|
1
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33.
2022.PubMed/NCBI
|
|
2
|
Milliron BJ, Bruneau M, Obeid E, Gross L,
Bealin L, Smaltz C and Giri VN: Diet assessment among men
undergoing genetic counseling and genetic testing for inherited
prostate cancer: Exploring a teachable moment to support diet
intervention. Prostate. 79:778–783. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Culp MB, Soerjomataram I, Efstathiou JA,
Bray F and Jemal A: Recent global patterns in prostate cancer
incidence and mortality rates. Eur Urol. 77:38–52. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Baker SJ and Vogelstein B: p53: A tumor
suppressor hiding in plain sight. J Mol Cell Biol. 11:536–538.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Vousden KH and Prives C: Blinded by the
light: The growing complexity of p53. Cell. 137:413–431. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Hassin O and Oren M: Drugging p53 in
cancer: One protein, many targets. Nat Rev Drug Discov. 22:127–144.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Levine AJ: p53: 800 Million years of
evolution and 40 years of discovery. Nat Rev Cancer. 20:471–480.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Olivier M, Hollstein M and Hainaut P: TP53
mutations in human cancers: Origins, consequences, and clinical
use. Cold Spring Harb Perspect Biol. 2:a0010082010. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
He Y, Johnson DT, Yang JS, Wu H, You S,
Yoon J, Lee DH, Kim WK, Aldahl J, Le V, et al: Loss of the tumor
suppressor, Tp53, enhances the androgen receptor-mediated oncogenic
transformation and tumor development in the mouse prostate.
Oncogene. 38:6507–6520. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Lin HY, Huang CH, Wu WJ, Chang LC and Lung
FW: TP53 codon 72 gene polymorphism paradox in associated with
various carcinoma incidences, invasiveness and chemotherapy
responses. Int J Biomed Sci. 4:248–254. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Lu Y, Liu Y, Zeng J, He Y, Peng Q, Deng Y,
Wang J, Xie L, Li T, Qin X and Li S: Association of p53 codon 72
polymorphism with prostate cancer: An update meta-analysis. Tumour
Biol. 35:3997–4005. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Han PZ, Cao DH, Zhang XL, Ren ZJ and Wei
Q: Association between TP53 gene codon72 polymorphism and prostate
cancer risk: A systematic review and meta-analysis. Medicine
(Baltimore). 98:e161352019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Fan S, Hao ZY, Zhang M and Liang CZ:
Association between the rs1042522 polymorphism in TP53 and prostate
cancer risk: An updated meta-analysis. Chronic Dis Transl Med.
3:95–104. 2017.PubMed/NCBI
|
|
14
|
Zhang TW, Wei Y, Pan J, Fang BW, Ye DW and
Zhu Y: Clinical features and prognostic value of TP53 mutation in
Chinese prostate cancer patients. Zhonghua Wai Ke Za Zhi.
59:897–901. 2021.(In Chinese). PubMed/NCBI
|
|
15
|
Stricker HJ, Jay JK, Linden MD, Tamboli P
and Amin MB: Determining prognosis of clinically localized prostate
cancer by immunohistochemical detection of mutant p53. Urology.
47:366–369. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Maxwell KN, Cheng HH, Powers J, Gulati R,
Ledet EM, Morrison C, Le A, Hausler R, Stopfer J, Hyman S, et al:
Inherited TP53 variants and risk of prostate cancer. Eur Urol.
81:243–250. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Liu Z, Guo H, Zhu Y, Xia Y, Cui J, Shi K,
Fan Y, Shi B and Chen S: TP53 alterations of hormone-naïve prostate
cancer in the Chinese population. Prostate Cancer Prostatic Dis.
24:482–491. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Huang H, Tang Y, Li P, Ye X, Chen W, Xie H
and Zheng Y: Significance of TP53 and immune-related genes to
prostate cancer. Transl Androl Urol. 10:1754–1768. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Wang Y, Ma Y and Jiang K: The role of
ferroptosis in prostate cancer: A novel therapeutic strategy.
Prostate Cancer Prostatic Dis. 26:25–29. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lin A, Qi C, Wei T, Li M, Cheng Q, Liu Z,
Luo P and Zhang J: CAMOIP: A web server for comprehensive analysis
on multi-omics of immunotherapy in pan-cancer. Brief Bioinform.
23:bbac1292022. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Aydin M, Bozkurt A, Cikman A, Gulhan B,
Karabakan M, Gokce A, Alper M and Kara M: Lack of evidence of HPV
etiology of prostate cancer following radical surgery and higher
frequency of the Arg/Pro genotype in Turkish men with prostate
cancer. Int Braz J Urol. 43:36–46. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Sivoňová MK, Vilčková M, Kliment J,
Mahmood S, Jurečeková J, Dušenková S, Waczulíková I, Slezák P and
Dobrota D: Association of p53 and p21 polymorphisms with prostate
cancer. Biomed Rep. 3:707–714. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Behfarjam F, Rostamzadeh J, Zarei MA and
Nikkhoo B: Association of two polymorphic codons in P53 and ABCC1
promoter with prostate cancer. Iran J Biotechnol. 13:49–54. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Babaei F, Ahmadi SA, Abiri R, Rezaei F,
Naseri M, Mahmoudi M, Nategh R and Mokhtari Azad T: The TP53 codon
72 polymorphism and risk of sporadic prostate cancer among Iranian
patients. Iran J Public Health. 43:453–459. 2014.PubMed/NCBI
|
|
25
|
Khan MH, Rashid H, Mansoor Q, Hameed A and
Ismail M: Association of the rs1042522 polymorphism with increased
risk of prostate adenocarcinoma in the Pakistani population and its
HuGE review. Asian Pac J Cancer Prev. 15:3973–3980. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Michopoulou V, Derdas SP, Symvoulakis E,
Mourmouras N, Nomikos A, Delakas D, Sourvinos G and Spandidos DA:
Detection of human papillomavirus (HPV) DNA prevalence and p53
codon 72 (Arg72Pro) polymorphism in prostate cancer in a Greek
group of patients. Tumour Biol. 35:12765–12773. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Meyer A, Coinac I, Bogdanova N,
Dubrowinskaja N, Turmanov N, Haubold S, Schürmann P, Imkamp F, von
Klot C, Merseburger AS, et al: Apoptosis gene polymorphisms and
risk of prostate cancer: A hospital-based study of German patients
treated with brachytherapy. Urol Oncol. 31:74–81. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Grobarcikova STR, Dusenka R, Kmetova
Sivonova M, Dobrota D and Kliment J: The association of p53 gene
polymorphism at codon 72 and prostate cancer risk: Case control
study. Urology. 80 (Suppl 3A):S822012.
|
|
29
|
Bansal A, Soni A, Rao P, Singh LC, Mishra
AK, Mohanty NK and Saxena S: Implication of DNA repair genes in
prostate tumourigenesis in Indian males. Indian J Med Res.
136:622–632. 2012.PubMed/NCBI
|
|
30
|
Salehi Z and Hadavi M: Analysis of the
codon 72 polymorphism of TP53 and human papillomavirus infection in
Iranian patients with prostate cancer. J Med Virol. 84:1423–1427.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Mittal RD, George GP, Mishra J, Mittal T
and Kapoor R: Role of functional polymorphisms of P53 and P73 genes
with the risk of prostate cancer in a case-control study from
Northern India. Arch Med Res. 42:122–127. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Rogler A, Rogenhofer M, Borchardt A, Lunz
JC, Knoell A, Hofstaedter F, Tannapfel A, Wieland W, Hartmann A and
Stoehr R: P53 codon 72 (Arg72Pro) polymorphism and prostate cancer
risk: Association between disease onset and proline genotype.
Pathobiology. 78:193–200. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Doosti A and Dehkordi PG: The p53 codon 72
polymorphism and association to prostate cancer in Iranian
patients. Afr J Biotechnol. 10:12821–12825. 2011. View Article : Google Scholar
|
|
34
|
Ricks-Santi L, Mason T, Apprey V, Ahaghotu
C, McLauchlin A, Josey D, Bonney G and Dunston GM: p53 Pro72Arg
polymorphism and prostate cancer in men of African descent.
Prostate. 70:1739–1745. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Xu B, Xu Z, Cheng G, Min ZC, Mi Y, Zhang
ZZ, Tao J, Li PC, Wang ML, Tang JL, et al: Association between
polymorphisms of TP53 and MDM2 and prostate cancer risk in southern
Chinese. Cancer Genet Cytogenet. 202:76–81. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Hirata H, Hinoda Y, Kikuno N, Suehiro Y,
Shahryari V, Ahmad AE, Tabatabai ZL, Igawa M and Dahiya R:
Bcl2-938C/A polymorphism carries increased risk of biochemical
recurrence after radical prostatectomy. J Urol. 181:1907–1912.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Hirata H, Hinoda Y, Kikuno N, Kawamoto K,
Dahiya AV, Suehiro Y, Tanaka Y and Dahiya R: CXCL12 G801A
polymorphism is a risk factor for sporadic prostate cancer
susceptibility. Clin Cancer Res. 13:5056–5062. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Quiñones LA, Irarrázabal CE, Rojas CR,
Orellana CE, Acevedo C, Huidobro C, Varela NE and Cáceres DD: Joint
effect among p53, CYP1A1, GSTM1 polymorphism combinations and
smoking on prostate cancer risk: An exploratory
genotype-environment interaction study. Asian J Androl. 8:349–355.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Leiros GJ, Galliano SR, Sember ME, Kahn T,
Schwarz E and Eiguchi K: Detection of human papillomavirus DNA and
p53 codon 72 polymorphism in prostate carcinomas of patients from
Argentina. BMC Urol. 5:152005. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Huang SP, Wu WJ, Chang WS, Wu MT, Chen YY,
Chen YJ, Yu CC, Wu TT, Lee YH, Huang JK and Huang CH: p53 Codon 72
and p21 codon 31 polymorphisms in prostate cancer. Cancer Epidemiol
Biomarkers Prev. 13:2217–2224. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wu HC, Chang CH, Chen HY, Tsai FJ, Tsai
JJP and Chen WC: p53 gene codon 72 polymorphism but not tumor
necrosis factor-alpha gene is associated with prostate cancer. Urol
Int. 73:41–46. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Suzuki K, Matsui H, Ohtake N, Nakata S,
Takei T, Nakazato H, Okugi H, Koike H, Ono Y, Ito K, et al: A p53
codon 72 polymorphism associated with prostate cancer development
and progression in Japanese. J Biomed Sci. 10:430–435. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Henner WD, Evans AJ, Hough KM, Harris EL,
Lowe BA and Beer TM: Association of codon 72 polymorphism of p53
with lower prostate cancer risk. Prostate. 49:263–266. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wu WJ, Kakehi Y, Habuchi T, Kinoshita H,
Ogawa O, Terachi T, Huang CH, Chiang CP and Yoshida O: Allelic
frequency of p53 gene codon 72 polymorphism in urologic cancers.
Jpn J Cancer Res. 86:730–736. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lam YK, Yu J, Huang H, Ding X, Wong AM,
Leung HH, Chan AW, Ng KK, Xu M, Wang X and Wong N: TP53 R249S
mutation in hepatic organoids captures the predisposing cancer
risk. Hepatology. 78:727–740. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Raab M, Kostova I, Peña-Llopis S, Fietz D,
Kressin M, Aberoumandi SM, Ullrich E, Becker S, Sanhaji M and
Strebhardt K: Rescue of p53 functions by in vitro-transcribed mRNA
impedes the growth of high-grade serous ovarian cancer. Cancer
Commun (Lond). 44:101–126. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Shi W, Wang Y, Zhao Y, Kim JJ, Li H, Meng
C, Chen F, Zhang J, Mak DH, Van V, et al: Immune checkpoint B7-H3
is a therapeutic vulnerability in prostate cancer harboring PTEN
and TP53 deficiencies. Sci Transl Med. 15:eadf67242023. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wei Q, Li C, Tang Y, Bai J, Li W, Liu J,
Su Z and Cheng X: Mechanistic role of the Mdm2/MdmX Lid domain in
regulating their interactions with p53. Biomolecules. 15:6422025.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Bonneville R, Krook MA, Kautto EA, Miya J,
Wing MR, Chen HZ, Reeser JW, Yu L and Roychowdhury S: Landscape of
microsatellite instability across 39 cancer types. JCO Precis
Oncol. 2017.PO.17.00073. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Li H, Yang L, Wang Y, Wang L, Chen G,
Zhang L and Wang D: Integrative analysis of TP53 mutations in lung
adenocarcinoma for immunotherapies and prognosis. BMC
Bioinformatics. 24:1552023. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Cooks T, Pateras IS, Jenkins LM, Patel KM,
Robles AI, Morris J, Forshew T, Appella E, Gorgoulis VG and Harris
CC: Mutant p53 cancers reprogram macrophages to tumor supporting
macrophages via exosomal miR-1246. Nat Commun. 9:7712018.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Kawashima H, Takatori H, Suzuki K, Iwata
A, Yokota M, Suto A, Minamino T, Hirose K and Nakajima H: Tumor
suppressor p53 inhibits systemic autoimmune diseases by inducing
regulatory T cells. J Immunol. 191:3614–3623. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Klimovich B, Meyer L, Merle N, Neumann M,
König AM, Ananikidis N, Keber CU, Elmshäuser S, Timofeev O and
Stiewe T: Partial p53 reactivation is sufficient to induce cancer
regression. J Exp Clin Cancer Res. 41:802022. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Uddin MB, Roy KR, Hill RA, Roy SC, Gu X,
Li L, Zhang QJ, You Z and Liu YY: p53 missense mutant G242A
subverts natural killer cells in sheltering mouse breast cancer
cells against immune rejection. Exp Cell Res. 417:1132102022.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kadara H, Choi M, Zhang J, Parra ER,
Rodriguez-Canales J, Gaffney SG, Zhao Z, Behrens C, Fujimoto J,
Chow C, et al: Whole-exome sequencing and immune profiling of
early-stage lung adenocarcinoma with fully annotated clinical
follow-up. Ann Oncol. 28:75–82. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Chen Y, Sun Z, Chen W, Liu C, Chai R, Ding
J, Liu W, Feng X, Zhou J, Shen X, et al: The immune subtypes and
landscape of gastric cancer and to predict based on the whole-slide
images using deep learning. Front Immunol. 12:6859922021.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Quandt J, Schlude C, Bartoschek M, Will R,
Cid-Arregui A, Schölch S, Reissfelder C, Weitz J, Schneider M,
Wiemann S, et al: Long-peptide vaccination with driver gene
mutations in p53 and Kras induces cancer mutation-specific effector
as well as regulatory T cell responses. Oncoimmunology.
7:e15006712018. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Kong W, Han Y, Gu H, Yang H and Zang Y:
TP53 mutation-associated immune infiltration and a novel risk score
model in HNSCC. Biochem Biophys Rep. 32:1013592022.PubMed/NCBI
|
|
59
|
Chao CC: Mechanisms of p53 degradation.
Clin Chim Acta. 438:139–147. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Vieira VC, Leonard B, White EA, Starrett
GJ, Temiz NA, Lorenz LD, Lee D, Soares MA, Lambert PF, Howley PM
and Harris RS: Human papillomavirus E6 triggers upregulation of the
antiviral and cancer genomic DNA deaminase APOBEC3B. mBio.
5:e02234–14. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Yuan L, Chen Z, Song S, Wang S, Tian C,
Xing G, Chen X, Xiao ZX, He F and Zhang L: p53 degradation by a
coronavirus papain-like protease suppresses type I interferon
signaling. J Biol Chem. 290:3172–3182. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Muñoz-Fontela C, Macip S, Martínez-Sobrido
L, Brown L, Ashour J, García-Sastre A, Lee SW and Aaronson SA:
Transcriptional role of p53 in interferon-mediated antiviral
immunity. J Exp Med. 205:1929–1938. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zang Y, Ran X, Yuan J, Wu H, Wang Y, Li H,
Teng H and Sun Z: Genomic hallmarks and therapeutic targets of
ribosome biogenesis in cancer. Brief Bioinform. 25:bbae0232024.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Feng Z, Zhang H, Levine AJ and Jin S: The
coordinate regulation of the p53 and mTOR pathways in cells. Proc
Natl Acad Sci USA. 102:8204–8209. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Liu Y, Su Z, Tavana O and Gu W:
Understanding the complexity of p53 in a new era of tumor
suppression. Cancer Cell. 42:946–967. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhang L, Shao N, Yu Q, Hua L, Mi Y and
Feng N: Association between p53 Pro72Arg polymorphism and prostate
cancer risk: A meta-analysis. J Biomed Res. 25:25–32. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Mou Y, Wang J, Wu J, He D, Zhang C, Duan C
and Li B: Ferroptosis, a new form of cell death: Opportunities and
challenges in cancer. J Hematol Oncol. 12:342019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Liu MR, Zhu WT and Pei DS: System
Xc−: A key regulatory target of ferroptosis in cancer.
Invest New Drugs. 39:1123–1131. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Liu DS, Duong CP, Haupt S, Montgomery KG,
House CM, Azar WJ, Pearson HB, Fisher OM, Read M, Guerra GR, et al:
Inhibiting the system xC-/glutathione axis selectively
targets cancers with mutant-p53 accumulation. Nat Commun.
8:148442017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Huang C, Yang M, Deng J, Li P, Su W and
Jiang R: Upregulation and activation of p53 by erastin-induced
reactive oxygen species contribute to cytotoxic and cytostatic
effects in A549 lung cancer cells. Oncol Rep. 40:2363–2370.
2018.PubMed/NCBI
|
|
71
|
Sun Y, Deng R and Zhang C: Erastin induces
apoptotic and ferroptotic cell death by inducing ROS accumulation
by causing mitochondrial dysfunction in gastric cancer cell HGC-27.
Mol Med Rep. 22:2826–2832. 2020.PubMed/NCBI
|
|
72
|
Wu X, Liu C, Li Z, Gai C, Ding D, Chen W,
Hao F and Li W: Regulation of GSK3β/Nrf2 signaling pathway
modulated erastin-induced ferroptosis in breast cancer. Mol Cell
Biochem. 473:217–228. 2020. View Article : Google Scholar : PubMed/NCBI
|