma. J Clin
Invest. 135:e1870242025. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Huang T, Song X, Xu D, Tiek D, Goenka A,
Wu B, Sastry N, Hu B and Cheng SY: Stem cell programs in cancer
initiation, progression, and therapy resistance. Theranostics.
10:8721–8743. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Feng F, Wu J, Chi Q, Wang S, Liu W, Yang
L, Song G, Pan L, Xu K and Wang C: Lactylome analysis unveils
lactylation-dependent mechanisms of stemness remodeling in the
liver cancer stem cells. Adv Sci (Weinh). 11:e24059752024.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Mohiuddin IS, Wei SJ and Kang MH: Role of
OCT4 in cancer stem-like cells and chemotherapy resistance. Biochim
Biophys Acta Mol Basis Dis. 1866:1654322020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Montoro-Jiménez I, Granda-Díaz R, Menéndez
ST, Prieto-Fernández L, Otero-Rosales M, Álvarez-González M,
García-de-la-Fuente V, Rodríguez A, Rodrigo JP, Álvarez-Teijeiro S,
et al: Combined PIK3CA and SOX2 gene amplification predicts
laryngeal cancer risk beyond histopathological grading. Int J Mol
Sci. 25:26952024. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ma Y, Chen Z and Yu G: microRNA-139-3p
inhibits malignant behaviors of laryngeal cancer cells via the
KDM5B/SOX2 Axis and the Wnt/β-catenin pathway. Cancer Manag Res.
12:9197–9209. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Clara JA, Monge C, Yang Y and Takebe N:
Targeting signalling pathways and the immune microenvironment of
cancer stem cells-a clinical update. Nat Rev Clin Oncol.
17:204–232. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Wang J, Yu H, Dong W, Zhang C, Hu M, Ma W,
Jiang X, Li H, Yang P and Xiang D: N6-methyladenosine-mediated
up-regulation of FZD10 regulates liver cancer stem cells'
properties and lenvatinib resistance through WNT/β-catenin and
hippo signaling pathways. Gastroenterology. 164:990–1005. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Chen H, Li Y, Li H, Chen X, Fu H, Mao D,
Chen W, Lan L, Wang C, Hu K, et al: NBS1 lactylation is required
for efficient DNA repair and chemotherapy resistance. Nature.
631:663–669. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wang Z, Jia R, Wang L, Yang Q, Hu X, Fu Q,
Zhang X, Li W and Ren Y: The emerging roles of Rad51 in cancer and
its potential as a therapeutic target. Front Oncol. 12:9355932022.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Zhong JT, Yu Q, Zhou SH, Yu E, Bao YY, Lu
ZJ and Fan J: GLUT-1 siRNA enhances radiosensitization of laryngeal
cancer stem cells via enhanced DNA damage, cell cycle
redistribution, and promotion of apoptosis in vitro and in vivo.
Onco Targets Ther. 12:9129–9142. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wu Y, Song Y, Wang R and Wang T: Molecular
mechanisms of tumor resistance to radiotherapy. Mol Cancer.
22:962023. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Lin J, Liu G, Chen L, Kwok HF and Lin Y:
Targeting lactate-related cell cycle activities for cancer therapy.
Semin Cancer Biol. 86:1231–1243. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Yu D, Zhong Q, Wang Y, Yin C, Bai M, Zhu
J, Chen J, Li H and Hong W: Lactylation: The metabolic accomplice
shaping cancer's response to radiotherapy and immunotherapy. Ageing
Res Rev. 104:1026702025. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Wang G, Zou X, Chen Q, Nong W, Miao W, Luo
H and Qu S: The relationship and clinical significance of
lactylation modification in digestive system tumors. Cancer Cell
Int. 24:2462024. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Peng T, Sun F, Yang JC, Cai MH, Huai MX,
Pan JX, Zhang FY and Xu LM: Novel lactylation-related signature to
predict prognosis for pancreatic adenocarcinoma. World J
Gastroenterol. 30:2575–2602. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Zhang C, Zhou L, Zhang M, Du Y, Li C, Ren
H and Zheng L: H3K18 lactylation potentiates immune escape of
non-small cell lung cancer. Cancer Res. 84:3589–3601. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Li Z, Liang P, Chen Z, Chen Z, Jin T, He
F, Chen X and Yang K: CAF-secreted LOX promotes PD-L1 expression
via histone Lactylation and regulates tumor EMT through TGFβ/IGF1
signaling in gastric cancer. Cell Signal. 124:1114622024.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Sun X, Dong H, Su R, Chen J, Li W, Yin S
and Zhang C: Lactylation-related gene signature accurately predicts
prognosis and immunotherapy response in gastric cancer. Front
Oncol. 14:14855802024. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Kitamura F, Semba T, Yasuda-Yoshihara N,
Yamada K, Nishimura A, Yamasaki J, Nagano O, Yasuda T, Yonemura A,
Tong Y, et al: Cancer-associated fibroblasts reuse cancer-derived
lactate to maintain a fibrotic and immunosuppressive
microenvironment in pancreatic cancer. JCI Insight. 8:e1630222023.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Truong Hoang Q, Huynh KA, Nguyen Cao TG,
Kang JH, Dang XN, Ravichandran V, Kang HC, Lee M, Kim JE, Ko YT, et
al: Piezocatalytic 2D WS(2) nanosheets for ultrasound-triggered and
mitochondria-targeted piezodynamic cancer therapy synergized with
energy metabolism-targeted chemotherapy. Adv Mater.
35:e23004372023. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Wang Z, Wu M, Jiang Y, Zhou J, Chen S,
Wang Q, Sun H, Deng Y, Zhou Z and Sun M: Biomimetic
calcium-chelation nanoparticles reprogram tumor metabolism to
enhance antitumor immunity. J Control Release. 380:362–374. 2025.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Yu X, Yang J, Xu J, Pan H, Wang W, Yu X
and Shi S: Histone lactylation: From tumor lactate metabolism to
epigenetic regulation. Int J Biol Sci. 20:1833–1854. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Pai S, Yadav VK, Kuo KT, Pikatan NW, Lin
CS, Chien MH, Lee WH, Hsiao M, Chiu SC, Yeh CT and Tsai JT: PDK1
Inhibitor BX795 Improves cisplatin and radio-efficacy in oral
squamous cell carcinoma by downregulating the
PDK1/CD47/Akt-mediated glycolysis signaling pathway. Int J Mol Sci.
22:114922021. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Hu X, Huang Z and Li L: LDHB mediates
histone lactylation to activate PD-L1 and promote ovarian cancer
immune escape. Cancer Invest. 43:70–79. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Li T, Xu D, Ruan Z, Zhou J, Sun W, Rao B
and Xu H: Metabolism/immunity dual-regulation thermogels
potentiating immunotherapy of glioblastoma through
lactate-excretion inhibition and PD-1/PD-L1 blockade. Adv Sci
(Weinh). 11:e23101632024. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Littleflower AB, Parambil ST, Antony GR
and Subhadradevi L: The determinants of metabolic discrepancies in
aerobic glycolysis: Providing potential targets for breast cancer
treatment. Biochimie. 220:107–121. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Bao C, Ma Q, Ying X, Wang F, Hou Y, Wang
D, Zhu L, Huang J and He C: Histone lactylation in macrophage
biology and disease: From plasticity regulation to therapeutic
implications. EBioMedicine. 111:1055022025. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Liu X, Wang J, Lao M, Liu F, Zhu H, Man K
and Zhang J: Study on the effect of protein lysine lactylation
modification in macrophages on inhibiting periodontitis in rats. J
Periodontol. 95:50–63. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Li H, Sun L, Gao P and Hu H: Lactylation
in cancer: Current understanding and challenges. Cancer Cell.
42:1803–1807. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Yang W, Wang P, Cao P, Wang S, Yang Y, Su
H and Nashun B: Hypoxic in vitro culture reduces histone
lactylation and impairs pre-implantation embryonic development in
mice. Epigenetics Chromatin. 14:572021. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Cui Z, Li Y, Lin Y, Zheng C, Luo L, Hu D,
Chen Y, Xiao Z and Sun Y: Lactylproteome analysis indicates histone
H4K12 lactylation as a novel biomarker in triple-negative breast
cancer. Front Endocrinol (Lausanne). 15:13286792024. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Dai W, Wu G, Liu K, Chen Q, Tao J, Liu H
and Shen M: Lactate promotes myogenesis via activating H3K9
lactylation-dependent up-regulation of Neu2 expression. J Cachexia
Sarcopenia Muscle. 14:2851–2865. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Dong F, Yin H and Zheng Z:
Hypoxia-inducible factor-1α regulates BNIP3-dependent mitophagy and
mediates metabolic reprogramming through histone lysine lactylation
modification to affect glioma proliferation and invasion. J Biochem
Mol Toxicol. 39:e700692025. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Zhao W, Xin J, Yu X, Li Z and Li N: Recent
advances of lysine lactylation in prokaryotes and eukaryotes. Front
Mol Biosci. 11:15109752025. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Sar P and Dalai S: CRISPR/Cas9 in
epigenetics studies of health and disease. Prog Mol Biol Transl
Sci. 181:309–343. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Gaffney DO, Jennings EQ, Anderson CC,
Marentette JO, Shi T, Schou Oxvig AM, Streeter MD, Johannsen M,
Spiegel DA, Chapman E, et al: Non-enzymatic lysine lactoylation of
glycolytic enzymes. Cell Chem Biol. 27:206–213.e6. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Mazzio E, Badisa R, Mack N, Cassim S,
Zdralevic M, Pouyssegur J and Soliman KFA: Whole-transcriptome
analysis of fully viable energy efficient glycolytic-null cancer
cells established by double genetic knockout of lactate
dehydrogenase A/B or glucose-6-phosphate isomerase. Cancer Genomics
Proteomics. 17:469–497. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Miles LB, Calcinotto V, Oveissi S, Serrano
RJ, Sonntag C, Mulia O, Lee C and Bryson-Richardson RJ: CRIMP: A
CRISPR/Cas9 insertional mutagenesis protocol and toolkit. Nat
Commun. 15:50112024. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Meyers S, Demeyer S and Cools J: CRISPR
screening in hematology research: From bulk to single-cell level. J
Hematol Oncol. 16:1072023. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Merlin JPJ and Abrahamse H: Optimizing
CRISPR/Cas9 precision: Mitigating off-target effects for safe
integration with photodynamic and stem cell therapies in cancer
treatment. Biomed Pharmacother. 180:1175162024. View Article : Google Scholar : PubMed/NCBI
|