|
1
|
Veschi V, Verona F, Lo Iacono M, D'Accardo
C, Porcelli G, Turdo A, Gaggianesi M, Forte S, Giuffrida D, Memeo L
and Todaro M: Cancer stem cells in thyroid tumors: From the origin
to metastasis. Front Endocrinol (Lausanne). 11:5662020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ito Y and Miyauchi A: Prognostic factors
of papillary and follicular carcinomas based on pre-, intra-, and
post-operative findings. Eur Thyroid J. 13:e2401962024. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Conzo G, Avenia N, Ansaldo GL, Calò P, De
Palma M, Dobrinja C, Docimo G, Gambardella C, Grasso M, Lombardi
CP, et al: Surgical treatment of thyroid follicular neoplasms:
Results of a retrospective analysis of a large clinical series.
Endocrine. 55:530–538. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Staubitz JI, Musholt PB and Musholt TJ:
The surgical dilemma of primary surgery for follicular thyroid
neoplasms. Best Pract Res Clin Endocrinol Metab. 33:1012922019.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Welsh JA, Goberdhan DCI, O'Driscoll L,
Buzas EI, Blenkiron C, Bussolati B, Cai H, Di Vizio D, Driedonks
TAP, Erdbrugger U, et al: Minimal information for studies of
extracellular vesicles (MISEV2023): From basic to advanced
approaches. J Extracell Vesicles. 13:e124042024. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Raposo G and Stoorvogel W: Extracellular
vesicles: Exosomes, microvesicles, and friends. J Cell Biol.
200:373–383. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Andre M, Caobi A, Miles JS, Vashist A,
Ruiz MA and Raymond AD: Diagnostic potential of exosomal
extracellular vesicles in oncology. BMC Cancer. 24:3222024.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Feng X, Iliuk A, Zhang X, Jia S, Shen A,
Zhang W, Hu L and Tao WA: Supramolecular exosome array for
efficient capture and in situ detection of protein biomarkers. Anal
Chem. 95:2812–2821. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
WHO classification of tumours online,
Endocrine and neuroendocrine Tumours (5th ed.), . https://tumourclassification.iarc.who.int/chapters/532024
18–October. 2024
|
|
10
|
Kawakami K, Fujita Y, Kato T, Horie K,
Koie T, Umezawa K, Tsumoto H, Miura Y, Katagiri Y, Miyazaki T, et
al: Diagnostic potential of serum extracellular vesicles expressing
prostate-specific membrane antigen in urologic malignancies. Sci
Rep. 11:150002021. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Nakai W, Yoshida T, Diez D, Miyatake Y,
Nishibu T, Imawaka N, Naruse K, Sadamura Y and Hanayama R: A novel
affinity-based method for the isolation of highly purified
extracellular vesicles. Sci Rep. 6:339352016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Hishida S, Kawakami K, Fujita Y, Kato T,
Takai M, Iinuma K, Nakane K, Tsuchiya T, Koie T, Miura Y, et al:
Proteomic analysis of extracellular vesicles identified PI3K
pathway as a potential therapeutic target for cabazitaxel-resistant
prostate cancer. Prostate. 81:592–602. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Willforss J, Chawade A and Levander F:
NormalyzerDE: Online tool for improved normalization of omics
expression data and high-sensitivity differential expression
analysis. J Proteome Res. 18:732–740. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Smyth GK: Linear models and empirical
bayes methods for assessing differential expression in microarray
experiments. Stat Appl Genet Mol Biol. 3:Article32004. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Pellinen T, Arjonen A, Vuoriluoto K,
Kallio K, Fransen JA and Ivaska J: Small GTPase Rab21 regulates
cell adhesion and controls endosomal traffic of beta1-integrins. J
Cell Biol. 173:767–780. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Li Q, Yin L, Jones LW, Chu GC, Wu JB,
Huang JM, Li Q, You S, Kim J, Lu YT, et al: Keratin 13 expression
reprograms bone and brain metastases of human prostate cancer
cells. Oncotarget. 7:84645–84657. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zhang G, Sun X, Lv H, Yang X and Kang X:
Serum amyloid A: A new potential serum marker correlated with the
stage of breast cancer. Oncol Lett. 3:940–944. 2012.PubMed/NCBI
|
|
18
|
Fryknas M, Wickenberg-Bolin U, Goransson
H, Gustafsson MG, Foukakis T, Lee JJ, Landegren U, Hoog A, Larsson
C, Grimelius L, et al: Molecular markers for discrimination of
benign and malignant follicular thyroid tumors. Tumour Biol.
27:211–220. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Chen J, Zeng C, Jin J, Zhang P, Zhang Y,
Zhang H, Li Y and Guan H: Overexpression of FHL1 suppresses
papillary thyroid cancer proliferation and progression via
inhibiting Wnt/β-catenin pathway. Endocrine. 85:238–249. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Borowczyk M, Szczepanek-Parulska E,
Debicki S, Budny B, Verburg FA, Filipowicz D, Wieckowska B,
Janicka-Jedyńska M, Gil L, Ziemnicka K and Ruchała M: Differences
in mutational profile between follicular thyroid carcinoma and
follicular thyroid adenoma identified using next generation
sequencing. Int J Mol Sci. 20:31262019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wojtas B, Pfeifer A, Oczko-Wojciechowska
M, Krajewska J, Czarniecka A, Kukulska A, Eszlinger M, Musholt T,
Stokowy T, Swierniak M, et al: Gene expression (mRNA) markers for
differentiating between malignant and benign follicular thyroid
tumours. Int J Mol Sci. 18:11842017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Alshenawy HA: Utility of
immunohistochemical markers in differential diagnosis of follicular
cell-derived thyroid lesions. J Microsc Ultrastruct. 2:127–136.
2014. View Article : Google Scholar
|
|
23
|
Sun Y, Li L, Zhou Y, Ge W, Wang H, Wu R,
Liu W, Chen H, Xiao Q, Cai X, et al: Stratification of follicular
thyroid tumours using data-independent acquisition proteomics and a
comprehensive thyroid tissue spectral library. Mol Oncol.
16:1611–1624. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zhang H, Zhang Z, Liu X, Duan H, Xiang T,
He Q, Su Z, Wu H and Liang Z: DNA methylation haplotype block
markers efficiently discriminate follicular thyroid carcinoma from
follicular adenoma. J Clin Endocrinol Metab. 106:1011–1021. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Milas M, Mazzaglia P, Chia SY, Skugor M,
Berber E, Reddy S, Gupta M and Siperstein A: The utility of
peripheral thyrotropin mRNA in the diagnosis of follicular
neoplasms and surveillance of thyroid cancers. Surgery.
141:137–146; discussion 146. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zabegina L, Nazarova I, Knyazeva M,
Nikiforova N, Slyusarenko M, Titov S, Vasilyev D, Sleptsov I and
Malek A: MiRNA let-7 from TPO(+) extracellular vesicles is a
potential marker for a differential diagnosis of follicular thyroid
nodules. Cells. 9:19172020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Vasconcelos MH, Caires HR, Ābols A, Xavier
CPR and Linē A: Extracellular vesicles as a novel source of
biomarkers in liquid biopsies for monitoring cancer progression and
drug resistance. Drug Resist Updat. 47:1006472019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Simpson JC, Griffiths G, Wessling-Resnick
M, Fransen JA, Bennett H and Jones AT: A role for the small GTPase
Rab21 in the early endocytic pathway. J Cell Sci. 117:6297–6311.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Lin S, Cao C, Meng Y, Wu P, Gao P, Zhi W,
Peng T, Wu P and Gui L: Comprehensive analysis of the value of RAB
family genes in prognosis of breast invasive carcinoma. Biosci Rep.
40:BSR202011032020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Anand S, Khan MA, Khushman M, Dasgupta S,
Singh S and Singh AP: Comprehensive analysis of expression,
clinicopathological association and potential prognostic
significance of RABs in pancreatic cancer. Int J Mol Sci.
21:55802020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Paul NR, Jacquemet G and Caswell PT:
Endocytic trafficking of integrins in cell migration. Curr Biol.
25:R1092–R1105. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Mai A, Veltel S, Pellinen T, Padzik A,
Coffey E, Marjomäki V and Ivaska J: Competitive binding of Rab21
and p120RasGAP to integrins regulates receptor traffic and
migration. J Cell Biol. 194:291–306. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Friedl P and Wolf K: Tumour-cell invasion
and migration: Diversity and escape mechanisms. Nat Rev Cancer.
3:362–374. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ge J, Chen Q, Liu B, Wang L, Zhang S and
Ji B: Knockdown of Rab21 inhibits proliferation and induces
apoptosis in human glioma cells. Cell Mol Biol Lett. 22:302017.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Pei Y, Lv S, Shi Y, Jia J, Ma M, Han H,
Zhang R, Tan J and Zhang X: RAB21 controls autophagy and cellular
energy homeostasis by regulating retromer-mediated recycling of
SLC2A1/GLUT1. Autophagy. 19:1070–1086. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wu K, Li Y, Ji Y, Liu C, Wang X, Guo H,
Zhang J and He Y: Tumor-derived RAB21+ABHD12+
sEVs drive the premetastatic microenvironment in the lung. Cancer
Immunol Res. 12:161–179. 2024. View Article : Google Scholar : PubMed/NCBI
|