You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Siegel RL, Kratzer TB, Giaquinto AN, Sung H and Jemal A: Cancer statistics, 2025. CA Cancer J Clin. 75:10–45. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Gansler T, Ganz PA, Grant M, Greene FL, Johnstone P, Mahoney M, Newman LA, Oh WK, Thomas CR Jr, Thun MJ, et al: Sixty years of CA. Cancer J Clin. 60:345–350. 2010. View Article : Google Scholar | |
|
Soffietti R, Ahluwalia M, Lin N and Rudà R: Management of brain metastases according to molecular subtypes. Nat RevNeurol. 16:557–574. 2020. | |
|
El Rassy E, Botticella A, Kattan J, Le Péchoux C, Besse B and Hendriks L: Non-small cell lung cancer brain metastases and the immune system: From brain metastases development to treatment. Cancer Treat Rev. 68:69–79. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Vogelbaum MA, Brown PD, Messersmith H, Brastianos PK, Burri S, Cahill D, Dunn IF, Gaspar LE, Gatson NTN, Gondi V, et al: Treatment for brain metastases: ASCO-SNO-ASTRO guideline. J Clin Oncol. 40:492–516. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Sung KS: Clinical practice guidelines for brain metastasis from solid tumors. Brain Tumor Res Treat. 12:14–22. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Berger A, Mullen R, Bernstein K, Alzate JD, Silverman JS, Sulman EP, Donahue BR, Chachoua A, Shum E, Velcheti V, et al: Extended survival in patients with non-small-cell lung cancer-associated brain metastases in the modern era. Neurosurgery. 93:50–59. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Berghoff AS, Ilhan-Mutlu A, Dinhof C, Magerle M, Hackl M, Widhalm G, Hainfellner JA, Dieckmann K, Pichler J, Hutterer M, et al: Differential role of angiogenesis and tumour cell proliferation in brain metastases according to primary tumour type: Analysis of 639 cases. Neuropathol Appl Neurobiol. 41:e41–e55. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Fang L, Zhao W, Ye B and Chen D: Combination of immune checkpoint inhibitors and anti-angiogenic agents in brain metastases from non-small cell lung cancer. Front Oncol. 11:6703132021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Song M, Wang A, Zhao Y, Wei Z and Lu Y: Microbiome crosstalk in immunotherapy and antiangiogenesis therapy. Front Immunol. 12:7479142021. View Article : Google Scholar : PubMed/NCBI | |
|
Tu J, Liang H, Li C, Huang Y, Wang Z, Chen X and Yuan X: The application and research progress of anti-angiogenesis therapy in tumor immunotherapy. Front Immunol. 14:11989722023. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Y, Niu W, Du F, Du C, Li S, Wang J, Li L, Wang F, Hao Y, Li C and Chi Y: Safety, pharmacokinetics, and antitumor properties of anlotinib, an oral multi-target tyrosine kinase inhibitor, in patients with advanced refractory solid tumors. J Hematol Oncol. 9:1052016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang P, Fang X, Yin T, Tian H, Yu J and Teng F: Efficacy and safety of Anti-PD-1 plus anlotinib in patients with advanced non-small-cell lung cancer after previous systemic treatment failure-a retrospective study. Front Oncol. 11:6281242021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang YX, Cheng C and Zhuang HQ: The safety and efficacy of anlotinib in combination with stereotactic radiotherapy for the treatment of brain metastases from non-small cell lung cancer. Zhonghua Yi Xue Za Zhi. 102:930–934. 2022.PubMed/NCBI | |
|
Dutta S, Ganguly A, Chatterjee K, Spada S and Mukherjee S: Targets of immune escape mechanisms in cancer: Basis for development and evolution of cancer immune checkpoint inhibitors. Biology (Basel). 12:2182023.PubMed/NCBI | |
|
Vilariño N, Bruna J, Bosch-Barrera J, Valiente M and Nadal E: Immunotherapy in NSCLC patients with brain metastases. Understanding brain tumor microenvironment and dissecting outcomes from immune checkpoint blockade in the clinic. Cancer Treat Rev. 89:1020672020. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao G, Liu Z, Gao X, Wang H, Peng H, Li J, Yang L, Duan H and Zhou R: Immune checkpoint inhibitors for brain metastases in non-small-cell lung cancer: From rationale to clinical application. Immunotherapy. 13:1031–1051. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Spano D and Zollo M: Tumor microenvironment: A main actor in the metastasis process. Clin Exp Metastasis. 29:381–395. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Lv B, Wang Y, Ma D, Cheng W, Liu J, Yong T, Chen H and Wnag C: Immunotherapy: Reshape the tumor immune microenvironment. Front Immunol. 13:8441422022. View Article : Google Scholar : PubMed/NCBI | |
|
Rios-Hoyo A and Arriola E: Immunotherapy and brain metastasis in lung cancer: Connecting bench side science to the clinic. Front Immunol. 14:12210972023. View Article : Google Scholar : PubMed/NCBI | |
|
Mansfield AS, Aubry MC, Moser JC, Harrington SM, Dronca RS, Park SS and Dong H: Temporal and spatial discordance of programmed cell death-ligand 1 expression and lymphocyte tumor infiltration between paired primary lesions and brain metastases in lung cancer. Ann Oncol. 27:1953–1958. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Guan Z, Lan H, Cai X, Zhang Y, Liang A and Li J: Blood-Brain barrier, cell junctions, and tumor microenvironment in brain metastases, the biological prospects and dilemma in therapies. Front Cell Dev Biol. 9:7229172021. View Article : Google Scholar : PubMed/NCBI | |
|
Harter PN, Bernatz S, Scholz A, Zeiner PS, Zinke J, Kiyose M, Blasel S, Beschorner R, Senft C, Bender B, et al: Distribution and prognostic relevance of tumor-infiltrating lymphocytes (TILs) and PD-1/PD-L1 immune checkpoints in human brain metastases. Oncotarget. 6:40836–40849. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Téglási V, Reiniger L, Fábián K, Pipek O, Csala I, Bagó AG, Várallyai P, Vízkeleti L, Rojkó L, Tímár J, et al: Evaluating the significance of density, localization, and PD-1/PD-L1 immunopositivity of mononuclear cells in the clinical course of lung adenocarcinoma patients with brain metastasis. Neuro Oncol. 19:1058–1067. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kim R, Keam B, Kim S, Kim M, Kim SH, Kim JW, Kim YJ, Kim TM, Jeon YK, Kim DW, et al: Differences in tumor microenvironments between primary lung tumors and brain metastases in lung cancer patients: Therapeutic implications for immune checkpoint inhibitors. BMC Cancer. 19:192019. View Article : Google Scholar : PubMed/NCBI | |
|
Mehdizadeh S, Bayatipoor H, Pashangzadeh S, Jafarpour R, Shojaei Z and Motallebnezhad M: Immune checkpoints and cancer development: Therapeutic implications and future directions. Pathol Res Pract. 223:1534852021. View Article : Google Scholar : PubMed/NCBI | |
|
Yu WD, Sun G, Li J, Xu J and Wang X: Mechanisms and therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy. Cancer Lett. 452:66–70. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Bader JE, Voss K and Rathmell JC: Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy. Mol Cell. 78:1019–1033. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Darvin P, Toor SM, Nair VS and Elkord E: Immune checkpoint inhibitors: Recent progress and potential biomarkers. Exp Mol Med. 50:1–11. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Li M, Hou X, Sai K, Wu L, Chen J, Zhang B, Wang N, Wu L, Zheng H, Zhang J, et al: Immune suppressive microenvironment in brain metastatic non-small cell lung cancer: Comprehensive immune microenvironment profiling of brain metastases versus paired primary lung tumors (GASTO 1060). Oncoimmunology. 11:20598742022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Chen R, Wa Y, Ding S, Yang Y, Liao J, Tong L and Xiao G: Tumor immune microenvironment and immunotherapy in brain metastasis from non-small cell lung cancer. Front Immunol. 13:8294512022. View Article : Google Scholar : PubMed/NCBI | |
|
Takamori S, Toyokawa G, Takada K, Shoji F, Okamoto T and Maehara Y: Combination therapy of radiotherapy and Anti-PD-1/PD-L1 treatment in non-small-cell lung cancer: A mini-review. Clin Lung Cancer. 19:12–16. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Popat S, Grohé C, Corral J, Reck M, Novello S, Gottfried M, Radonjic D and Kaiser R: Anti-angiogenic agents in the age of resistance to immune checkpoint inhibitors: Do they have a role in non-oncogene-addicted non-small cell lung cancer? Lung Cancer. 144:76–84. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Xie M and Su C: Microenvironment and the progress of immunotherapy in clinical practice of NSCLC brain metastasis. Front Oncol. 12:10062842022. View Article : Google Scholar : PubMed/NCBI | |
|
Meng L, Xu J, Ye Y, Wang Y, Luo S and Gong X: The combination of radiotherapy with immunotherapy and potential predictive biomarkers for treatment of non-small cell lung cancer patients. Front Immunol. 12:7236092021. View Article : Google Scholar : PubMed/NCBI | |
|
Suwinski R: Combination of immunotherapy and radiotherapy in the treatment of brain metastases from non-small cell lung cancer. J Thorac Dis. 13:3315–3322. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen YA, Zhuang H and Wang J: The rationale and toxicity of combined cranial radiotherapy and immune checkpoint inhibitors in non-small cell lung cancer. Asia Pac J Clin Oncol. 18:165–170. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Xu L, Chen Y and Wang M: Efficacy and safety of radiotherapy combined with immunotherapy for brain metastases from lung cancer: A meta-analysis. Zhongguo Fei Ai Za Zhi. 25:715–722. 2022.(In Chinese). PubMed/NCBI | |
|
Lastwika KJ, Wilson W III, Li QK, Norris J, Xu H, Ghazarian SR, Kitagawa H, Kawabata S, Taube JM, Yao S, et al: Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer. Cancer Res. 76:227–238. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Quan Z, Yang Y, Zheng H, Zhan Y, Luo J, Ning Y and Fan S: Clinical implications of the interaction between PD-1/PD-L1 and PI3K/AKT/mTOR pathway in progression and treatment of non-small cell lung cancer. J Cancer. 13:3434–3443. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Perri F, Pacelli R, Scarpati GD, Cella L, Giuliano M, Caponigro F and Pepe S: Radioresistance in head and neck squamous cell carcinoma: Biological bases and therapeutic implications. Head Neck. 37:763–770. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Goedegebuure RSA, de Klerk LK, Bass AJ, Derks S and Thijssen V: Combining radiotherapy with anti-angiogenic therapy and immunotherapy; A therapeutic triad for cancer? Front Immunol. 14:31072019. View Article : Google Scholar | |
|
Ikarashi D, Okimoto T, Shukuya T, Onagi H, Hayashi T, Sinicropi-Yao SL, Amann JM, Nakatsura T, Kitano S and Carbone DP: Comparison of tumor microenvironments between primary tumors and brain metastases in patients with NSCLC. JTO Clin Res Rep. 2:1002302021.PubMed/NCBI | |
|
Nanda VGY, Peng W, Hwu P, Davies MA, Ciliberto G, Fattore L, Malpicci D, Aurisicchio L, Ascierto PA, Croce CM, et al: Melanoma and immunotherapy bridge 2015 : Naples, Italy. 1–5 December 2015. J Transl Med. 14:652016. View Article : Google Scholar : PubMed/NCBI | |
|
Patel RR, He K, Barsoumian HB, Chang JY, Tang C, Verma V, Comeaux N, Chun SG, Gandhi S, Truong MT, et al: High-dose irradiation in combination with non-ablative low-dose radiation to treat metastatic disease after progression on immunotherapy: Results of a phase II trial. Radiother Oncol. 162:60–67. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Levis M, Gastino A, De Giorgi G, Mantovani C, Bironzo P, Mangherini L, Ricci AA, Ricardi U, Cassoni P and Bertero L: Modern stereotactic radiotherapy for brain metastases from lung cancer: Current trends and future perspectives based on integrated translational approaches. Cancers (Basel). 15:46222023. View Article : Google Scholar : PubMed/NCBI | |
|
Khan M, Zhao Z, Li X and Liao G: Anti-PD1 therapy plus whole-brain radiation therapy May Prolong PFS in selected non-small cell lung cancer patients with brain metastases: A retrospective study. Int J Gen Med. 14:8903–8918. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen ZY, Duan XT, Qiao SM and Zhu XX: Radiotherapy combined with PD-1/PD-L1 inhibitors in NSCLC brain metastases treatment: The mechanisms, advances, opportunities, and challenges. Cancer Med. 12:995–1006. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Guo T, Zhou Y, Liang F, Wang Z, Bourbonne V, Käsmann L, Sundahl N, Wu AJ, Ni J and Zhu Z: Potential synergistic effects of cranial radiotherapy and atezolizumab in non-small cell lung cancer: An analysis of individual patient data from seven prospective trials. Transl Lung Cancer Res. 13:126–138. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Luo S, Li P, Zhang A, Meng L, Huang L, Wu X, Cheng H, Tu H and Gong X: G-CSF improving combined whole brain radiotherapy and immunotherapy prognosis of non-small cell lung cancer brain metastases. Int Immunopharmacol. 130:1117052024. View Article : Google Scholar : PubMed/NCBI | |
|
Vanneste BGL, Van Limbergen EJ, Dubois L, Samarska IV, Wieten L, Aarts MJB, Marcelissen T and De Ruysscher D: Immunotherapy as sensitizer for local radiotherapy. Oncoimmunology. 9:18327602020. View Article : Google Scholar : PubMed/NCBI | |
|
Bendavid J and Modesto A: Radiation therapy and antiangiogenic therapy: Opportunities and challenges. Cancer Radiother. 26:962–967. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang X, Ren H and Fu J: Treatment of radiation-induced brain necrosis. Oxid Med Cell Longev. 2021:47935172021. View Article : Google Scholar : PubMed/NCBI | |
|
Król K, Mazur A, Stachyra-Strawa P and Grzybowska-Szatkowska L: Non-Small cell lung cancer treatment with molecularly targeted therapy and concurrent radiotherapy-A review. Int J Mol Sci. 24:58582023. View Article : Google Scholar : PubMed/NCBI | |
|
Hsu HW, Wall NR, Hsueh CT, Kim S, Ferris RL, Chen CS and Mirshahidi S: Combination antiangiogenic therapy and radiation in head and neck cancers. Oral Oncol. 50:19–26. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lévy C, Allouache D, Lacroix J, Dugué AE, Supiot S, Campone M, Mahe M, Kichou S, Leheurteur M, Hanzen C, et al: REBECA: A phase I study of bevacizumab and whole-brain radiation therapy for the treatment of brain metastasis from solid tumours. Ann Oncol. 25:2351–2356. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, He J, Cai L, Lai M, Hu Q, Ren C, Wen L, Wang J, Zhou J, Zhou Z, et al: Bevacizumab as a treatment for radiation necrosis following stereotactic radiosurgery for brain metastases: Clinical and radiation dosimetric impacts. Ann Palliat Med. 10:2018–2026. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Khan M, Zhao Z, Arooj S and Liao G: Bevacizumab for radiation necrosis following radiotherapy of brain metastatic disease: A systematic review & meta-analysis. BMC Cancer. 21:1672021. View Article : Google Scholar : PubMed/NCBI | |
|
Han B, Li K, Wang Q, Zhang L, Shi J, Wang Z, Cheng Y, He J, Shi Y, Zhao Y, et al: Effect of anlotinib as a third-line or further treatment on overall survival of patients with advanced non-small cell lung cancer: The ALTER 0303 phase 3 randomized clinical trial. JAMA Oncol. 4:1569–1575. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Han D, Zhang J, Bao Y, Liu L, Wang P and Qian D: Anlotinib enhances the antitumor immunity of radiotherapy by activating cGAS/STING in non-small cell lung cancer. Cell Death Discov. 8:4682022. View Article : Google Scholar : PubMed/NCBI | |
|
Dirkx AE, oude Egbrink MG, Castermans K, van der Schaft DW, Thijssen VL, Dings RP, Kwee L, Mayo KH, Wagstaff J, Bouma-ter Steege JC and Griffioen AW: Anti-angiogenesis therapy can overcome endothelial cell anergy and promote leukocyte-endothelium interactions and infiltration in tumors. FASEB J. 20:621–630. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Tran TT, Caulfield J, Zhang L, Schoenfeld D, Djureinovic D, Chiang VL, Oria V, Weiss SA, Olino K, Jilaveanu LB and Kluger HM: Lenvatinib or anti-VEGF in combination with anti-PD-1 differentially augments antitumor activity in melanoma. JCI Insight. 8:e1573472023. View Article : Google Scholar : PubMed/NCBI | |
|
Ramadan WS, Zaher DM, Altaie AM, Talaat IM and Elmoselhi A: Potential therapeutic strategies for lung and breast cancers through understanding the anti-angiogenesis resistance mechanisms. Int J Mol Sci. 21:5652020. View Article : Google Scholar : PubMed/NCBI | |
|
Qi S, Deng S, Lian Z and Yu K: Novel drugs with high efficacy against tumor angiogenesis. Int J Mol Sci. 23:69342022. View Article : Google Scholar : PubMed/NCBI | |
|
Fakhrejahani E and Toi M: Antiangiogenesis therapy for breast cancer: An update and perspectives from clinical trials. Jpn J Clin Oncol. 44:197–207. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wu LC and Zhang WD: Clinical trials of antiangiogenesis therapy on gastric cancer. Gastroenterol Res. 1:14–19. 2008. | |
|
Ribatti D, Vacca A, Nico B, Sansonno D and Dammacco F: Angiogenesis and anti-angiogenesis in hepatocellular carcinoma. Cancer Treat Rev. 32:437–444. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, et al: Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 350:2335–2342. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Giantonio BJ, Levy DE, O'Dwyer PJ, Meropol NJ, Catalano PJ and Benson AB III; Eastern Cooperative Oncology Group, : A phase II study of high-dose bevacizumab in combination with irinotecan, 5-fluorouracil, leucovorin, as initial therapy for advanced colorectal cancer: Results from the eastern cooperative oncology group study E2200. Ann Oncol. 17:1399–1403. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Xu J, Liu X, Yang S, Zhang X and Shi Y: Clinical response to apatinib monotherapy in advanced non-small cell lung cancer. Asia Pac J Clin Oncol. 14:264–269. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ren S, He J, Fang Y, Chen G, Ma Z, Chen J, Guo R, Lin X, Yao Y, Wu G, et al: Camrelizumab plus apatinib in treatment-naive patients with advanced nonsquamous NSCLC: A multicenter, open-label, single-arm, phase 2 trial. JTO Clin Res Rep. 3:1003122022.PubMed/NCBI | |
|
Zhou C, Wang Y, Zhao J, Chen G, Liu Z, Gu K, Huang M, He J, Chen J, Ma Z, et al: Efficacy and biomarker analysis of camrelizumab in combination with apatinib in patients with advanced nonsquamous NSCLC previously treated with chemotherapy. Clin Cancer Res. 27:1296–1304. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ou DL, Chen CW, Hsu CL, Chung CH, Feng ZR, Lee BS, Cheng AL, Yang MH and Hsu C: Regorafenib enhances antitumor immunity via inhibition of p38 kinase/Creb1/Klf4 axis in tumor-associated macrophages. J Immunothera Cancer. 9:e0016572021. View Article : Google Scholar | |
|
Huang G and Chen L: Discrepancies between antiangiogenic and antitumor effects of recombinant human endostatin. Cancer Biother Radiopharm. 24:589–596. 2009.PubMed/NCBI | |
|
Rani V and Prabhu A: Combining angiogenesis inhibitors with radiation: Advances and challenges in cancer treatment. Curr Pharm Des. 27:919–931. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Riesterer O: Angiogenesis inhibitors and radiotherapy. Praxis (Bern 1994). 101:1031–1037. 2012.(In German). View Article : Google Scholar : PubMed/NCBI | |
|
Sun X, Deng L and Lu Y: Challenges and opportunities of using stereotactic body radiotherapy with anti-angiogenesis agents in tumor therapy. Chin J Cancer Res. 30:147–156. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Park I, Yang H, Park JS, Koh GY and Choi EK: VEGF-Grab enhances the efficacy of radiation therapy by blocking VEGF-A and treatment-induced PlGF. Int J Radiat Oncol Biol Phys. 102:609–618. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Dickson PV, Hamner JB, Sims TL, Fraga CH, Ng CY, Rajasekeran S, Hagedorn NL, McCarville MB, Stewart CF and Davidoff AM: Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy. Clin Cancer Res. 13:3942–3950. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Gao H, Xue J, Zhou L, Lan J, He J, Na F, Yang L, Deng L and Lu Y: Bevacizumab radiosensitizes non-small cell lung cancer xenografts by inhibiting DNA double-strand break repair in endothelial cells. Cancer Lett. 365:79–88. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Feng M, Xu P, Wu YL, Yin J, Huang Y, Tan MY and Jinyi L: Stereotactic radiosurgery with whole brain radiotherapy combined with bevacizumab in the treatment of brain metastases from NSCLC. Int J Neurosci. 133:334–341. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen YL, Huang AP, Wang CC, Chen HY, Chen YF, Xiao F, Lu SL, Cheng JC and Hsu FM: Peri-radiosurgical administration of bevacizumab improves radiographic response to single and fractionated stereotactic radiosurgery for large brain metastasis. J Neurooncol. 153:455–465. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yang S, Sun J, Xu M, Wang Y, Liu G and Jiang A: The value of anlotinib in the treatment of intractable brain edema: Two case reports. Front Oncol. 11:6178032021. View Article : Google Scholar : PubMed/NCBI | |
|
Fan P, Qiang H, Liu Z, Zhao Q, Wang Y, Liu T, Wang X, Chu T, Huang Y, Xu W and Qin S: Effective low-dose Anlotinib induces long-term tumor vascular normalization and improves anti-PD-1 therapy. Front Immunol. 13:9379242022. View Article : Google Scholar : PubMed/NCBI | |
|
Li PJ, Lai SZ, Jin T, Ying HJ, Chen YM, Zhang P, Hang QQ, Deng H, Wang L, Feng JG, et al: Radiotherapy opens the blood-brain barrier and synergizes with anlotinib in treating glioblastoma. Radiother Oncol. 183:1096332023. View Article : Google Scholar : PubMed/NCBI | |
|
He L, Pi Y, Li Y, Wu Y, Jiang J, Rong X, Cai J, Yue Z, Cheng J, Li H, et al: Efficacy and safety of apatinib for radiation-induced brain injury among patients with head and neck cancer: An open-label, single-arm, phase 2 study. Int J Radiat Oncol Biol Phys. 113:796–804. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Xu W, Yang M, Du X, Peng H, Yang Y, Wang J and Zhang Y: Multifunctional nanoplatform based on sunitinib for synergistic phototherapy and molecular targeted therapy of hepatocellular carcinoma. Micromachines (Basel). 14:6132023. View Article : Google Scholar : PubMed/NCBI | |
|
Rahma OE and Hodi FS: The intersection between tumor angiogenesis and immune suppression. Clin Cancer Res. 25:5449–5457. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hu H, Chen Y, Tan S, Wu S, Huang Y, Fu S, Luo F and He J: The research progress of antiangiogenic therapy, immune therapy and tumor microenvironment. Front Immunol. 13:8028462022. View Article : Google Scholar : PubMed/NCBI | |
|
Kusmartsev S, Eruslanov E, Kübler H, Tseng T, Sakai Y, Su Z, Kaliberov S, Heiser A, Rosser C, Dahm P, et al: Oxidative stress regulates expression of VEGFR1 in myeloid cells: Link to tumor-induced immune suppression in renal cell carcinoma. J Immunol. 181:346–353. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Zafar MI, Zheng J, Kong W, Ye X, Gou L, Regmi A and Chen LL: The role of vascular endothelial growth factor-B in metabolic homoeostasis: Current evidence. Biosci Rep. 37:BSR201710892017. View Article : Google Scholar : PubMed/NCBI | |
|
Bourhis M, Palle J, Galy-Fauroux I and Terme M: Direct and indirect modulation of T cells by VEGF-A counteracted by anti-angiogenic treatment. Front Immunol. 12:6168372021. View Article : Google Scholar : PubMed/NCBI | |
|
Szebeni GJ, Vizler C, Kitajka K and Puskas LG: Inflammation and cancer: Extra- and intracellular determinants of tumor-associated macrophages as tumor promoters. Mediators Inflamm. 2017:92940182017. View Article : Google Scholar : PubMed/NCBI | |
|
Liu QP, Chen YY, An P, Rahman K, Luan X and Zhang H: Natural products targeting macrophages in tumor microenvironment are a source of potential antitumor agents. Phytomedicine. 109:1546122023. View Article : Google Scholar : PubMed/NCBI | |
|
Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M, Nezivar J, Santosuosso M, Martin JD, Martin MR, Vianello F, et al: Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proce Natil Acad Sci USA. 109:17561–17566. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Swed B, Ryan K, Gandarilla O, Shah MA and Brar G: Favorable response to second-line atezolizumab and bevacizumab following progression on nivolumab in advanced hepatocellular carcinoma: A case report demonstrating that anti-VEGF therapy overcomes resistance to checkpoint inhibition. Medicine (Baltimore). 100:e264712021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Q, Gao J, Di W and Wu X: Anti-angiogenesis therapy overcomes the innate resistance to PD-1/PD-L1 blockade in VEGFA-overexpressed mouse tumor models. Cancer Immunol Immunother. 69:1781–1799. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Manegold C, Dingemans AC, Gray JE, Nakagawa K, Nicolson M, Peters S, Reck M, Wu YL, Brustugun OT, Crinò L, et al: The potential of combined immunotherapy and antiangiogenesis for the synergistic treatment of advanced NSCLC. J Thorac Oncol. 12:194–207. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Fukumura D, Kloepper J, Amoozgar Z, Duda DG and Jain RK: Enhancing cancer immunotherapy using antiangiogenics: Opportunities and challenges. Nat Rev Clin Oncol. 15:325–340. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Huang Y, Kim BYS, Chan CK, Hahn SM, Weissman IL and Jiang W: Improving immune-vascular crosstalk for cancer immunotherapy. Nat Rev Immunol. 18:195–203. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yaguchi T, Sumimoto H, Kudo-Saito C, Tsukamoto N, Ueda R, Iwata-Kajihara T, Nishio H, Kawamura N and Kawakami Y: The mechanisms of cancer immunoescape and development of overcoming strategies. Int J Hematol. 93:294–300. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Xia L, Liu Y and Wang Y: PD-1/PD-L1 blockade therapy in advanced non-small-cell lung cancer: Current status and future directions. Oncologist. 24 (Suppl 1):S31–S41. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Horvath L, Thienpont B, Zhao L, Wolf D and Pircher A: Overcoming immunotherapy resistance in non-small cell lung cancer (NSCLC)-novel approaches and future outlook. Mol Cancer. 19:1412020. View Article : Google Scholar : PubMed/NCBI | |
|
Xu J, Gan C, Yu S, Yao S, Li W and Cheng H: Analysis of immune resistance mechanisms in TNBC: Dual effects inside and outside the tumor. Clin Breast Cancer. 24:e91–e102. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Khalaf K, Hana D, Chou JT, Singh C, Mackiewicz A and Kaczmarek M: Aspects of the tumor microenvironment involved in immune resistance and drug resistance. Front Immunol. 12:6563642021. View Article : Google Scholar : PubMed/NCBI | |
|
Dobosz P, Stępień M, Golke A and Dzieciątkowski T: Challenges of the immunotherapy: Perspectives and limitations of the immune checkpoint inhibitor treatment. Int J Mol Sci. 23:28472022. View Article : Google Scholar : PubMed/NCBI | |
|
Kudo-Saito C, Ishida A, Shouya Y, Teramoto K, Igarashi T, Kon R, Saito K, Awada C, Ogiwara Y and Toyoura M: Blocking the FSTL1-DIP2A axis improves anti-tumor immunity. Cell Rep. 24:1790–1801. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Codony-Servat J and Rosell R: Cancer stem cells and immunoresistance: Clinical implications and solutions. Transl Lung Cancer Res. 4:689–703. 2015.PubMed/NCBI | |
|
Wu L, Cheng D, Yang X, Zhao W, Fang C, Chen R and Ji M: M2-TAMs promote immunoresistance in lung adenocarcinoma by enhancing METTL3-mediated m6A methylation. Ann Transl Med. 10:13802022. View Article : Google Scholar : PubMed/NCBI | |
|
Khouzam RA, Janji B, Thiery J, Zaarour RF, Chamseddine AN, Mayr H, Savagner P, Kieda C, Gad S, Buart S, et al: Hypoxia as a potential inducer of immune tolerance, tumor plasticity and a driver of tumor mutational burden: Impact on cancer immunotherapy. Semin Cancer Biol. 97:104–123. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Larroquette M, Domblides C, Lefort F, Lasserre M, Quivy A, Sionneau B, Bertolaso P, Gross-Goupil M, Ravaud A and Daste A: Combining immune checkpoint inhibitors with chemotherapy in advanced solid tumours: A review. Eur J Cancer. 158:47–62. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Luo L, Liu P, Zhao K, Zhao W and Zhang X: The immune microenvironment in brain metastases of non-small cell lung cancer. Front Oncol. 11:6988442021. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Kang K, Han C, Wang L, Wang Z and Zhao A: Single-Cell profiling comparisons of tumor microenvironment between primary advanced lung adenocarcinomas and brain metastases and machine learning algorithms in predicting immunotherapeutic responses. Biomolecules. 13:1852023. View Article : Google Scholar : PubMed/NCBI | |
|
Hulsbergen AFC, Mammi M, Nagtegaal SHJ, Lak AM, Kavouridis V, Smith TR, Iorgulescu JB, Mekary RA, Verhoeff JJC, Broekman MLD and Phillips JG: Programmed death receptor ligand one expression may independently predict survival in patients with non-small cell lung carcinoma brain metastases receiving immunotherapy. Int J Radiat Oncol Biol Phys. 108:258–267. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hargadon KM, Johnson CE and Williams CJ: Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol. 62:29–39. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Cha JH, Chan LC, Li CW, Hsu JL and Hung MC: Mechanisms controlling PD-L1 expression in cancer. Mol Cell. 76:359–370. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, Domine M, Clingan P, Hochmair MJ, Powell SF, et al: Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 31:2078–2092. 2018. View Article : Google Scholar | |
|
Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gümüş M, Mazières J, Hermes B, Şenler FC, Csőszi T, Fülöp A, et al: Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med. 379:2040–2051. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yu S, Zhang S, Xu H, Yang G, Xu F, Yang L, Chen D, An G and Wang Y: Organ-specific immune checkpoint inhibitor treatment in lung cancer: A systematic review and meta-analysis. BMJ Open. 13:e0594572023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou S, Ren F and Meng X: Efficacy of immune checkpoint inhibitor therapy in EGFR mutation-positive patients with NSCLC and brain metastases who have failed EGFR-TKI therapy. Front Immunol. 13:9559442022. View Article : Google Scholar : PubMed/NCBI | |
|
Chu X, Niu L, Xiao G, Peng H, Deng F, Liu Z, Wu H, Yang L, Tan Z, Li Z and Zhou R: The long-term and short-term efficacy of immunotherapy in non-small cell lung cancer patients with brain metastases: A systematic review and meta-analysis. Front Immunol. 13:8754882022. View Article : Google Scholar : PubMed/NCBI | |
|
Shepard MJ, Xu Z, Donahue J, Muttikkal TJ, Cordeiro D, Hansen L, Mohammed N, Gentzler RD, Larner J, Fadul CE and Sheehan JP: Stereotactic radiosurgery with and without checkpoint inhibition for patients with metastatic non-small cell lung cancer to the brain: A matched cohort study. J Neurosurg. 133:685–692. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Khalifa J, Amini A, Popat S, Gaspar LE and Faivre-Finn C; International Association for the Study of Lung Cancer Advanced Radiation Technology Committee, : Brain metastases from NSCLC: Radiation therapy in the era of targeted therapies. J Thorac Oncol. 11:1627–1643. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Porte J, Saint-Martin C, Frederic-Moreau T, Massiani MA, Bozec L, Cao K, Verrelle P, Otz J, Jadaud E, Minsat M, et al: Efficacy and safety of combined brain stereotactic radiotherapy and immune checkpoint inhibitors in non-small-cell lung cancer with brain metastases. Biomedicines. 10:22492022. View Article : Google Scholar : PubMed/NCBI | |
|
Scoccianti S, Olmetto E, Pinzi V, Osti MF, Di Franco R, Caini S, Anselmo P, Matteucci P, Franceschini D, Mantovani C, et al: Immunotherapy in association with stereotactic radiotherapy for non-small cell lung cancer brain metastases: Results from a multicentric retrospective study on behalf of AIRO. Neuro Oncol. 23:1750–1764. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Gagliardi F, De Domenico P, Snider S, Roncelli F, Pompeo E, Barzaghi LR, Bulotta A, Gregorc V, Lazzari C, Cascinu S, et al: Role of stereotactic radiosurgery for the treatment of brain metastasis in the era of immunotherapy: A systematic review on current evidences and predicting factors. Crit Rev Oncol Hematol. 165:1034312021. View Article : Google Scholar : PubMed/NCBI | |
|
Enright TL, Witt JS, Burr AR, Yadav P, Leal T and Baschnagel AM: Combined immunotherapy and stereotactic radiotherapy improves neurologic outcomes in patients with non-small-cell lung cancer brain metastases. Clin Lung Cancer. 22:110–119. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Dohm AE, Tang JD, Mills MN, Liveringhouse CL, Sandoval ML, Perez BA, Robinson TJ, Creelan BC, Gray JE, Etame AB, et al: Clinical outcomes of non-small cell lung cancer brain metastases treated with stereotactic radiosurgery and immune checkpoint inhibitors, EGFR tyrosine kinase inhibitors, chemotherapy and immune checkpoint inhibitors, or chemotherapy alone. J Neurosurg. 138:1600–1607. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Guo T, Chu L, Chu X, Yang X, Li Y, Zhou Y, Xu D, Zhang J, Wang S, Hu J, et al: Brain metastases, patterns of intracranial progression, and the clinical value of upfront cranial radiotherapy in patients with metastatic non-small cell lung cancer treated with PD-1/PD-L1 inhibitors. Transl Lung Cancer Res. 11:173–187. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Kang S, Jeong H, Park JE, Kim HS, Kim YH, Lee DH, Kim SW, Lee JC, Choi CM and Yoon S: Central nervous systemic efficacy of immune checkpoint inhibitors and concordance between intra/extracranial response in non-small cell lung cancer patients with brain metastasis. J Cancer Res Clin Oncol. 149:4523–4532. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Guo F and Cui J: Anti-angiogenesis: Opening a new window for immunotherapy. Life Sci. 258:1181632020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J, Yan J and Liu B: Targeting VEGF/VEGFR to modulate antitumor immunity. Front Immunol. 9:9782018. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Li L, Jiang Z, Wang B and Pan Z: Anlotinib optimizes anti-tumor innate immunity to potentiate the therapeutic effect of PD-1 blockade in lung cancer. Cancer Immunol Immunother. 69:2523–2532. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Song Y, Fu Y, Xie Q, Zhu B, Wang J and Zhang B: Anti-angiogenic agents in combination with immune checkpoint inhibitors: A promising strategy for cancer treatment. Front Immunol. 11:19562020. View Article : Google Scholar : PubMed/NCBI | |
|
Rivera LB, Meyronet D, Hervieu V, Frederick MJ, Bergsland E and Bergers G: Intratumoral myeloid cells regulate responsiveness and resistance to antiangiogenic therapy. Cell Rep. 11:577–591. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Song JQ, Wang X, Zeng ZM, Liang PA, Zhong CY and Liu AW: Efficacy of PD-1 inhibitors combined with anti-angiogenic therapy in driver gene mutation negative non-small-cell lung cancer with brain metastases. Discov Med. 35:321–331. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Altan M, Wang Y, Song J, Welsh J, Tang C, Guha-Thakurta N, Blumenschein GR, Carter BW, Wefel JS, Ghia AJ, et al: Nivolumab and ipilimumab with concurrent stereotactic radiosurgery for intracranial metastases from non-small cell lung cancer: Analysis of the safety cohort for non-randomized, open-label, phase I/II trial. J Immunother Cancer. 11:e0068712023. View Article : Google Scholar : PubMed/NCBI | |
|
Cho A, Untersteiner H, Hirschmann D, Shaltout A, Göbl P, Dorfer C, Rössler K, Marik W, Kirchbacher K, Kapfhammer I, et al: Gamma knife radiosurgery for brain metastases in non-small cell lung cancer patients treated with immunotherapy or targeted therapy. Cancers (Basel). 12:36682020. View Article : Google Scholar : PubMed/NCBI | |
|
Geng Y, Zhang Q, Feng S, Li C, Wang L, Zhao X, Yang Z, Li Z, Luo H, Liu R, et al: Safety and efficacy of PD-1/PD-L1 inhibitors combined with radiotherapy in patients with non-small-cell lung cancer: A systematic review and meta-analysis. Cancer Med. 10:1222–1239. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ma K, Guo Q and Li X: Efficacy and safety of combined immunotherapy and antiangiogenic therapy for advanced non-small cell lung cancer: A real-world observation study. BMC Pulm Med. 23:1752023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen B, Wang J, Pu X, Li J, Wang Q, Liu L, Xu Y, Xu L, Kong Y, Li K, et al: The efficacy and safety of immune checkpoint inhibitors combined with chemotherapy or anti-angiogenic therapy as a second-line or later treatment option for advanced non-small cell lung cancer: A retrospective comparative cohort study. Transl Lung Cancer Res. 11:2111–2124. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Li S, Liu J, Yang C, Zhang L, Bao H and Cheng Y: Comparative efficacy and safety of TKIs alone or in combination with antiangiogenic agents in advanced EGFR-mutated NSCLC as the first-line treatment: A systematic review and meta-analysis. Clin Lung Cancer. 23:159–169. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wu J, Ni T, Deng R, Li Y, Zhong Q, Tang F, Zhang Q, Fang C, Xue Y, Zha Y and Zhang Y: Safety and efficacy of radiotherapy/chemoradiotherapy combined with immune checkpoint inhibitors for non-small cell lung cancer: A systematic review and meta-analysis. Front Immunol. 14:10655102023. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Chen Y, Hu F, Qiang H, Chang Q, Qian J, Shen Y, Cai Y and Chu T: Comparison of the efficacy and safety in the treatment strategies between chemotherapy combined with antiangiogenic and with immune checkpoint inhibitors in advanced non-small cell lung cancer patients with negative PD-L1 expression: A network meta-analysis. Front Oncol. 12:10015032022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Z, Cui L, Wang J, Zhao W and Teng Y: Aspirin boosts the synergistic effect of EGFR/p53 inhibitors on lung cancer cells by regulating AKT/mTOR and p53 pathways. Cell Biochem Funct. 42:e39022024. View Article : Google Scholar : PubMed/NCBI | |
|
Qian C, Liu C, Liu W, Zhou R and Zhao L: Targeting vascular normalization: A promising strategy to improve immune-vascular crosstalk in cancer immunotherapy. Front Immunol. 14:12915302023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou S and Zhang H: Synergies of targeting angiogenesis and immune checkpoints in cancer: From mechanism to clinical applications. Anticancer Agents Med Chem. 20:768–776. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan M, Zhai Y, Men Y, Zhao M, Sun X, Ma Z, Bao Y, Yang X, Sun S, Liu Y, et al: Anlotinib enhances the antitumor activity of high-dose irradiation combined with anti-PD-L1 by potentiating the tumor immune microenvironment in murine lung cancer. Oxid Med Cell Longev. 2022:54794912022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao X, Zhao R, Wen J, Zhang X, Wu S, Fang J, Ma J, Zheng W, Zhang X, Lu Z, et al: Anlotinib reduces the suppressive capacity of monocytic myeloid-derived suppressor cells and potentiates the immune microenvironment normalization window in a mouse lung cancer model. Anticancer Drugs. 34:1018–1024. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Swamy K: Vascular normalization and immunotherapy: Spawning a virtuous cycle. Front Oncol. 12:10029572022. View Article : Google Scholar : PubMed/NCBI | |
|
Lee WS, Yang H, Chon HJ and Kim C: Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp Mol Med. 52:1475–1485. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Oliveira G and Wu CJ: Dynamics and specificities of T cells in cancer immunotherapy. Nat Rev Cancer. 23:295–316. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Charpentier M, Spada S, Van Nest SJ and Demaria S: Radiation therapy-induced remodeling of the tumor immune microenvironment. Semin Cancer Biol. 86:737–747. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Xian F, Wu J, Zhong L and Xu G: Efficacy and safety of PD1/PDL1 inhibitors combined with radiotherapy and anti-angiogenic therapy for solid tumors: A systematic review and meta-analysis. Medicine (Baltimore). 102:e332042023. View Article : Google Scholar : PubMed/NCBI | |
|
Sun L, Zhao Q, Wang Y, Wang Y, Zheng M, Ding X and Miao L: Efficacy and safety of anlotinib-containing regimens in advanced non-small cell lung cancer: A real-world study. Int J Gen Med. 16:4165–4179. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Long YY, Chen J, Xie Y, Wang Y, Wu YZ, Xv Y, Weng KG and Zhou W: Long-term survival with a combination of immunotherapy, anti-angiogenesis, and traditional radiotherapy in brain metastatic small cell lung cancer: A case report. Front Oncol. 13:12097582023. View Article : Google Scholar : PubMed/NCBI | |
|
Schettino C, Bareschino MA, Rossi A, Maione P, Sacco PC, Colantuoni G, Rossi E and Gridelli C: Targeting angiogenesis for treatment of NSCLC brain metastases. Curr Cancer Drug Targets. 12:289–299. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Gao RL, Song J, Sun L, Wu ZX, Yi XF, Zhang SL, Huang LT, Ma JT and Han CB: Efficacy and safety of combined immunotherapy and antiangiogenesis with or without chemotherapy for advanced non-small-cell lung cancer: A systematic review and pooled analysis from 23 prospective studies. Front Pharmacol. 13:9201652022. View Article : Google Scholar : PubMed/NCBI | |
|
Li D, Xu L, Ji J, Bao D, Hu J, Qian Y, Zhou Y, Chen Z, Li D, Li X, et al: Sintilimab combined with apatinib plus capecitabine in the treatment of unresectable hepatocellular carcinoma: A prospective, open-label, single-arm, phase II clinical study. Front Immunol. 13:9440622022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang B, Qi L, Wang X, Xu J, Liu Y, Mu L, Wang X, Bai L and Huang J: Phase II clinical trial using camrelizumab combined with apatinib and chemotherapy as the first-line treatment of advanced esophageal squamous cell carcinoma. Cancer Commun (Lond). 40:711–720. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lai S, Li P, Liu X, Liu G, Xie T, Zhang X, Wang X, Huang J, Tang Y, Liu Z, et al: Efficacy and safety of anlotinib combined with the STUPP regimen in patients with newly diagnosed glioblastoma: A multicenter, single-arm, phase II trial. Cancer Biol Med. 21:433–444. 2024.PubMed/NCBI | |
|
Theelen W, Chen D, Verma V, Hobbs BP, Peulen HMU, Aerts J, Bahce I, Niemeijer ALN, Chang JY, de Groot PM, et al: Pembrolizumab with or without radiotherapy for metastatic non-small-cell lung cancer: A pooled analysis of two randomised trials. Lancet Respir Med. 9:467–475. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Gu D, Yu H, Ding N, Xu J, Qian P, Zhu J, Jiang M, Tao H and Zhu X: A phase II study of anlotinib plus whole brain radiation therapy for patients with NSCLC with multiple brain metastases. Ann Med. 56:24016182024. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Yu W, Xie F, Luo H, Liu Z, Lv W, Shi D, Yu D, Gao P, Chen C, et al: Neoadjuvant therapy with immune checkpoint blockade, antiangiogenesis, and chemotherapy for locally advanced gastric cancer. Nat Commun. 14:82023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhai Y, Ma H, Hui Z, Zhao L, Li D, Liang J, Wang X, Xu L, Chen B, Tang Y, et al: HELPER study: A phase II trial of continuous infusion of endostar combined with concurrent etoposide plus cisplatin and radiotherapy for treatment of unresectable stage III non-small-cell lung cancer. Radiother Oncol. 131:27–34. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Brown PD, Jaeckle K, Ballman KV, Farace E, Cerhan JH, Anderson SK, Carrero XW, Barker FG II, Deming R, Burri SH, et al: Effect of radiosurgery alone vs radiosurgery with whole brain radiation therapy on cognitive function in patients with 1 to 3 brain metastases: A randomized clinical trial. JAMA. 316:401–409. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Abdallah M, Voland R, Decamp M, Flickinger J, Pacioles T, Jamil M, Silbermins D, Shenouda M, Valsecchi M, Bir A, et al: Evaluation of anti-angiogenic therapy combined with immunotherapy and chemotherapy as a strategy to treat locally advanced and metastatic non-small-cell lung cancer. Cancers (Basel). 16:42072024. View Article : Google Scholar : PubMed/NCBI | |
|
Reck M, Mok TSK, Nishio M, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, Rodríguez-Abreu D, Moro-Sibilot D, et al: Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): Key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir Med. 7:387–401. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chen K, Xu Y, Huang Z, Yu X, Hong W, Li H, Xu X, Lu H, Xie F, Chen J, et al: Sintilimab plus anlotinib as second- or third-line therapy in metastatic non-small cell lung cancer with uncommon epidermal growth factor receptor mutations: A prospective, single-arm, phase II trial. Cancer Med. 12:19460–19470. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Shi M, Chen P, Cui B, Yao Y, Wang J, Zhou T and Wang L: Benmelstobart plus anlotinib in patients with EGFR-positive advanced NSCLC after failure of EGFR TKIs therapy: A phase I/II study. Signal Transduct Targeted Ther. 9:2832024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang F, Chen G, Yin Y, Chen X, Nie R and Chen Y: First-line immune checkpoint inhibitors in low programmed death-ligand 1-expressing population. Front Pharmacol. 15:13776902024. View Article : Google Scholar : PubMed/NCBI | |
|
Lorenc P, Sikorska A, Molenda S, Guzniczak N, Dams-Kozlowska H and Florczak A: Physiological and tumor-associated angiogenesis: Key factors and therapy targeting VEGF/VEGFR pathway. Biomed Pharmacother. 180:1175852024. View Article : Google Scholar : PubMed/NCBI | |
|
Patel A, Dong T, Ansari S, Cohen-Gadol A, Watson GA, Moraes FY, Nakamura M, Murovic J, Chang SD, Hatiboglu MA, et al: Toxicity of radiosurgery for brainstem metastases. World Neurosurg. 119:e757–e764. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chen WC, Baal UH, Baal JD, Pai JS, Boreta L, Braunstein SE and Raleigh DR: Efficacy and safety of stereotactic radiosurgery for brainstem metastases: A systematic review and meta-analysis. JAMA Oncol. 7:1033–1040. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Shaw MG and Ball DL: Treatment of brain metastases in lung cancer: Strategies to avoid/reduce late complications of whole brain radiation therapy. Curr Treat Options Oncol. 14:553–567. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Yang TJ, Wijetunga NA, Yamada J, Wolden S, Mehallow M, Goldman DA, Zhang Z, Young RJ, Kris MG, Yu HA, et al: Clinical trial of proton craniospinal irradiation for leptomeningeal metastases. Neuro Oncol. 23:134–143. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Mehmi I and Hamid O: Immunotherapy of cancer in the era of checkpoint inhibitor. Clin Exp Metastasis. 39:231–237. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Rossi G, Russo A, Tagliamento M, Tuzi A, Nigro O, Vallome G, Sini C, Grassi M, Dal Bello MG, Coco S, et al: Precision medicine for NSCLC in the era of immunotherapy: New biomarkers to select the most suitable treatment or the most suitable patient. Cancers (Basel). 12:11252020. View Article : Google Scholar : PubMed/NCBI | |
|
Chang K, Jiao Y, Zhang B, Hou L, He X, Wang D, Li D, Li R, Wang Z, Fan P and Zhang J: MGP(+) and IDO1(+) tumor-associated macrophages facilitate immunoresistance in breast cancer revealed by single-cell RNA sequencing. Int Immunopharmacol. 131:1118182024. View Article : Google Scholar : PubMed/NCBI | |
|
Tímár J and Ladányi A: Immunogenomic aspects of tumor progression. Magy Onkol. 63:173–182. 2019.(In Hungarian). PubMed/NCBI | |
|
Albesiano E, Han JE and Lim M: Mechanisms of local immunoresistance in glioma. Neurosurg Clin N Am. 21:17–29. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Cabezón-Gutiérrez L, Custodio-Cabello S, Palka-Kotlowska M, Alonso-Viteri S and Khosravi-Shahi P: Biomarkers of immune checkpoint inhibitors in non-small cell lung cancer: Beyond PD-L1. Clin Lung Cancer. 22:381–389. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou S and Yang H: Immunotherapy resistance in non-small-cell lung cancer: From mechanism to clinical strategies. Front Immunol. 14:11294652023. View Article : Google Scholar : PubMed/NCBI | |
|
Jing Y, Zeng H, Cheng R, Tian P and Li Y: Advances of immunotherapy resistance and coping strategies in non-small cell lung cancer. Zhongguo Fei Ai Za Zhi. 26:66–77. 2023.PubMed/NCBI | |
|
Zhang Y and Brekken RA: Direct and indirect regulation of the tumor immune microenvironment by VEGF. J Leukoc Biol. 111:1269–1286. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Lai X, Fu S, Ren L, Cai H, Zhang H, Gu Z, Ma X and Luo K: Immunogenic cell death activates the tumor immune microenvironment to boost the immunotherapy efficiency. Adv Sci (Weinh). 9:e22017342022. View Article : Google Scholar : PubMed/NCBI | |
|
Guo S, Yao Y, Tang Y, Xin Z, Wu D, Ni C, Huang J, Wei Q and Zhang T: Radiation-induced tumor immune microenvironments and potential targets for combination therapy. Signal Transduct Target Ther. 8:2052023. View Article : Google Scholar : PubMed/NCBI | |
|
Sun D, Liu J, Zhou H, Shi M, Sun J, Zhao S, Chen G, Zhang Y, Zhou T, Ma Y, et al: Classification of tumor immune microenvironment according to programmed death-ligand 1 expression and immune infiltration predicts response to immunotherapy plus chemotherapy in advanced patients with NSCLC. J Thorac Oncol. 18:869–881. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Liu S, Yang Z, Algazi AP, Lomeli SH, Wang Y, Othus M, Hong A, Wang X, Randolph CE, et al: Anti-PD-1/L1 lead-in before MAPK inhibitor combination maximizes antitumor immunity and efficacy. Cancer Cell. 39:1375–1387.e6. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Caetano MS, Younes AI, Barsoumian HB, Quigley M, Menon H, Gao C, Spires T, Reilly TP, Cadena AP, Cushman TR, et al: Triple therapy with MerTK and PD1 inhibition plus radiotherapy promotes abscopal antitumor immune responses. Clin Cancer Res. 25:7576–7584. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yeung MY, McGrath M and Najafian N: The emerging role of the TIM molecules in transplantation. Am J Transplant. 11:2012–2019. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Tong F, Peng L, Huang Y, Yin P, Feng Y, Cheng S, Wang J and Dong X: Efficacy and safety of recombinant human endostatin combined with whole-brain radiation therapy in patients with brain metastases from non-small cell lung cancer. Radiother Oncol. 174:44–51. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang RF, Yu B, Zhang RQ, Wang XH, Li C, Wang P, Zhang Y, Han B, Gao XX, Zhang L, et al: Bevacizumab and gefitinib enhanced whole-brain radiation therapy for brain metastases due to non-small-cell lung cancer. Braz J Med Biol Res. 51:e60732017. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Y, Chen K, Xu Y, Li H, Huang Z, Lu H, Huang D, Yu S, Han N, Gong L, et al: Brain radiotherapy combined with camrelizumab and platinum-doublet chemotherapy for previously untreated advanced non-small-cell lung cancer with brain metastases (C-Brain): A multicentre, single-arm, phase 2 trial. Lancet Oncol. 26:74–84. 2025. View Article : Google Scholar : PubMed/NCBI |