|
1
|
Weaver C, Nam A, Settle C, Overton M,
Giddens M, Richardson KP, Piver R, Mysona DP, Rungruang B, Ghamande
S, et al: Serum proteomic signatures in cervical cancer: Current
status and future directions. Cancers (Basel). 16:16292024.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Tantengco OAG, Nakura Y, Yoshimura M,
Nishiumi F, Llamas-Clark EF and Yanagihara I: Co-infection of human
papillomavirus and other sexually transmitted bacteria in cervical
cancer patients in the Philippines. Gynecol Oncol Rep.
40:1009432022. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Brotherton JML, Vajdic CM and Nightingale
C: The socioeconomic burden of cervical cancer and its implications
for strategies required to achieve the WHO elimination targets.
Expert Rev Pharmacoecon Outcomes Res. 25:1–20. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Goldstein A, Gersh M, Skovronsky G and
Moss C: The future of cervical cancer screening. Int J Womens
Health. 16:1715–1731. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Nartey Y, Amo-Antwi K, Hill PC, Dassah ET,
Asmah RH, Nyarko KM, Agambire R, Konney TO, Yarney J, Damale N and
Cox B: Human papillomavirus genotype distribution among women with
and without cervical cancer: Implication for vaccination and
screening in Ghana. PLoS One. 18:e02804372023. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Fan P, Li X, Feng Y, Cai H, Dong D, Peng
Y, Yao X, Guo Y, Ma M, Dong T and Wang R: PD-1 expression status on
CD8+ tumour infiltrating lymphocytes associates with survival in
cervical cancer. Front Oncol. 11:6787582021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Braila AD, Poalelungi CV, Albu CC, Damian
CM, Dira LM, Banateanu AM and Bogdan-Andreescu CF: The relationship
between cervicovaginal infection, human papillomavirus infection
and cervical intraepithelial neoplasia in Romanian women. Diseases.
13:182025. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Meghani K, Puri P, Bazzett-Matabele L,
Vuylsteke P, Luckett R, Monare B, Chiyapo S, Ketlametswe R,
Ralefala TB, Bvochora-Nsingo M, et al: Significance of HIV status
in cervical cancer patients receiving curative chemoradiation
therapy, definitive radiation alone, or palliative radiation in
Botswana. Cancer. 130:2462–2471. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Teshome R, Yang I, Woldetsadik E, Girma E,
Higgins M and Wells J: Survival status and predictors among women
with advanced stage of cervical cancer. Int J Womens Health.
16:605–617. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wen M, Yi N, Mijiti B, Zhao S and Shen G:
N(6)-methyladenosine (m6A) reader HNRNPA2B1 accelerates the
cervical cancer cells aerobic glycolysis. J Bioenerg Biomembr.
56:657–668. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Liu P, Ju M, Zheng X, Jiang Y, Yu X, Pan
B, Luo R, Jia W and Zheng M: Methyltransferase-like 3 promotes
cervical cancer metastasis by enhancing cathepsin L mRNA stability
in an N6-methyladenosine-dependent manner. Cancer Sci. 114:837–854.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Guo J, Zhao J, Tian P, Xu Z, Wang R, Chen
W, Wang X, Wan S, Yang Y and Zhang H: BaP/BPDE exposure causes
human trophoblast cell dysfunctions and induces miscarriage by
up-regulating lnc-HZ06-regulated IL1B. J Hazard Mater.
476:1347412024. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Dai M, Huang W, Huang X, Ma C, Wang R,
Tian P, Chen W, Zhang Y, Mi C and Zhang H: BPDE, the migration and
invasion of human trophoblast cells, and occurrence of miscarriage
in humans: Roles of a novel lncRNA-HZ09. Environ Health Perspect.
131:170092023. View
Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zhang W, Xiao P, Tang J, Wang R, Wang X,
Wang F, Ruan J, Yu S, Tang J, Huang R and Zhao X: m6A
Regulator-Mediated tumour infiltration and methylation modification
in cervical cancer microenvironment. Front Immunol. 13:8886502022.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zhang H, Kong W, Zhao X, Han C, Liu T, Li
J and Song D: N6-Methyladenosine-Related lncRNAs as potential
biomarkers for predicting prognoses and immune responses in
patients with cervical cancer. BMC Genom Data. 23:82022. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Condic M, Ralser DJ, Klumper N, Ellinger
J, Qureischi M, Egger EK, Kristiansen G, Mustea A and Thiesler T:
Comprehensive analysis of N6-Methyladenosine (m6A) writers,
erasers, and readers in cervical cancer. Int J Mol Sci.
23:71652022. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wang X, Li Z, Kong B, Song C, Cong J, Hou
J and Wang S: Reduced m6A mRNA methylation is correlated with the
progression of human cervical cancer. Oncotarget. 8:98918–98930.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zhang C, Gu L, Xiao J and Jin F: Knockdown
of RBM15 inhibits tumor progression and the JAK-STAT signaling
pathway in cervical cancer. BMC Cancer. 23:6842023. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Yu R, Wei Y, He C, Zhou P, Yang H, Deng C,
Liu R, Wu P, Gao Q and Cao C: Integrative analyses of m6A
regulators identify that METTL3 is associated with HPV status and
immunosuppressive microenvironment in HPV-related cancers. Int J
Biol Sci. 18:3874–3887. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Ji H, Zhang JA, Liu H, Li K, Wang ZW and
Zhu X: Comprehensive characterization of tumor microenvironment and
m6A RNA methylation regulators and its effects on PD-L1 and immune
infiltrates in cervical cancer. Front Immunol. 13:9761072022.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Pu M, Xiao X, Lv S, Ran D, Huang Q, Zhou
M, Lei Q, Kong L and Zhang Q: METTL3-dependent DLG2 inhibits the
malignant progression of cervical cancer by inactivating the
Hippo/YAP signaling. Hereditas. 162:92025. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Hou PX, Fan Q, Zhang Q, Liu JJ and Wu Q:
M6A-induced transcription factor IRF5 contributes to the
progression of cervical cancer by upregulating PPP6C. Clin Exp
Pharmacol Physiol. 51:e138682024. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Liu Y, Li C, Deng Q, Ren X and Wang H:
METTL3′s role in cervical cancer development through m6A
modification. FASEB J. 38:e236932024. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Guo Y, Bai Y, Wang L, Xu Z, Zhang N, Wang
W and Zhao H: METTL3 facilitates the progression of cervical cancer
by m6A modification-mediated up-regulation of NEK2. Sci Rep.
14:244692024. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Ma Y, Shi H and Zheng W: METTL3 regulates
the translation of oncogene Myc through m6A Modification and
promotes the occurrence and development of cervical cancer. Discov
Med. 36:1902–1910. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Yu T, Wu F, Jia Y, Zhang X, Qi X, Jin Z,
Hao T, Zhao J, Liu Z, Wang C, et al: RNA N(6)-methyladenosine
modification mediates downregulation of NR4A1 to facilitate
malignancy of cervical cancer. Cell Biosci. 12:2072022. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Li J, Xie G, Tian Y, Li W, Wu Y, Chen F,
Lin Y, Lin X, Au SWN, Cao J, et al: RNA m6A methylation regulates
dissemination of cancer cells by modulating expression and membrane
localization of β-catenin. Mol Ther. 30:1578–1596. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Ao K, Yin M, Lyu X, Xiao Y, Chen X, Zhong
S, Wen X, Yuan J, Ye M, Zhang J, et al: METTL3-mediated HSPA9 m6A
modification promotes malignant transformation and inhibits
cellular senescence by regulating exosomal mortalin protein in
cervical cancer. Cancer Lett. 587:2166582024. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Rui Y, Zhang H, Yu K, Qiao S, Gao C, Wang
X, Yang W, Asadikaram G, Li Z, Zhang K, et al: N(6)-Methyladenosine
regulates cilia elongation in cancer cells by modulating HDAC6
expression. Adv Sci (Weinh). 12:e24084882025. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Li H, Zhong Y, Cao G, Shi H, Liu Y, Li L,
Yin P, Chen J, Xiao Z and Du B: METTL3 promotes cell cycle
progression via m6A/YTHDF1-dependent regulation of CDC25B
translation. Int J Biol Sci. 18:3223–3236. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Wang Q, Guo X, Li L, Gao Z, Su X, Ji M and
Liu J: N(6)-methyladenosine METTL3 promotes cervical cancer
tumorigenesis and Warburg effect through YTHDF1/HK2 modification.
Cell Death Dis. 11:9112020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Liu HT, Zhao Y, Wang HC and Liu QL:
METTL3-mediated m6A methylation of SLC38A1 stimulates cervical
cancer growth. Biochem Biophys Res Commun. 716:1500392024.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Du QY, Huo FC, Du WQ, Sun XL, Jiang X,
Zhang LS and Pei DS: METTL3 potentiates progression of cervical
cancer by suppressing ER stress via regulating m6A modification of
TXNDC5 mRNA. Oncogene. 41:4420–4432. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Wang YY, Ye LH, Zhao AQ, Gao WR, Dai N,
Yin Y and Zhang X: M6A modification regulates tumor suppressor
DIRAS1 expression in cervical cancer cells. Cancer Biol Ther.
25:23066742024. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Shen S, Jin H, Zhang X, Zhang Y, Li X, Yan
W, Xie S, Yu B, Hu J, Liu H, et al: LINC00426, a novel
m6A-regulated long non-coding RNA, induces EMT in cervical cancer
by binding to ZEB1. Cell Signal. 109:1107882023. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Shen W, Zhu M, Wang Q, Zhou X, Wang J,
Wang T and Zhang J: DARS-AS1 recruits METTL3/METTL14 to bind and
enhance DARS mRNA m6A modification and translation for
cytoprotective autophagy in cervical cancer. RNA Biol. 19:751–763.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Chen Z, Ling K, Zhu Y, Deng L, Li Y and
Liang Z: circ0000069 promotes cervical cancer cell proliferation
and migration by inhibiting miR-4426. Biochem Biophys Res Commun.
551:114–120. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Shi J, Rui X, Han C, Wang C, Xu L and
Jiang X: circRNF13, a novel N(6)-methyladenosine-modified circular
RNA, enhances radioresistance in cervical cancer by increasing
CXCL1 mRNA stability. Cell Death Discov. 9:2532023. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Han X, Xia L, Wu Y, Chen X and Wu X:
m6A-modified circSTX6 as a key regulator of cervical cancer
malignancy via SPI1 and IL6/JAK2/STAT3 pathways. Oncogene.
44:968–982. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ji F, Lu Y, Chen S, Lin X, Yu Y, Zhu Y and
Luo X: m6A methyltransferase METTL3-mediated lncRNA FOXD2-AS1
promotes the tumorigenesis of cervical cancer. Mol Ther Oncolytics.
22:574–581. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Shen G, Li F, Wang Y, Huang Y, Aizezi G,
Yuan J, Ma C and Lin C: New insights on the interaction between m6A
modification and non-coding RNA in cervical squamous cell
carcinoma. World J Surg Oncol. 21:252023. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Yang Z, Ma J, Han S, Li X, Guo H and Liu
D: ZFAS1 exerts an oncogenic role via suppressing miR-647 in an
m6A-dependent manner in cervical cancer. Onco Targets Ther.
13:11795–11806. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Gong Y, Luo G, Zhang S, Chen Y and Hu Y:
Transcriptome sequencing analysis reveals miR-30c-5p promotes
ferroptosis in cervical cancer and inhibits growth and metastasis
of cervical cancer xenografts by targeting the METTL3/KRAS axis.
Cell Signal. 117:1110682024. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Huang C, Liang J, Lin S, Wang D, Xie Q,
Lin Z and Yao T: N(6)-methyladenosine associated silencing of
miR-193b promotes cervical cancer aggressiveness by targeting
CCND1. Front Oncol. 11:6665972021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Alasar AA, Saglam B, Vatansever IE and
Akgul B: Expression patterns of m6A RNA methylation regulators
under apoptotic conditions in various human cancer cell lines. Turk
J Biol. 48:24–34. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Li L, Zeng J, He S, Yang Y and Wang C:
METTL14 decreases FTH1 mRNA stability via m6A methylation to
promote sorafenib-induced ferroptosis of cervical cancer. Cancer
Biol Ther. 25:23494292024. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Li Q, Zhao N, Ding X and Zhao J:
METTL14-mediated m6A modification upregulates HOXB13 expression to
activate NF-κB and exacerbate cervical cancer progression. Mol Cell
Oncol. 11:24239862024. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zhang P, Tang Y, Zhao J, Yang J, Chen Y,
Gong Y, Meng S and Shu C: TRIM11 regulated by m6A modification
promotes the progression of cervical cancer by PHLPP1
ubiquitination. Neoplasma. 70:659–669. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Geng F, Fan MJ, Li J, Liang SM, Li CY and
Li N: Knockdown of METTL14 inhibits the growth and invasion of
cervical cancer. Transl Cancer Res. 8:2307–2315. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Xie Q, Li Z, Luo X, Wang D, Zhou Y, Zhao
J, Gao S, Yang Y, Fu W, Kong L and Sun T: piRNA-14633 promotes
cervical cancer cell malignancy in a METTL14-dependent m6A RNA
methylation manner. J Transl Med. 20:512022. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wang R and Tan W: RBM15-Mediated N6-Methyl
adenosine (m6A) modification of EZH2 drives the
epithelial-mesenchymal transition of cervical cancer. Crit Rev
Eukaryot Gene Expr. 34:15–29. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wang H, Li C, Wei Q, Zhang E, Yang Y, Sha
L and Wang D: RBM15 knockdown impairs the malignancy of cervical
cancer by mediating m6A modification of decorin. Biochem Genet.
63:225–238. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Quan Y, Zhou M, Li J, Yang Y, Guo J, Tang
T and Liu P: The m6A methyltransferase RBM15 affects tumor cell
stemness and progression of cervical cancer by regulating the
stability of lncRNA HEIH. Exp Cell Res. 436:1139242024. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Song Y and Wu Q: RBM15 m(6) A
modification-mediated OTUB2 upregulation promotes cervical cancer
progression via the AKT/mTOR signaling. Environ Toxicol.
38:2155–2164. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Feng X and Shu L: The methyltransferase
KIAA1429 potentiates cervical cancer tumorigenesis via modulating
LARP1 mRNA m6A modification and stability. Histol Histopathol.
40:1095–1103. 2024.PubMed/NCBI
|
|
56
|
Wang M, Wang Z, Zou X, Yang D and Xu K:
The regulatory role of KIAA1429 in epithelial-mesenchymal
transition in cervical cancer via mediating m6A modification of
BTG2. Cytotechnology. 77:342025. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Wei Q, Yang Y, Li C and Wang H:
ZC3H13-induced the m6A modification of hsa_circ_0081723 promotes
cervical cancer progression via AMPK/p53 pathway. J Obstet Gynaecol
Res. 50:2286–2298. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhang Y, Chen X, Chen H and Zhang Y:
ZC3H13 enhances the malignancy of cervical cancer by regulating m6a
modification of CKAP2. Crit Rev Immunol. 43:1–13. 2023. View Article : Google Scholar
|
|
59
|
Lin X, Wang F, Chen J, Liu J, Lin YB, Li
L, Chen CB and Xu Q: N(6)-methyladenosine modification of CENPK
mRNA by ZC3H13 promotes cervical cancer stemness and
chemoresistance. Mil Med Res. 9:192022.PubMed/NCBI
|
|
60
|
Lu X, Li R, Ying Y, Zhang W and Wang W:
Gene signatures, immune infiltration, and drug sensitivity based on
a comprehensive analysis of m6a RNA methylation regulators in
cervical cancer. J Transl Med. 20:3852022. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Hu J, Wang S, Zhang X, Yan W, Liu H, Chen
X, Nie Y, Liu F, Zheng Y, Lu Y and Jin H: A genetic variant in the
TAPBP gene enhances cervical cancer susceptibility by increasing
m6A modification. Arch Toxicol. 98:3425–3438. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zou D, Dong L, Li C, Yin Z, Rao S and Zhou
Q: The m6A eraser FTO facilitates proliferation and migration of
human cervical cancer cells. Cancer Cell Int. 19:3212019.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Chen B, Wang L, Li X, Ren C, Gao C, Ding W
and Wang H: FTO facilitates cervical cancer malignancy through
inducing m6A-Demethylation of PIK3R3 mRNA. Cancer Med.
13:e705072024. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Liu C, Li Y, Dong C, Qu L and Zuo Y: E6E7
regulates the HK2 expression in cervical cancer via GSK3β/FTO
signal. Arch Biochem Biophys. 729:1093892022. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Azzam SK, Alsafar H and Sajini AA: FTO m6A
demethylase in obesity and cancer: Implications and underlying
molecular mechanisms. Int J Mol Sci. 23:38002022. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Huang J, Yang J, Zhang Y, Lu D and Dai Y:
FTO promotes cervical cancer cell proliferation, colony formation,
migration and invasion via the regulation of the
BMP4/Hippo/YAP1/TAZ pathway. Exp Cell Res. 427:1135852023.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wang T, Li W, Ye B, Zhang S, Lei X and
Zhang D: FTO-stabilized lncRNA HOXC13-AS epigenetically upregulated
FZD6 and activated Wnt/β-catenin signaling to drive cervical cancer
proliferation, invasion, and EMT. J BUON. 26:1279–1291.
2021.PubMed/NCBI
|
|
68
|
Wang A, Jin C, Wang Y, Yu J, Wang R and
Tian X: FTO promotes the progression of cervical cancer by
regulating the N6-methyladenosine modification of ZEB1 and Myc. Mol
Carcinog. 62:1228–1237. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Huo FC, Zhu ZM, Du WQ, Pan YJ, Jiang X,
Kang MJ, Liu BW, Mou J and Pei DS: HPV E7-drived ALKBH5 promotes
cervical cancer progression by modulating m6A modification of PAK5.
Pharmacol Res. 195:1068632023. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Liang L, Zhu Y, Li J, Zeng J and Wu L:
ALKBH5-mediated m6A modification of circCCDC134 facilitates
cervical cancer metastasis by enhancing HIF1A transcription. J Exp
Clin Cancer Res. 41:2612022. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Wu S, Liu L, Xu H, Zhu Q and Tan M: The
involvement of MALAT1-ALKBH5 signaling axis into proliferation and
metastasis of human papillomavirus-positive cervical cancer. Cancer
Biol Ther. 24:22491742023. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhen L and Pan W: ALKBH5 inhibits the
SIRT3/ACC1 axis to regulate fatty acid metabolism via an
m6A-IGF2BP1-dependent manner in cervical squamous cell carcinoma.
Clin Exp Pharmacol Physiol. 50:380–392. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wang X, Zhang J and Wang Y: Long noncoding
RNA GAS5-AS1 suppresses growth and metastasis of cervical cancer by
increasing GAS5 stability. Am J Transl Res. 11:4909–4921.
2019.PubMed/NCBI
|
|
74
|
Xiong J, He L, Chai X, Zhang Y and Sun S:
YTHDF1 boosts the lactate accumulation to potentiate cervical
cancer cells immune escape. Cell Death Dis. 15:8432024. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Wang H, Luo Q, Kang J, Wei Q, Yang Y, Yang
D, Liu X, Liu T and Yi P: YTHDF1 aggravates the progression of
cervical cancer through m6A-mediated up-regulation of RANBP2. Front
Oncol. 11:6503832021. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Li Z, Peng Y, Li J, Chen Z, Chen F, Tu J,
Lin S and Wang H: N(6)-methyladenosine regulates glycolysis of
cancer cells through PDK4. Nat Commun. 11:25782020. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zhong S, Guo Q, Chen X, Luo X, Long Y,
Chong T, Ye M, He H, Lu A, Ao K, et al: The inhibition of
YTHDF3/m6A/LRP6 reprograms fatty acid metabolism and suppresses
lymph node metastasis in cervical cancer. Int J Biol Sci.
20:916–936. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Du H, Zou NY, Zuo HL, Zhang XY and Zhu SC:
YTHDF3 mediates HNF1alpha regulation of cervical cancer
radio-resistance by promoting RAD51D translation in an
m6A-dependent manner. FEBS J. 290:1920–1935. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhang C, Guo C, Li Y, Ouyang L, Zhao Q and
Liu K: The role of YTH domain containing 2 in epigenetic
modification and immune infiltration of pan-cancer. J Cell Mol Med.
25:8615–8627. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Sui H, Shi C, Yan Z, Chen J, Man L and
Wang F: LRRC75A-AS1 drives the epithelial-mesenchymal transition in
cervical cancer by binding IGF2BP1 and inhibiting SYVN1-mediated
NLRP3 ubiquitination. Mol Cancer Res. 22:1075–1087. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Yu B, Li X, Yan W, Ding B, Zhang X, Shen
S, Xie S, Hu J, Liu H, Chen X, et al: Post-transcriptional
regulation of tumor suppressor gene lncRNA CARMN via m6A
modification and miRNA regulation in cervical cancer. J Cancer Res
Clin Oncol. 149:10307–10318. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Hu C, Liu T, Han C, Xuan Y, Jiang D, Sun
Y, Zhang X, Zhang W, Xu Y, Liu Y, et al: HPV E6/E7 promotes aerobic
glycolysis in cervical cancer by regulating IGF2BP2 to stabilize
m6A-MYC expression. Int J Biol Sci. 18:507–521. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Ji F, Lu Y, Chen S, Yu Y, Lin X, Zhu Y and
Luo X: IGF2BP2-modified circular RNA circARHGAP12 promotes cervical
cancer progression by interacting m6A/FOXM1 manner. Cell Death
Discov. 7:2152021. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Han C, Hu C, Liu T, Sun Y, Hu F, He Y,
Zhang J, Chen J, Ding J, Fan J, et al: IGF2BP3 enhances lipid
metabolism in cervical cancer by upregulating the expression of
SCD. Cell Death Dis. 15:1382024. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zhou T, Xiao Z, Lu J, Zhang L, Bo L and
Wang J: IGF2BP3-mediated regulation of GLS and GLUD1 gene
expression promotes treg-induced immune escape in human cervical
cancer. Am J Cancer Res. 13:5289–5305. 2023.PubMed/NCBI
|
|
86
|
Sun X, Ye G, Li J, Shou H, Bai G and Zhang
J: Parkin regulates IGF2BP3 through ubiquitination in the
tumourigenesis of cervical cancer. Clin Transl Med. 13:e14572023.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Liu YY, Xia M, Chen ZB, Liao YD, Zhang CY,
Yuan L, Pan YW, Huang H, Lu HW and Yao SZ: HNRNPC mediates
lymphatic metastasis of cervical cancer through m6A-dependent
alternative splicing of FOXM1. Cell Death Dis. 15:7322024.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wang B, Mao Z, Ye J, Jiao X, Zhang T, Wang
Q, Han S, Zhang Y, Wang C, Dong T and Cui B: Glycolysis induced by
METTL14 is essential for macrophage phagocytosis and phenotype in
cervical cancer. J Immunol. 212:723–736. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Liang Y, Diao W, Yang X, Tao Y, Hong L and
Li W: Regulator of calcineurin 3 as a novel predictor of diagnosis
and prognosis in pan-cancer. Croat Med J. 65:356–372. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Hanzelmann S, Castelo R and Guinney J:
GSVA: Gene set variation analysis for microarray and RNA-seq data.
BMC Bioinformatics. 14:72013. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Bindea G, Mlecnik B, Tosolini M,
Kirilovsky A, Waldner M, Obenauf AC, Angell H, Fredriksen T,
Lafontaine L, Berger A, et al: Spatiotemporal dynamics of
intratumoral immune cells reveal the immune landscape in human
cancer. Immunity. 39:782–795. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Shi YL, Liu MB, Wu HT, Han Y and He X:
GLTP is a potential prognostic biomarker and correlates with
immunotherapy efficacy in cervical cancer. Dis Markers.
2022:91093652022. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Shi Y, Fan S, Wu M, Zuo Z, Li X, Jiang L,
Shen Q, Xu P, Zeng L, Zhou Y, et al: YTHDF1 links hypoxia
adaptation and non-small cell lung cancer progression. Nat Commun.
10:48922019. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Benak D, Alanova P, Holzerova K, Chalupova
M, Opletalova B, Kolar F, Pavlinkova G and Hlavackova M.
Epitranscriptomic regulation of HIF-1: Bidirectional regulatory
pathways. Mol Med. 31:1052025. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Mao Z, Wang B, Zhang T and Cui B: The
roles of m6A methylation in cervical cancer: Functions, molecular
mechanisms, and clinical applications. Cell Death Dis. 14:7342023.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Hu J, Wang S and Li X: A comprehensive
review of m6A research in cervical cancer. Epigenomics. 16:753–773.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zhao J, Li B, Ma J, Jin W and Ma X:
Photoactivatable RNA N(6)-methyladenosine editing with
CRISPR-Cas13. Small. 16:e19073012020. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Lo N, Xu X, Soares F and He HH: The basis
and promise of programmable RNA editing and modification. Front
Genet. 13:8344132022. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
He F, Guo Q, Jiang GX and Zhou Y:
Comprehensive analysis of m6A circRNAs identified in colorectal
cancer by MeRIP sequencing. Front Oncol. 12:9278102022. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Song C, Zhao C, Nong Y, Lin Y, Huang A, Xi
S, Wei X, Zeng C, Qin Y and Zhu Q: Exploring the accuracy of
third-generation Nanopore Sequencing technology for detecting
mycobacterium tuberculosis in patients with diabetes mellitus.
Diagn Microbiol Infect Dis. 110:1163922024. View Article : Google Scholar : PubMed/NCBI
|