|
1
|
Siegel RL, Kratzer TB, Giaquinto AN, Sung
H and Jemal A: Cancer statistics, 2025. CA Cancer J Clin. 75:10–45.
2025. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Fois SS, Paliogiannis P, Zinellu A, Fois
AG, Cossu A and Palmieri G: Molecular epidemiology of the main
druggable genetic alterations in non-small cell lung cancer. Int J
Mol Sci. 22:6122021. View Article : Google Scholar
|
|
3
|
Pirker R: Chemotherapy remains a
cornerstone in the treatment of nonsmall cell lung cancer. Curr
Opin Oncol. 32:63–67. 2020. View Article : Google Scholar
|
|
4
|
Deng Q, Fang Q, Sun H, Singh AP, Alexander
M, Li S, Cheng H and Zhou S: Detection of plasma EGFR mutations for
personalized treatment of lung cancer patients without pathologic
diagnosis. Cancer Med. 9:2085–2095. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Yang JJ, Zhang XC, Su J, Xu CR, Zhou Q,
Tian HX, Xie Z, Chen HJ, Huang YS, Jiang BY, et al: Lung cancers
with concomitant EGFR mutations and ALK rearrangements: Diverse
responses to EGFR-TKI and crizotinib in relation to diverse
receptors phosphorylation. Clin Cancer Res. 20:1383–1392. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Abbasian MH, Ardekani AM, Sobhani N and
Roudi R: The role of genomics and proteomics in lung cancer early
detection and treatment. Cancers (Basel). 14:51442022. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Prelaj A, Ferrara R, Rebuzzi SE, Proto C,
Signorelli D, Galli G, De Toma A, Randon G, Pagani F, Viscardi G,
et al: EPSILoN: A prognostic score for immunotherapy in advanced
non-small-cell lung cancer: A validation cohort. Cancers (Basel).
11:19542019. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Schoenfeld AJ and Hellmann MD: Acquired
resistance to immune checkpoint inhibitors. Cancer Cell.
37:443–455. 2020. View Article : Google Scholar
|
|
9
|
Vranic S and Gatalica Z: PD-L1 testing by
immunohistochemistry in immuno-oncology. Biomol Biomed. 23:15–25.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Liang H, Liu Z, Cai X, Pan Z, Chen D, Li
C, Chen Y, He J and Liang W: PD-(L)1 inhibitors vs. chemotherapy
vs. their combination in front-line treatment for NSCLC: An
indirect comparison. Int J Cancer. 145:3011–3021. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Wang J, Lu S, Yu X, Hu Y, Sun Y, Wang Z,
Zhao J, Yu Y, Hu C, Yang K, et al: Tislelizumab plus chemotherapy
vs chemotherapy alone as First-line treatment for advanced squamous
non-small-cell lung cancer: A phase 3 randomized clinical trial.
JAMA Oncol. 7:709–717. 2021. View Article : Google Scholar
|
|
12
|
Nishio M, Barlesi F, West H, Ball S,
Bordoni R, Cobo M, Longeras PD, Goldschmidt J Jr, Novello S,
Orlandi F, et al: Atezolizumab plus chemotherapy for first-line
treatment of nonsquamous NSCLC: Results from the randomized phase 3
IMpower132 trial. J Thorac Oncol. 16:653–664. 2021. View Article : Google Scholar
|
|
13
|
West H, McCleod M, Hussein M, Morabito A,
Rittmeyer A, Conter HJ, Kopp HG, Daniel D, McCune S, Mekhail T, et
al: Atezolizumab in combination with carboplatin plus
nab-paclitaxel chemotherapy compared with chemotherapy alone as
first-line treatment for metastatic non-squamous non-small-cell
lung cancer (IMpower130): A multicentre, randomised, open-label,
phase 3 trial. Lancet Oncol. 20:924–937. 2019. View Article : Google Scholar
|
|
14
|
Socinski MA, Jotte RM, Cappuzzo F, Orlandi
F, Stroyakovskiy D, Nogami N, Rodríguez-Abreu D, Moro-Sibilot D,
Thomas CA, Barlesi F, et al: Atezolizumab for First-line treatment
of metastatic nonsquamous NSCLC. N Engl J Med. 378:2288–2301. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Doroshow DB, Sanmamed MF, Hastings K,
Politi K, Rimm DL, Chen L, Melero I, Schalper KA and Herbst RS:
Immunotherapy in Non-small cell lung cancer: Facts and hopes. Clin
Cancer Res. 25:4592–4602. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Jenkins RW, Barbie DA and Flaherty KT:
Mechanisms of resistance to immune checkpoint inhibitors. Br J
Cancer. 118:9–16. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Opzoomer JW, Sosnowska D, Anstee JE,
Spicer JF and Arnold JN: Cytotoxic chemotherapy as an immune
stimulus: A molecular perspective on turning up the immunological
heat on cancer. Front Immunol. 10:16542019. View Article : Google Scholar
|
|
18
|
Galluzzi L, Buqué A, Kepp O, Zitvogel L
and Kroemer G: Immunological effects of conventional chemotherapy
and targeted anticancer agents. Cancer Cell. 28:690–714. 2015.
View Article : Google Scholar
|
|
19
|
Park D, Park I, Han B, Baek Y, Moon D,
Jeon NL and Doh J: Cytotoxic chemotherapy in a 3D microfluidic
device induces dendritic cell recruitment and trogocytosis of
cancer cells. Cancer Immunol Res. 13:931–938. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Heraudet L, Delon T, Veillon R,
Vergnenègre C, Lepetit H, Daste A, Ravaud A, Zysman M and Domblides
C: Effect of prior immunotherapy on the efficacy of chemotherapy in
advanced non-small cell lung cancer: A retrospective study.
Thoracic Cancer. 13:1391–1400. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ferrara R, Mezquita L, Texier M, Lahmar J,
Audigier-Valette C, Tessonnier L, Mazieres J, Zalcman G, Brosseau
S, Le Moulec S, et al: Hyperprogressive disease in patients with
advanced non-small cell lung cancer treated with PD-1/PD-L1
inhibitors or with single-agent chemotherapy. JAMA Oncol.
4:1543–1552. 2018. View Article : Google Scholar
|
|
22
|
Hellmann MD, Paz-Ares L, Bernabe Caro R,
Zurawski B, Kim SW, Carcereny Costa E, Park K, Alexandru A,
Lupinacci L, de la Mora Jimenez E, et al: Nivolumab plus ipilimumab
in advanced non-small-cell lung cancer. N Engl J Med.
381:2020–2031. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Shitara K, Van Cutsem E, Bang YJ, Fuchs C,
Wyrwicz L, Lee KW, Kudaba I, Garrido M, Chung HC, Lee J, et al:
Efficacy and safety of pembrolizumab or pembrolizumab plus
chemotherapy vs chemotherapy alone for patients with First-line,
advanced gastric cancer: The KEYNOTE-062 phase 3 randomized
clinical trial. JAMA Oncol. 6:1571–1580. 2020. View Article : Google Scholar
|
|
24
|
Zouein J, Haddad FG, Eid R and Kourie HR:
The combination of immune checkpoint inhibitors and chemotherapy in
advanced non-small-cell lung cancer: The rational choice.
Immunotherapy. 14:155–167. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Garassino MC, Gadgeel S, Speranza G, Felip
E, Esteban E, Dómine M, Hochmair MJ, Powell SF, Bischoff HG, Peled
N, et al: Pembrolizumab plus pemetrexed and platinum in nonsquamous
non-small-cell lung cancer: 5-year outcomes from the phase 3
KEYNOTE-189 study. J Clin Oncol. 41:1992–1998. 2023. View Article : Google Scholar
|
|
26
|
Gadgeel S, Rodríguez-Abreu D, Speranza G,
Esteban E, Felip E, Dómine M, Hui R, Hochmair MJ, Clingan P, Powell
SF, et al: Updated analysis from KEYNOTE-189: Pembrolizumab or
placebo plus pemetrexed and platinum for previously untreated
metastatic nonsquamous non-small-cell lung cancer. J Clin Oncol.
38:1505–1517. 2020. View Article : Google Scholar
|
|
27
|
Wang M, Li J, Xu S, Li Y, Li J, Yu J, Tang
X and Zhu H: Immunotherapy combined with chemotherapy improved
clinical outcomes over bevacizumab combined with chemotherapy as
first-line therapy in adenocarcinoma patients. Cancer Med.
12:5352–5363. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Tsai JS, Wei SH, Chen CW, Yang SC, Tseng
YL, Su PL, Lin CC and Su WC: Pembrolizumab and chemotherapy
combination prolonged progression-free survival in patients with
NSCLC with high PD-L1 expression and low Neutrophil-to-Lymphocyte
ratio. Pharmaceuticals (Basel). 15:14072022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Socinski MA, Nishio M, Jotte RM, Cappuzzo
F, Orlandi F, Stroyakovskiy D, Nogami N, Rodríguez-Abreu D,
Moro-Sibilot D, Thomas CA, et al: IMpower150 final overall survival
analyses for atezolizumab plus bevacizumab and chemotherapy in
First-line metastatic nonsquamous NSCLC. J Thorac Oncol.
16:1909–1924. 2021. View Article : Google Scholar
|
|
30
|
Novello S, Kowalski DM, Luft A, Gümüş M,
Vicente D, Mazières J, Rodríguez-Cid J, Tafreshi A, Cheng Y, Lee
KH, et al: Pembrolizumab plus chemotherapy in squamous
Non-small-cell lung cancer: 5-year update of the phase III
KEYNOTE-407 study. J Clin Oncol. 41:1999–2006. 2023. View Article : Google Scholar
|
|
31
|
Paz-Ares L, Vicente D, Tafreshi A,
Robinson A, Soto Parra H, Mazières J, Hermes B, Cicin I,
Medgyasszay B, Rodríguez-Cid J, et al: A randomized,
placebo-controlled trial of pembrolizumab plus chemotherapy in
patients with metastatic squamous NSCLC: Protocol-specified final
analysis of KEYNOTE-407. J Thorac Oncol. 15:1657–1669. 2020.
View Article : Google Scholar
|
|
32
|
Jotte R, Cappuzzo F, Vynnychenko I,
Stroyakovskiy D, Rodríguez-Abreu D, Hussein M, Soo R, Conter HJ,
Kozuki T, Huang KC, et al: Atezolizumab in combination with
carboplatin and Nab-Paclitaxel in advanced squamous NSCLC
(IMpower131): Results from a randomized phase III trial. J Thorac
Oncol. 15:1351–1360. 2020. View Article : Google Scholar
|
|
33
|
Lu S, Wang J, Yu Y, Yu X, Hu Y, Ai X, Ma
Z, Li X, Zhuang W, Liu Y, et al: Tislelizumab plus chemotherapy as
First-line treatment for locally advanced or metastatic nonsquamous
NSCLC (RATIONALE 304): A randomized phase 3 trial. J Thorac Oncol.
16:1512–1522. 2021. View Article : Google Scholar
|
|
34
|
Yang JC, Lee DH, Lee JS, Fan Y, de Marinis
F, Iwama E, Inoue T, Rodríguez-Cid J, Zhang L, Yang CT, et al:
Phase III KEYNOTE-789 study of pemetrexed and platinum with or
without pembrolizumab for tyrosine kinase inhibitor-resistant,
EGFR-mutant, metastatic nonsquamous non-small cell lung cancer. J
Clin Oncol. 42:4029–4039. 2024. View Article : Google Scholar
|
|
35
|
Bar J, Esteban E, Rodríguez-Abreu D, Aix
SP, Szalai Z, Felip E, Gottfried M, Provencio M, Robinson A, Fülöp
A, et al: Blood tumor mutational burden and response to
pembrolizumab plus chemotherapy in non-small cell lung cancer:
KEYNOTE-782. Lung Cancer. 190:1075062024. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Khan KA and Kerbel RS: Improving
immunotherapy outcomes with anti-angiogenic treatments and vice
versa. Nat Rev Clin Oncol. 15:310–324. 2018. View Article : Google Scholar
|
|
37
|
Yi M, Jiao D, Qin S, Chu Q, Wu K and Li A:
Synergistic effect of immune checkpoint blockade and
anti-angiogenesis in cancer treatment. Mol Cancer. 18:602019.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Qin H, Yu H, Sheng J, Zhang D, Shen N, Liu
L, Tang Z and Chen X: PI3Kgamma inhibitor attenuates
immunosuppressive effect of Poly(l-Glutamic Acid)-combretastatin A4
conjugate in metastatic breast cancer. Adv Sci (Weinh).
6:19003272019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Yu L, Xu J, Qiao R, Zhong H, Brueckl WM
and Zhong R: Comparative efficacy and safety of multitarget
angiogenesis inhibitor combined with immune checkpoint inhibitor
and nivolumab monotherapy as second-line or beyond for advanced
lung adenocarcinoma in driver-negative patients: A retrospective
comparative cohort study. Transl Lung Cancer Res. 12:1108–1121.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Motz GT, Santoro SP, Wang LP, Garrabrant
T, Lastra RR, Hagemann IS, Lal P, Feldman MD, Benencia F and Coukos
G: Tumor endothelium FasL establishes a selective immune barrier
promoting tolerance in tumors. Nat Med. 20:607–615. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ghisoni E, Imbimbo M, Zimmermann S and
Valabrega G: Ovarian cancer immunotherapy: Turning up the Heat. Int
J Mol Sci. 20:29272019. View Article : Google Scholar
|
|
42
|
Dong Q, Diao Y, Sun X, Zhou Y, Ran J and
Zhang J: Evaluation of tyrosine kinase inhibitors combined with
antiprogrammed cell death protein 1 antibody in tyrosine kinase
inhibitor-responsive patients with microsatellite stable/proficient
mismatch repair metastatic colorectal adenocarcinoma: Protocol for
open-label, single-arm trial. BMJ Open. 12:e0499922022. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Rizvi NA, Hellmann MD, Brahmer JR,
Juergens RA, Borghaei H, Gettinger S, Chow LQ, Gerber DE, Laurie
SA, Goldman JW, et al: Nivolumab in combination with platinum-based
doublet chemotherapy for first-line treatment of advanced
non-small-cell lung cancer. J Clin Oncol. 34:2969–2979. 2016.
View Article : Google Scholar
|
|
44
|
Herbst RS, Arkenau HT, Bendell J,
Arrowsmith E, Wermke M, Soriano A, Penel N, Santana-Davila R,
Bischoff H, Chau I, et al: Phase 1 expansion cohort of ramucirumab
plus pembrolizumab in advanced Treatment-naive NSCLC. J Thorac
Oncol. 16:289–298. 2021. View Article : Google Scholar
|
|
45
|
Huang D, Cui P, Huang Z, Wu Z, Tao H,
Zhang S, Xiang R and Hu Y: Anti-PD-1/L1 plus anti-angiogenesis
therapy as second-line or later treatment in advanced lung
adenocarcinoma. J Cancer Res Clin Oncol. 147:881–891. 2021.
View Article : Google Scholar
|
|
46
|
Yuan S, Peng L, Liu Y, Till BG, Yan X,
Zhang J, Zhu L, Wang H, Zhang S, Li H, et al: Low-dose anlotinib
confers improved survival in combination with immune checkpoint
inhibitor in advanced non-small cell lung cancer patients. Cancer
Immunol Immunother. 72:437–448. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Lin A, Wei T, Meng H, Luo P and Zhang J:
Role of the dynamic tumor microenvironment in controversies
regarding immune checkpoint inhibitors for the treatment of
non-small cell lung cancer (NSCLC) with EGFR mutations. Mol Cancer.
18:1392019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Mazzaschi G, Madeddu D, Falco A,
Bocchialini G, Goldoni M, Sogni F, Armani G, Lagrasta CA, Lorusso
B, Mangiaracina C, et al: Low PD-1 expression in cytotoxic
CD8+ Tumor-infiltrating lymphocytes confers an
immune-privileged tissue microenvironment in NSCLC with a
prognostic and predictive value. Clin Cancer Res. 24:407–419. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Toki MI, Mani N, Smithy JW, Liu Y, Altan
M, Wasserman B, Tuktamyshov R, Schalper K, Syrigos KN and Rimm DL:
Immune marker profiling and programmed death ligand 1 expression
across NSCLC mutations. J Thorac Oncol. 13:1884–1896. 2018.
View Article : Google Scholar
|
|
50
|
Sugiyama E, Togashi Y, Takeuchi Y, Shinya
S, Tada Y, Kataoka K, Tane K, Sato E, Ishii G, Goto K, et al:
Blockade of EGFR improves responsiveness to PD-1 blockade in
EGFR-mutated non-small cell lung cancer. Sci Immunol.
5:eaav39372020. View Article : Google Scholar
|
|
51
|
Proietti I, Skroza N, Michelini S, Mambrin
A, Balduzzi V, Bernardini N, Marchesiello A, Tolino E, Volpe S,
Maddalena P, et al: BRAF inhibitors: Molecular targeting and
immunomodulatory actions. Cancers (Basel). 12:18232020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Mok TSK, Lopes G, Cho BC, Kowalski DM,
Kasahara K, Wu YL, de Castro G Jr, Turna HZ, Cristescu R,
Aurora-Garg D, et al: Associations of tissue tumor mutational
burden and mutational status with clinical outcomes in KEYNOTE-042:
Pembrolizumab versus chemotherapy for advanced PD-L1-positive
NSCLC. Ann Oncol. 34:377–388. 2023. View Article : Google Scholar
|
|
53
|
Deng J, Wang ES, Jenkins RW, Li S, Dries
R, Yates K, Chhabra S, Huang W, Liu H, Aref AR, et al: CDK4/6
inhibition augments antitumor immunity by enhancing T-cell
activation. Cancer Discov. 8:216–233. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Woods DM, Sodré AL, Villagra A, Sarnaik A,
Sotomayor EM and Weber J: HDAC Inhibition upregulates PD-1 ligands
in melanoma and augments immunotherapy with PD-1 blockade. Cancer
Immunol Res. 3:1375–1385. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Rudin CM, Cervantes A, Dowlati A, Besse B,
Ma B, Costa DB, Schmid P, Heist R, Villaflor VM, Spahn J, et al:
Safety and clinical activity of atezolizumab plus erlotinib in
patients with non-small-cell lung cancer. ESMO Open. 8:1011602023.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Oxnard GR, Yang JC, Yu H, Kim SW, Saka H,
Horn L, Goto K, Ohe Y, Mann H, Thress KS, et al: TATTON: A
multi-arm, phase Ib trial of osimertinib combined with selumetinib,
savolitinib, or durvalumab in EGFR-mutant lung cancer. Ann Oncol.
31:507–516. 2020. View Article : Google Scholar
|
|
57
|
Shi Y, Ji M, Jiang Y, Yin R, Wang Z, Li H,
Wang S, He K, Ma Y, Wang Z, et al: A cohort study of the efficacy
and safety of immune checkpoint inhibitors plus anlotinib versus
immune checkpoint inhibitors alone as the treatment of advanced
non-small cell lung cancer in the real world. Transl Lung Cancer
Res. 11:1051–1068. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
He L, Chen X, Ding L and Zhang X: Clinical
efficacy of antianlotinib combined with immune checkpoint
inhibitors in the treatment of advanced Non-small-cell lung cancer
and its effect on serum VEGF, CEA, and SCC-Ag. J Oncol.
2022:15308752022. View Article : Google Scholar
|
|
59
|
Yang JC, Gadgeel SM, Sequist LV, Wu CL,
Papadimitrakopoulou VA, Su WC, Fiore J, Saraf S, Raftopoulos H and
Patnaik A: Pembrolizumab in combination with erlotinib or gefitinib
as First-line therapy for advanced NSCLC with sensitizing EGFR
mutation. J Thorac Oncol. 14:553–559. 2019. View Article : Google Scholar
|
|
60
|
Ramalingam SS, Thara E, Awad MM, Dowlati
A, Haque B, Stinchcombe TE, Dy GK, Spigel DR, Lu S, Iyer Singh N,
et al: JASPER: Phase 2 trial of first-line niraparib plus
pembrolizumab in patients with advanced non-small cell lung cancer.
Cancer. 128:65–74. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Levy B, Barlesi F, Paz-Ares L, Bennouna J,
Erman M, Felip E, Isla D, Ryun Kim H, Kim SW, Madelaine J, et al:
Phase II study of afatinib plus pembrolizumab in patients with
squamous cell carcinoma of the lung following progression during or
after first-line chemotherapy (LUX-Lung-IO). Lung Cancer.
166:107–113. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ma S, Qin L, Wang X, Wang W, Li J, Wang H,
Li H, Cai X, Yang Y and Qu M: The expression of VISTA on CD4+ T
cells associate with poor prognosis and immune status in non-small
cell lung cancer patients. Bosn J Basic Med Sci. 22:707–715. 2022.
View Article : Google Scholar
|
|
63
|
O'Donnell JS, Teng MWL and Smyth MJ:
Cancer immunoediting and resistance to T cell-based immunotherapy.
Nat Rev Clin Oncol. 16:151–167. 2019. View Article : Google Scholar
|
|
64
|
Chae YK, Arya A, Iams W, Cruz MR, Chandra
S, Choi J and Giles F: Current landscape and future of dual
anti-CTLA4 and PD-1/PD-L1 blockade immunotherapy in cancer; lessons
learned from clinical trials with melanoma and non-small cell lung
cancer (NSCLC). J Immunother Cancer. 6:392018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Eggermont AMM, Crittenden M and Wargo J:
Combination immunotherapy development in melanoma. Am Soc Clin
Oncol Educ Book. 38:197–207. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Bentebibel SE, Hurwitz ME, Bernatchez C,
Haymaker C, Hudgens CW, Kluger HM, Tetzlaff MT, Tagliaferri MA,
Zalevsky J, Hoch U, et al: A First-in-human study and biomarker
analysis of NKTR-214, a Novel IL2Rβγ-biased cytokine, in patients
with advanced or metastatic solid tumors. Cancer Discov. 9:711–721.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hollingsworth RE and Jansen K: Turning the
corner on therapeutic cancer vaccines. NPJ Vaccines. 4:72019.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Feins S, Kong W, Williams EF, Milone MC
and Fraietta JA: An introduction to chimeric antigen receptor (CAR)
T-cell immunotherapy for human cancer. Am J Hematol. 94
(Suppl):S3–S9. 2019. View Article : Google Scholar
|
|
69
|
Chen X, Wang Q, Cong X, Jiang S, Li S,
Shen Q and Chen L: sCD40L is increased and associated with the risk
of gestational diabetes mellitus in pregnant women with isolated
TPOAb positivity. Int J Endocrinol. 2022:29468912022. View Article : Google Scholar
|
|
70
|
Cerezo M and Rocchi S: Cancer cell
metabolic reprogramming: A keystone for the response to
immunotherapy. Cell Death Dis. 11:9642020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ma Q, Jiang H, Ma L, Zhao G, Xu Q, Guo D,
He N, Liu H, Meng Z, Liu J, et al: The moonlighting function of
glycolytic enzyme enolase-1 promotes choline phospholipid
metabolism and tumor cell proliferation. Proc Natl Acad Sci USA.
120:e22094351202023. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Guerra L, Bonetti L and Brenner D:
Metabolic modulation of immunity: A new concept in cancer
immunotherapy. Cell Rep. 32:1078482020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Lu X: Structure and functions of T-cell
immunoglobulin-domain and Mucin-domain Protein 3 in cancer. Curr
Med Chem. 29:1851–1865. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Fathi M, Pustokhina I, Kuznetsov SV,
Khayrullin M, Hojjat-Farsangi M, Karpisheh V, Jalili A and
Jadidi-Niaragh F: T-cell immunoglobulin and ITIM domain, as a
potential immune checkpoint target for immunotherapy of colorectal
cancer. IUBMB Life. 73:726–738. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Lee WJ, Lee YJ, Choi ME, Yun KA, Won CH,
Lee MW, Choi JH and Chang SE: Expression of lymphocyte-activating
gene 3 and T-cell immunoreceptor with immunoglobulin and ITIM
domains in cutaneous melanoma and their correlation with programmed
cell death 1 expression in tumor-infiltrating lymphocytes. J Am
Acad Dermatol. 81:219–227. 2019. View Article : Google Scholar
|
|
76
|
Peng Y, Qiu B, Tan F, Xu J, Bie F, He H,
Liu L, Tian H, Bai G, Zhou B, et al: TIGIT/CD47 dual high
expression predicts prognosis and is associated with immunotherapy
response in lung squamous cell carcinoma. Thoracic Cancer.
13:2014–2023. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Ait Boujmia OK: V-domain Ig suppressor of
T cell activation (VISTA) inhibition is a new approach to cancer
therapy: A Bibliometric study. Naunyn Schmiedebergs Arch Pharmacol.
394:1057–1065. 2021. View Article : Google Scholar
|
|
78
|
Paz-Ares LG, Ramalingam SS, Ciuleanu TE,
Lee JS, Urban L, Caro RB, Park K, Sakai H, Ohe Y, Nishio M, et al:
First-line nivolumab plus ipilimumab in advanced NSCLC: 4-year
outcomes from the randomized, Open-Label, phase 3 CheckMate 227
Part 1 trial. J Thorac Oncol. 17:289–308. 2022. View Article : Google Scholar
|
|
79
|
Kim TW, Bedard PL, LoRusso P, Gordon MS,
Bendell J, Oh DY, Ahn MJ, Garralda E, D'Angelo SP, Desai J, et al:
Anti-TIGIT antibody tiragolumab alone or with atezolizumab in
patients with advanced solid tumors: A phase 1a/1b nonrandomized
controlled trial. JAMA Oncol. 9:1574–1582. 2023. View Article : Google Scholar
|
|
80
|
Cho BC, Abreu DR, Hussein M, Cobo M, Patel
AJ, Secen N, Lee KH, Massuti B, Hiret S, Yang JCH, et al:
Tiragolumab plus atezolizumab versus placebo plus atezolizumab as a
first-line treatment for PD-L1-selected non-small-cell lung cancer
(CITYSCAPE): Primary and follow-up analyses of a randomised,
double-blind, phase 2 study. Lancet Oncol. 23:781–792. 2022.
View Article : Google Scholar
|
|
81
|
Planchard D, Reinmuth N, Orlov S, Fischer
JR, Sugawara S, Mandziuk S, Marquez-Medina D, Novello S, Takeda Y,
Soo R, et al: ARCTIC: Durvalumab with or without tremelimumab as
third-line or later treatment of metastatic non-small-cell lung
cancer. Ann Oncol. 31:609–618. 2020. View Article : Google Scholar
|
|
82
|
Boyer M, Şendur MAN, Rodríguez-Abreu D,
Park K, Lee DH, Çiçin I, Yumuk PF, Orlandi FJ, Leal TA, Molinier O,
et al: Pembrolizumab plus ipilimumab or placebo for metastatic
non-small-cell lung cancer with PD-L1 tumor proportion score ≥50%:
Randomized, double-blind phase III KEYNOTE-598 study. J Clin Oncol.
39:2327–2338. 2021. View Article : Google Scholar
|
|
83
|
Rizvi NA, Cho BC, Reinmuth N, Lee KH, Luft
A, Ahn MJ, van den Heuvel MM, Cobo M, Vicente D, Smolin A, et al:
Durvalumab with or without tremelimumab vs standard chemotherapy in
First-line treatment of metastatic non-small cell lung cancer: The
MYSTIC phase 3 randomized clinical trial. JAMA Oncol. 6:661–674.
2020. View Article : Google Scholar
|
|
84
|
Stockwell J, Jakova E and Cayabyab FS:
Adenosine A1 and A2A receptors in the Brain: Current research and
their role in neurodegeneration. Molecules. 22:6762017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Allard B, Longhi MS, Robson SC and Stagg
J: The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor
targets. Immunol Rev. 276:121–144. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Campos-Contreras ADR, González-Gallardo A,
Díaz-Muñoz M and Vázquez-Cuevas FG: Adenosine receptor A2B
negatively regulates cell migration in ovarian carcinoma cells. Int
J Mol Sci. 23:45852022. View Article : Google Scholar
|
|
87
|
Valzasina B, Guiducci C, Dislich H,
Killeen N, Weinberg AD and Colombo MP: Triggering of OX40 (CD134)
on CD4(+)CD25+ T cells blocks their inhibitory activity: A novel
regulatory role for OX40 and its comparison with GITR. Blood.
105:2845–2851. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Diab A, Hamid O, Thompson JA, Ros W,
Eskens F, Doi T, Hu-Lieskovan S, Klempner SJ, Ganguly B, Fleener C,
et al: A Phase I, Open-Label, Dose-escalation study of the OX40
agonist ivuxolimab in patients with locally advanced or metastatic
cancers. Clin Cancer Res. 28:71–83. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Canel M, Taggart D, Sims AH, Lonergan DW,
Waizenegger IC and Serrels A: T-cell co-stimulation in combination
with targeting FAK drives enhanced anti-tumor immunity. Elife.
9:e480922020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Gough MJ, Crittenden MR, Sarff M, Pang P,
Seung SK, Vetto JT, Hu HM, Redmond WL, Holland J and Weinberg AD:
Adjuvant therapy with agonistic antibodies to CD134 (OX40)
increases local control after surgical or radiation therapy of
cancer in mice. J Immunother. 33:798–809. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Waldmann TA: Cytokines in cancer
immunotherapy. Cold Spring Harb Perspect Biol. 10:6–15. 2018.
View Article : Google Scholar
|
|
92
|
Benjamin DJ and Lyou Y: Advances in
immunotherapy and the TGF-β resistance pathway in metastatic
bladder cancer. Cancers (Basel). 13:57242021. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Derynck R, Muthusamy BP and Saeteurn KY:
Signaling pathway cooperation in TGF-β-induced
epithelial-mesenchymal transition. Curr Opin Cell Biol. 31:56–66.
2014. View Article : Google Scholar
|
|
94
|
Wu S, Wang Y, Yuan Z, Wang S, Du H, Liu X,
Wang Q and Zhu X: Human adipose-derived mesenchymal stem cells
promote breast cancer MCF7 cell epithelial-mesenchymal transition
by cross interacting with the TGF-β/Smad and PI3K/AKT signaling
pathways. Mol Med Rep. 19:177–186. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Yingling JM, McMillen WT, Yan L, Huang H,
Sawyer JS, Graff J, Clawson DK, Britt KS, Anderson BD, Beight DW,
et al: Preclinical assessment of galunisertib (LY2157299
monohydrate), a first-in-class transforming growth factor-β
receptor type I inhibitor. Oncotarget. 9:6659–6677. 2018.
View Article : Google Scholar
|
|
96
|
Jung SY, Hwang S, Clarke JM, Bauer TM,
Keedy VL, Lee H, Park N, Kim SJ and Lee JI: Pharmacokinetic
characteristics of vactosertib, a new activin receptor-like kinase
5 inhibitor, in patients with advanced solid tumors in a
first-in-human phase 1 study. Invest New Drugs. 38:812–820. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Diab A, Tannir NM, Bentebibel SE, Hwu P,
Papadimitrakopoulou V, Haymaker C, Kluger HM, Gettinger SN, Sznol
M, Tykodi SS, et al: Bempegaldesleukin (NKTR-214) plus nivolumab in
patients with advanced solid tumors: Phase I Dose-escalation study
of safety, efficacy, and immune activation (PIVOT-02). Cancer
Discov. 10:1158–1173. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Kim DW and Cho JY: Recent advances in
allogeneic CAR-T cells. Biomolecules. 10:2632020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Ott PA, Hu-Lieskovan S, Chmielowski B,
Govindan R, Naing A, Bhardwaj N, Margolin K, Awad MM, Hellmann MD,
Lin JJ, et al: A Phase Ib trial of personalized neoantigen therapy
plus Anti-PD-1 in patients with advanced melanoma, Non-small cell
lung cancer, or bladder cancer. Cell. 183:347–362.e24. 2020.
View Article : Google Scholar
|
|
100
|
Raja J, Ludwig JM, Gettinger SN, Schalper
KA and Kim HS: Oncolytic virus immunotherapy: Future prospects for
oncology. J Immunother Cancer. 6:1402018. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Lawler SE, Speranza MC, Cho CF and Chiocca
EA: Oncolytic viruses in cancer treatment: A review. JAMA Oncol.
3:841–849. 2017. View Article : Google Scholar
|
|
102
|
Zheng Y, Wang PP, Fu Y, Chen YY and Ding
ZY: Zoledronic acid enhances the efficacy of immunotherapy in
non-small cell lung cancer. Int Immunopharmacol. 110:1090302022.
View Article : Google Scholar
|
|
103
|
Michot JM, Lappara A, Le Pavec J,
Simonaggio A, Collins M, De Martin E, Danlos FX, Ammari S, Cauquil
C, Ederhy S, et al: The 2016–2019 immunoTOX assessment board report
of collaborative management of immune-related adverse events, an
observational clinical study. Eur J Cancer. 130:39–50. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Arnaud-Coffin P, Maillet D, Gan HK,
Stelmes JJ, You B, Dalle S and Péron J: A systematic review of
adverse events in randomized trials assessing immune checkpoint
inhibitors. Int J Cancer. 145:639–648. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Braaten TJ, Brahmer JR, Forde PM, Le D,
Lipson EJ, Naidoo J, Schollenberger M, Zheng L, Bingham CO, Shah
AA, et al: Immune checkpoint inhibitor-induced inflammatory
arthritis persists after immunotherapy cessation. Ann Rheum Dis.
79:332–338. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Patrinely JR Jr, Young AC, Quach H,
Williams GR, Ye F, Fan R, Horn L, Beckermann KE, Gillaspie EA,
Sosman JA, et al: Survivorship in immune therapy: Assessing
toxicities, body composition and health-related quality of life
among long-term survivors treated with antibodies to programmed
death-1 receptor and its ligand. Eur J Cancer. 135:211–220. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Martins F, Sofiya L, Sykiotis GP, Lamine
F, Maillard M, Fraga M, Shabafrouz K, Ribi C, Cairoli A,
Guex-Crosier Y, et al: Adverse effects of immune-checkpoint
inhibitors: epidemiology, management and surveillance. Nat Rev Clin
Oncol. 16:563–580. 2019. View Article : Google Scholar
|
|
108
|
Sun X, Roudi R, Dai T, Chen S, Fan B, Li
H, Zhou Y, Zhou M, Zhu B, Yin C, et al: Immune-related adverse
events associated with programmed cell death protein-1 and
programmed cell death ligand 1 inhibitors for non-small cell lung
cancer: A PRISMA systematic review and meta-analysis. BMC Cancer.
19:5582019. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Shao J, Wang C, Ren P, Jiang Y, Tian P and
Li W: Treatment- and immune-related adverse events of immune
checkpoint inhibitors in advanced lung cancer. Biosci Rep.
40:BSR201923472020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Yamaguchi T, Shimizu J, Oya Y, Watanabe N,
Hasegawa T, Horio Y, Inaba Y and Fujiwara Y: Risk factors for
pneumonitis in patients with non-small cell lung cancer treated
with immune checkpoint inhibitors plus chemotherapy: A
retrospective analysis. Thoracic Cancer. 13:724–731. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Long YX, Sun Y, Liu RZ, Zhang MY, Zhao J,
Wang YQ, Zhou YW, Cheng K, Chen Y, Zhu CR, et al: Immune-related
pneumonitis was decreased by addition of chemotherapy with PD-1/L1
inhibitors: Systematic review and network meta-analysis of
randomized controlled trials (RCTs). Curr Oncol. 29:267–282. 2022.
View Article : Google Scholar
|
|
112
|
Herbst RS, Arkenau HT, Santana-Davila R,
Calvo E, Paz-Ares L, Cassier PA, Bendell J, Penel N, Krebs MG,
Martin-Liberal J, et al: Ramucirumab plus pembrolizumab in patients
with previously treated advanced non-small-cell lung cancer,
gastro-oesophageal cancer, or urothelial carcinomas (JVDF): A
multicohort, non-randomised, open-label, phase 1a/b trial. Lancet
Oncol. 20:1109–1123. 2019. View Article : Google Scholar
|
|
113
|
Yang JC, Shepherd FA, Kim DW, Lee GW, Lee
JS, Chang GC, Lee SS, Wei YF, Lee YG, Laus G, et al: Osimertinib
plus durvalumab versus osimertinib monotherapy in EGFR
T790M-positive NSCLC following previous EGFR TKI therapy: CAURAL
brief report. J Thorac Oncol. 14:933–939. 2019. View Article : Google Scholar
|
|
114
|
Hou YL, Wang DY, Hu JX, Tian RY, Wang W,
Su Q, Li H and Wang YL: Risk of ophthalmic adverse events in
patients treated with immune checkpoint inhibitor regimens: A
systematic review and Meta-analysis. Ocul Immunol Inflamm.
30:1449–1459. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Rubio-Infante N, Ramírez-Flores YA,
Castillo EC, Lozano O, García-Rivas G and Torre-Amione G:
Cardiotoxicity associated with immune checkpoint inhibitor therapy:
A meta-analysis. Eur J Heart Fail. 23:1739–1747. 2021. View Article : Google Scholar
|
|
116
|
Molina GE, Zubiri L, Cohen JV, Durbin SM,
Petrillo L, Allen IM, Murciano-Goroff YR, Dougan M, Thomas MF, Faje
AT, et al: Temporal trends and outcomes among patients admitted for
Immune-related adverse events: A single-center retrospective cohort
study from 2011 to 2018. Oncologist. 26:514–522. 2021. View Article : Google Scholar
|
|
117
|
Valencia-Sanchez C and Zekeridou A:
Paraneoplastic neurological syndromes and beyond emerging with the
introduction of immune checkpoint inhibitor cancer immunotherapy.
Front Neurol. 12:6428002021. View Article : Google Scholar
|
|
118
|
Le Burel S, Champiat S, Mateus C,
Marabelle A, Michot JM, Robert C, Belkhir R, Soria JC, Laghouati S,
Voisin AL, et al: Prevalence of immune-related systemic adverse
events in patients treated with anti-Programmed cell Death
1/anti-Programmed cell Death-Ligand 1 agents: A single-centre
pharmacovigilance database analysis. Eur J Cancer. 82:34–44. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Tyan K, Baginska J, Brainard M,
Giobbie-Hurder A, Severgnini M, Manos M, Haq R, Buchbinder EI, Ott
PA, Hodi FS, et al: Cytokine changes during immune-related adverse
events and corticosteroid treatment in melanoma patients receiving
immune checkpoint inhibitors. Cancer Immunol Immunother.
70:2209–2221. 2021. View Article : Google Scholar : PubMed/NCBI
|