You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
|
Leicht DT, Balan V, Kaplun A, Singh-Gupta V, Kaplun L, Dobson M and Tzivion G: Raf kinases: Function, regulation and role in human cancer. Biochim Biophys Acta. 1773:1196–1212. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
McDonald OB, Chen WJ, Ellis B, Hoffman C, Overton L, Rink M, Smith A, Marshall CJ and Wood ER: A scintillation proximity assay for the Raf/MEK/ERK Kinase cascade: High-throughput screening and identification of selective enzyme inhibitors. Anal Biochem. 268:318–329. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Padala SA and Barsouk A, Thandra KC, Saginala K, Mohammed A, Vakiti A, Rawla P and Barsouk A: Epidemiology of renal cell carcinoma. World J Oncol. 11:79–87. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, et al: Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 359:378–390. 2024. View Article : Google Scholar | |
|
Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, Luo R, Feng J, Ye S, Yang TS, et al: Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: A phase III randomised, ouble-blind, placebo-controlled trial. Lancet Oncol. 10:25–34. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng AL, Guan Z, Chen Z, Tsao CJ, Qin S, Kim JS, Yang TS, Tak WY, Pan H, Yu S, et al: Efficacy and safety of sorafenib in patients with advanced hepatocellular carcinoma according to baseline status: Subset analyses of the phase III Sorafenib Asia-Pacific trial. Eur J Cancer. 48:1452–1465. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Gauthier A and Ho M: Role of sorafenib in the treatment of advanced hepatocellular carcinoma: An update. Hepatol Res. 43:147–154. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Yang S and Liu G: Targeting the Ras/Raf/MEK/ERK pathway in hepatocellular carcinoma (review). Oncol Lett. 13:1041–1047. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kim MJ, Kim SM, Lee EK, Hwangbo Y, Lee YJ, Cho SW, Park DJ, Lee Y and Park YJ: Tumor doubling time predicts response to sorafenib in radioactive iodine-refractory differentiated thyroid cancer. Endocr J. 66:597–604. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kontomanolis EN, Koutras A, Syllaios A, Schizas D, Mastoraki A, Garmpis N, Diakosavvas M, Angelou K, Tsatsaris G, Pagkalos A, et al: Role of oncogenes and tumor-suppressor genes in carcinogenesis: A review. Anticancer Res. 40:6009–6015. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ishizawar R and Parsons SJ: c-Src and cooperating partners in human cancer. Cancer Cell. 6:209–214. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Myers MB, Wang Y, Mckim KL and Parsons BL: Hotspot oncomutations: Implications for personalized cancer treatment. Expert Rev Mol Diagn. 12:603–620. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti M and Heller DA: Targeted drug delivery strategies for precision medicines. Nat Rev Mater. 6:351–370. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kuczynski EA, Lee CR, Man S, Chen E and Kerbel RS: Effects of sorafenib dose on acquired reversible resistance and toxicity in hepatocellular carcinoma. Cancer Res. 75:2510–2519. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Fairfax BP, Pratap S, Roberts IS, Collier J, Kaplan R, Meade AM, Ritchie AW, Eisen T, Macaulay VM and Protheroe A: Fatal case of sorafenib-associated idiosyncratic hepatotoxicity in the adjuvant treatment of a patient with renal cell carcinoma. BMC Cancer. 12:5902012. View Article : Google Scholar : PubMed/NCBI | |
|
Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, et al: BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 64:7099–7109. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, Wilhelm S, Lynch M and Carter C: Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 66:11851–11858. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Reiss KA, Yu S, Mamtani R, Mehta R, D'Addeo K, Wileyto EP, Taddei TH and Kaplan DE: Starting dose of sorafenib for the treatment of hepatocellular carcinoma: A retrospective, multi-institutional study. J Clin Oncol. 35:3575–3581. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Woo HY, Heo J, Yoon KT, Kim GH, Kang DH, Song GA and Cho M: Clinical course of sorafenib treatment in patients with hepatocellular carcinoma. Scand J Gastroenterol. 47:809–819. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Dahiya M and Dureja H: Sorafenib for hepatocellular carcinoma: Potential molecular targets and resistance mechanisms. J Chemother. 34:286–301. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ashman LK and Griffith R: Therapeutic targeting of c-KIT in cancer. Expert Opin Investig Drugs. 22:103–115. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lei J, Dai H, Zhang Y, Ou G, Liang Z, Lu Y and Li H: Prognostic impact of primary versus secondary resistance to sorafenib in patients with HCC. Ther Adv Med Oncol. 17:75883592412996782025. View Article : Google Scholar : PubMed/NCBI | |
|
Carmeliet P and Jain RK: Molecular mechanisms and clinical applications of angiogenesis. Nature. 473:298–307. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Liu C, Chen Z, Chen Y, Lu J, Li Y, Wang S, Wu G and Qian F: Improving oral bioavailability of sorafenib by optimizing the ‘Spring’ and ‘Parachute’ Based on molecular interaction mechanisms. Mol Pharm. 13:599–608. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ghassabian S, Rawling T, Zhou F, Doddareddy MR, Tattam BN, Hibbs DE, Edwards RJ, Cui PH and Murray M: Role of human CYP3A4 in the biotransformation of sorafenib to its major oxidized metabolites. Biochem Pharmacol. 84:215–223. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ye L, Yang X, Guo E, Chen W, Lu L, Wang Y, Peng X, Yan T, Zhou F and Liu Z: Sorafenib metabolism is significantly altered in the liver tumor tissue of hepatocellular carcinoma patient. PLoS One. 9:e966642014. View Article : Google Scholar : PubMed/NCBI | |
|
Porta C, Paglino C, Imarisio I and Bonomi L: Uncovering pandora's vase: The growing problem of new toxicities from novel anticancer agents. The case of sorafenib and sunitinib. Clin Exp Med. 7:127–134. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Wei S, Wei F, Li M, Yang Y, Zhang J, Li C and Wang J: Target immune components to circumvent sorafenib resistance in hepatocellular carcinoma. Biomed Pharmacother. 163:1147982023. View Article : Google Scholar : PubMed/NCBI | |
|
Wu J, Chai H, Li F, Ren Q and Gu Y: SETD1A augments sorafenib primary resistance via activating YAP in hepatocellular carcinoma. Life Sci. 260:1184062020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Y, Zheng B, Wang H and Chen L: New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol Sin. 38:614–622. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Sun T, Mao W, Peng H, Wang Q and Jiao L: YAP promotes sorafenib resistance in hepatocellular carcinoma by upregulating survivin. Cell Oncol. 44:689–699. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Faleti OD, Alsaadawe M, Long J, Luo Q, Hu L, Zhang Y, Deng S, Wu G, Fang W, He M and Lyu X: Dimethyl fumarate abrogates hepatocellular carcinoma growth by inhibiting Nrf2/Bcl-xL axis and enhances sorafenib's efficacy. Sci Rep. 15:167242025. View Article : Google Scholar : PubMed/NCBI | |
|
Tutusaus A, Stefanovic M, Boix L, Cucarull B, Zamora A, Blasco L, de Frutos PG, Reig M, Fernandez-Checa JC, Marí M, et al: Antiapoptotic BCL-2 proteins determine sorafenib/regorafenib resistance and BH3-mimetic efficacy in hepatocellular carcinoma. Oncotarget. 9:16701–16717. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chen KF, Chen HL, Tai WT, Feng WC, Hsu CH, Chen PJ and Cheng AL: Activation of phosphatidylinositol 3-Kinase/Akt signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells. J Pharmacol Exp Ther. 337:155–161. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Maurer U, Charvet C, Wagman AS, Dejardin E and Green DR: Glycogen synthase Kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell. 21:749–760. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Gilley J, Coffer PJ and Ham J: FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. J Cell Biol. 162:613–622. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Chong C, Tan L, Lim L and Manser E: The mechanism of PAK activation: Autophosphorylation events in both regulatory and kinase domains control activity. J Biol Chem. 276:17347–17353. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Xie L, Zeng Y, Dai Z, He W, Ke H, Lin Q, Chen Y, Bu J, Lin D and Zheng M: Chemical and genetic inhibition of STAT3 sensitizes hepatocellular carcinoma cells to sorafenib induced cell death. Int J Biol Sci. 14:577–585. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Dai Z, Wang X, Peng R, Zhang B, Han Q, Lin J, Wang J, Lin J, Jiang M, Liu H, et al: Induction of IL-6Rα by ATF3 enhances IL-6 mediated sorafenib and regorafenib resistance in hepatocellular carcinoma. Cancer Lett. 524:161–171. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zang M, Hayne C and Luo Z: Interaction between Active Pak1 and Raf-1 is necessary for phosphorylation and activation of Raf-1. J Biol Chem. 277:4395–4405. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou B, Lu Q, Liu J, Fan L, Wang Y, Wei W, Wang H and Sun G: Melatonin increases the sensitivity of hepatocellular carcinoma to sorafenib through the PERK-ATF4-Beclin1 pathway. Int J Biol Sci. 15:1905–1920. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Rodríguez-Hernández MA, González R, de la Rosa ÁJ, Gallego P, Ordóñez R, Navarro-Villarán E, Contreras L, Rodríguez-Arribas M, González-Gallego J, Álamo-Martínez JM, et al: Molecular characterization of autophagic and apoptotic signaling induced by sorafenib in liver cancer cells. J Cell Physiol. 234:692–708. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Shi YH, Ding ZB, Zhou J, Hui B, Shi GM, Ke AW, Wang XY, Dai Z, Peng YF, Gu CY, et al: Targeting autophagy enhances sorafenib lethality for hepatocellular carcinoma via ER stress-related apoptosis. Autophagy. 7:1159–1172. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Shimizu S, Takehara T, Hikita H, Kodama T, Tsunematsu H, Miyagi T, Hosui A, Ishida H, Tatsumi T, Kanto T, et al: Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma. Int J Cancer. 131:548–557. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
van Malenstein H, Dekervel J, Verslype C, Van Cutsem E, Windmolders P, Nevens F and van Pelt J: Long-term exposure to sorafenib of liver cancer cells induces resistance with epithelial-to-mesenchymal transition, increased invasion and risk of rebound growth. Cancer Lett. 329:74–83. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Chow AK, Ng L, Lam CS, Wong SK, Wan TM, Cheng NS, Yau TC, Poon RT and Pang RW: The enhanced metastatic potential of hepatocellular carcinoma (HCC) cells with sorafenib resistance. PLoS One. 8:e786752013. View Article : Google Scholar : PubMed/NCBI | |
|
Bao MH and Wong CC: Hypoxia, metabolic reprogramming, and drug resistance in liver cancer. Cells. 10:17152021. View Article : Google Scholar : PubMed/NCBI | |
|
Dong N, Shi X, Wang S, Gao Y, Kuang Z, Xie Q, Li Y, Deng H, Wu Y, Li M and Li JL: M2 macrophages mediate sorafenib resistance by secreting HGF in a feed-forward manner in hepatocellular carcinoma. Br J Cancer. 121:22–33. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Arrondeau J, Mir O, Boudou-Rouquette P, Coriat R, Ropert S, Dumas G, Rodrigues MJ, Rousseau B, Blanchet B and Goldwasser F: Sorafenib exposure decreases over time in patients with hepatocellular carcinoma. Invest New Drugs. 30:2046–2049. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Gao R, Buechel D, Kalathur RKR, Morini MF, Coto-Llerena M, Ercan C, Piscuoglio S, Chen Q, Blumer T, Wang X, et al: USP29-mediated HIF1α stabilization is associated with Sorafenib resistance of hepatocellular carcinoma cells by upregulating glycolysis. Oncogenesis. 10:522021. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng Z, Lu Q, Liu Y, Zhao J, Zhang Q, Hu L, Shi Z, Tu Y, Xiao Z, Xu Q and Huang D: Effect of the hypoxia inducible factor on sorafenib resistance of hepatocellular carcinoma. Front Oncol. 11:6415222021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Cai L, Zhang F, Shang X, Xiao R and Zhou H: Inhibition of EZH2 attenuates sorafenib resistance by targeting NOTCH1 Activation-dependent liver cancer stem cells via NOTCH1-related MicroRNAs in hepatocellular carcinoma. Transl Oncol. 13:1007412020. View Article : Google Scholar : PubMed/NCBI | |
|
Azumi J, Tsubota T, Sakabe T and Shiota G: miR-181a induces sorafenib resistance of hepatocellular carcinoma cells through downregulation of RASSF1 expression. Cancer Sci. 107:1256–1262. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Hutson TE, Figlin RA, Kuhn JG and Motzer RJ: Targeted therapies for metastatic renal cell carcinoma: An overview of toxicity and dosing strategies. Oncologist. 13:1084–1096. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Tovar V, Cornella H, Moeini A, Vidal S, Hoshida Y, Sia D, Peix J, Cabellos L, Alsinet C, Torrecilla S, et al: Tumour initiating cells and IGF/FGF signalling contribute to sorafenib resistance in hepatocellular carcinoma. Gut. 66:530–540. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Jang JW, Song Y, Kim SH, Kim JS, Kim KM, Choi EK, Kim J and Seo HR: CD133 confers cancer stem-like cell properties by stabilizing EGFR-AKT signaling in hepatocellular carcinoma. Cancer Lett. 389:1–10. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Hagiwara S, Kudo M, Nagai T, Inoue T, Ueshima K, Nishida N, Watanabe T and Sakurai T: Activation of JNK and high expression level of CD133 predict a poor response to sorafenib in hepatocellular carcinoma. Br J Cancer. 106:1997–2003. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Wang M, Wang Z, Zhi X, Ding W, Xiong J, Tao T, Yang Y, Zhang H, Zi X, Zhou W and Huang G: SOX9 enhances sorafenib resistance through upregulating ABCG2 expression in hepatocellular carcinoma. Biomed Pharmacother. 129:1103152020. View Article : Google Scholar : PubMed/NCBI | |
|
Giovannini C, Baglioni M, Baron Toaldo M, Ventrucci C, D'Adamo S, Cipone M, Chieco P, Gramantieri L and Bolondi L: Notch3 inhibition enhances sorafenib cytotoxic efficacy by promoting GSK3β phosphorylation and p21 down-regulation in hepatocellular carcinoma. Oncotarget. 4:1618–1631. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Wang Y, Xun X, Zhang C, Xiang X, Cheng Q, Hu S, Li Z and Zhu J: Hedgehog signaling promotes sorafenib resistance in hepatocellular carcinoma patient-derived organoids. J Exp Clin Cancer Res. 39:222020. View Article : Google Scholar : PubMed/NCBI | |
|
Leung HW, Leung CON, Lau EY, Chung KPS, Mok EH, Lei MML, Leung RWH, Tong M, Keng VW, Ma C, et al: EPHB2 activates β-catenin to enhance cancer stem cell properties and drive sorafenib resistance in hepatocellular carcinoma. Cancer Res. 81:3229–3240. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Guan D, Shi J, Zhang Y, Zhao JS, Long LY, Chen TW, Zhang EB, Feng YY, Bao WD, Deng YZ, et al: Sorafenib enriches epithelial cell adhesion molecule-positive tumor initiating cells and exacerbates a subtype of hepatocellular carcinoma through TSC2-AKT cascade. Hepatology. 62:1791–803. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hu Z, Zhao Y, Li L, Jiang J, Li W, Mang Y, Gao Y, Dong Y, Zhu J, Yang C, et al: Metformin promotes ferroptosis and sensitivity to sorafenib in hepatocellular carcinoma cells via ATF4/STAT3. Mol Biol Rep. 50:6399–6413. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ahmed TA, Adamopoulos C, Karoulia Z, Wu X, Sachidanandam R, Aaronson SA and Poulikakos PI: SHP2 drives adaptive resistance to ERK signaling inhibition in molecularly defined subsets of ERK-dependent tumors. Cell Rep. 26:65–78.e5. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kane RC, Farrell AT, Saber H, Tang S, Williams G, Jee JM, Liang C, Booth B, Chidambaram N, Morse D, et al: Sorafenib for the treatment of advanced renal cell carcinoma. Clin Cancer Res. 12:7271–7278. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Han T, Xiang DM, Sun W, Liu N, Sun HL, Wen W, Shen WF, Wang RY, Chen C, Wang X, et al: PTPN11/Shp2 overexpression enhances liver cancer progression and predicts poor prognosis of patients. J Hepatol. 63:651–660. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ichikawa K, Watanabe Miyano S, Minoshima Y, Matsui J and Funahashi Y: Activated FGF2 signaling pathway in tumor vasculature is essential for acquired resistance to anti-VEGF therapy. Sci Rep. 10:29392020. View Article : Google Scholar : PubMed/NCBI | |
|
Kanzaki H, Chiba T, Ao J, Koroki K, Kanayama K, Maruta S, Maeda T, Kusakabe Y, Kobayashi K, Kanogawa N, et al: The impact of FGF19/FGFR4 signaling inhibition in antitumor activity of multi-kinase inhibitors in hepatocellular carcinoma. Sci Rep. 11:53032021. View Article : Google Scholar : PubMed/NCBI | |
|
Gao L, Wang X, Tang Y, Huang S, Hu CAA and Teng Y: FGF19/FGFR4 signaling contributes to the resistance of hepatocellular carcinoma to sorafenib. J Exp Clin Cancer Res. 36:82017. View Article : Google Scholar : PubMed/NCBI | |
|
Allen E, Walters IB and Hanahan D: Brivanib, a dual FGF/VEGF inhibitor, is active both first and second line against mouse pancreatic neuroendocrine tumors developing adaptive/evasive resistance to VEGF inhibition. Clin Cancer Res. 17:5299–5310. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Huynh H, Ngo VC, Fargnoli J, Ayers M, Soo KC, Koong HN, Thng CH, Ong HS, Chung A, Chow P, et al: Brivanib alaninate, a dual inhibitor of vascular endothelial growth factor receptor and fibroblast growth factor receptor tyrosine kinases, induces growth inhibition in mouse models of human hepatocellular carcinoma. Clin Cancer Res. 14:6146–6153. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Abou-Alfa GK: Selection of patients with hepatocellular carcinoma for sorafenib. J Natl Compr Canc Netw. 7:397–403. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Donnem T, Hu J, Ferguson M, Adighibe O, Snell C, Harris AL, Gatter KC and Pezzella F: Vessel co-option in primary human tumors and metastases: An obstacle to effective anti-angiogenic treatment? Cancer Med. 2:427–436. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Bridgeman VL, Wan E, Foo S, Nathan MR, Welti JC, Frentzas S, Vermeulen PB, Preece N, Springer CJ, Powles T, et al: Preclinical evidence that trametinib enhances the response to antiangiogenic tyrosine kinase inhibitors in renal cell carcinoma. Mol Cancer Ther. 15:172–183. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ma L, Chen Z, Erdjument-Bromage H, Tempst P and Pandolfi PP: Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell. 121:179–193. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Mills JR, Hippo Y, Robert F, Chen SM, Malina A, Lin CJ, Trojahn U, Wendel HG, Charest A, Bronson RT, et al: mTORC1 promotes survival through translational control of Mcl-1. Proc Natl Acad Sci. 105:10853–10858. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Dufies M, Verbiest A, Cooley LS, Ndiaye PD, He X, Nottet N, Souleyreau W, Hagege A, Torrino S, Parola J, et al: Plk1, upregulated by HIF-2, mediates metastasis and drug resistance of clear cell renal cell carcinoma. Commun Biol. 4:1662021. View Article : Google Scholar : PubMed/NCBI | |
|
Mazumder S, Higgins PJ and Samarakoon R: Downstream targets of VHL/HIF-α signaling in renal clear cell carcinoma progression: Mechanisms and therapeutic relevance. Cancers (Basel). 15:13162023. View Article : Google Scholar : PubMed/NCBI | |
|
Ge Y, Weygant N, Qu D, May R, Berry WL, Yao J, Chandrakesan P, Zheng W, Zhao L, Zhao KL, et al: Alternative splice variants of DCLK1 mark cancer stem cells, promote self-renewal and drug-resistance, and can be targeted to inhibit tumorigenesis in kidney cancer. Int J Cancer. 143:1162–1175. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lagas JS, van Waterschoot RAB, Sparidans RW, Wagenaar E, Beijnen JH and Schinkel AH: Breast cancer resistance protein and P-glycoprotein limit sorafenib brain accumulation. Mol Cancer Ther. 9:319–326. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Huang WC, Hsieh YL, Hung CM, Chien PH, Chien YF, Chen LC, Tu CY, Chen CH, Hsu SC, Lin YM and Chen YJ: BCRP/ABCG2 inhibition sensitizes hepatocellular carcinoma cells to sorafenib. PLoS One. 8:e836272014. View Article : Google Scholar : PubMed/NCBI | |
|
Singh A, Wu H, Zhang P, Happel C, Ma J and Biswal S: Expression of ABCG2 (BCRP) is regulated by Nrf2 in cancer cells that confers side population and chemoresistance phenotype. Mol Cancer Ther. 9:2365–2376. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Luo F, Zhu Z, Xu Z, Huang X, Ma R, He H, Zhu Y, Shao K and Zhao J: ABCG2 is a potential prognostic marker of overall survival in patients with clear cell renal cell carcinoma. BMC Cancer. 17:2222017. View Article : Google Scholar : PubMed/NCBI | |
|
Shibayama Y, Nakano K, Maeda H, Taguchi M, Ikeda R, Sugawara M, Iseki K, Takeda Y and Yamada K: Multidrug resistance protein 2 implicates anticancer Drug-resistance to sorafenib. Biol Pharm Bull. 34:433–435. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Colombo F, Trombetta E, Cetrangolo P, Maggioni M, Razini P, De Santis F, Torrente Y, Prati D, Torresani E and Porretti L: Giant lysosomes as a chemotherapy resistance mechanism in hepatocellular carcinoma cells. PLoS One. 9:e1147872014. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng B, Zhu H, Gu D, Pan X, Qian L, Xue B, Yang D, Zhou J and Shan Y: MiRNA-30a-mediated autophagy inhibition sensitizes renal cell carcinoma cells to sorafenib. Biochem Biophys Res Commun. 459:234–239. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
He J, He J, Min L, He Y, Guan H, Wang J and Peng X: Extracellular vesicles transmitted miR-31-5p promotes sorafenib resistance by targeting MLH1 in renal cell carcinoma. Int J Cancer. 146:1052–1063. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Z, Yang F, Wei D, Liu B, Chen C, Bao Y, Wu Z, Wu D, Tan H, Li J, et al: Long noncoding RNA-SRLR elicits intrinsic sorafenib resistance via evoking IL-6/STAT3 axis in renal cell carcinoma. Oncogene. 36:1965–1977. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Liu F, Chen N, Gong Y, Xiao R, Wang W and Pan Z: The long non-coding RNA NEAT1 enhances epithelial-to-mesenchymal transition and chemoresistance via the miR-34a/c-Met axis in renal cell carcinoma. Oncotarget. 8:62927–62938. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Amato RJ, Flaherty AL and Stepankiw M: Phase I trial of everolimus plus sorafenib for patients with advanced renal cell cancer. Clin Genitourin Cancer. 10:26–31. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Jin Y, Huang R, Xia Y, Huang C, Qiu F, Pu J, He X and Zhao X: Long noncoding RNA KIF9-AS1 regulates transforming growth Factor-β and autophagy signaling to enhance renal cell carcinoma chemoresistance via microRNA-497-5p. DNA Cell Biol. 39:1096–1103. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Qin C, Cao Q, Li P, Wang S, Wang J, Wang M, Chu H, Zhou L, Li X, Ye D, et al: The influence of genetic variants of sorafenib on clinical outcomes and toxic effects in patients with advanced renal cell carcinoma. Sci Rep. 6:200892016. View Article : Google Scholar : PubMed/NCBI | |
|
Escudier B, Rini BI, Motzer RJ, Tarazi J, Kim S, Huang X, Rosbrook B, English PA, Loomis AK and Williams JA: Genotype correlations with blood pressure and efficacy from a randomized Phase III trial of Second-line axitinib versus sorafenib in metastatic renal cell carcinoma. Clin Genitourin Cancer. 13:328–337.e3. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Han KS, Raven PA, Frees S, Gust K, Fazli L, Ettinger S, Hong SJ, Kollmannsberger C, Gleave ME and So AI: Cellular adaptation to VEGF-targeted antiangiogenic therapy induces evasive resistance by overproduction of alternative endothelial cell growth factors in renal cell carcinoma. Neoplasia. 17:805–816. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Sarbassov DD, Guertin DA, Ali SM and Sabatini DM: Phosphorylation and regulation of Akt/PKB by the Rictor-mTOR complex. Science. 307:1098–1101. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao CX, Luo CL and Wu XH: Hypoxia promotes 786-O cells invasiveness and resistance to sorafenib via HIF-2α/COX-2. Med Oncol. 32:4192014. View Article : Google Scholar : PubMed/NCBI | |
|
Bielecka ZF, Malinowska A, Brodaczewska KK, Klemba A, Kieda C, Krasowski P, Grzesiuk E, Piwowarski J, Czarnecka AM and Szczylik C: Hypoxic 3D in vitro culture models reveal distinct resistance processes to TKIs in renal cancer cells. Cell Biosci. 7:712017. View Article : Google Scholar : PubMed/NCBI | |
|
Bae T, Hallis SP and Kwak MK: Hypoxia, oxidative stress, and the interplay of HIFs and NRF2 signaling in cancer. Exp Mol Med. 56:501–514. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Chang K, Chen Y, Zhang X, Zhang W, Xu N, Zeng B, Wang Y, Feng T, Dai B, Xu F, et al: DPP9 stabilizes NRF2 to suppress ferroptosis and induce sorafenib resistance in clear cell renal cell carcinoma. Cancer Res. 83:3940–3955. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Siska PJ, Beckermann KE, Rathmell WK and Haake SM: Strategies to overcome therapeutic resistance in renal cell carcinoma. Urol Oncol. 35:102–110. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Tang S, Tan G, Jiang X, Han P, Zhai B, Dong X, Qiao H, Jiang H and Sun X: An artificial lncRNA targeting multiple miRNAs overcomes sorafenib resistance in hepatocellular carcinoma cells. Oncotarget. 7:73257–73269. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Gedaly R, Angulo P, Hundley J, Daily MF, Chen C, Koch A and Evers BM: PI-103 and Sorafenib inhibit hepatocellular carcinoma cell proliferation by blocking Ras/Raf/MAPK and PI3K/AKT/mTOR pathways. Anticancer Res. 30:4951–4958. 2010.PubMed/NCBI | |
|
Weygant N, Qu D, May R, Tierney RM, Berry WL, Zhao L, Agarwal S, Chandrakesan P, Chinthalapally HR, Murphy NT, et al: DCLK1 is a broadly dysregulated target against epithelial-mesenchymal transition, focal adhesion, and stemness in clear cell renal carcinoma. Oncotarget. 6:2193–2205. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Patel TV, Morgan JA, Demetri GD, George S, Maki RG, Quigley M and Humphreys BD: A preeclampsia-like syndrome characterized by reversible hypertension and proteinuria induced by the multitargeted kinase inhibitors sunitinib and sorafenib. J Natl Cancer Inst. 100:282–284. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Schmidinger M, Zielinski CC, Vogl UM, Bojic A, Bojic M, Schukro C, Ruhsam M, Hejna M and Schmidinger H: Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 26:5204–5212. 2024. View Article : Google Scholar | |
|
Altena R, Perik PJ, van Veldhuisen DJ, de Vries EGE and Gietema JA: Cardiovascular toxicity caused by cancer treatment: Strategies for early detection. Lancet Oncol. 10:391–399. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Wu S, Chen JJ, Kudelka A, Lu J and Zhu X: Incidence and risk of hypertension with sorafenib in patients with cancer: A systematic review and meta-analysis. Lancet Oncol. 9:117–123. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Winnik S, Lohmann C, Siciliani G, von Lukowicz T, Kuschnerus K, Kraenkel N, Brokopp CE, Enseleit F, Michels S, Ruschitzka F, et al: Systemic VEGF inhibition accelerates experimental atherosclerosis and disrupts endothelial homeostasis-implications for cardiovascular safety. Int J Cardiol. 168:2453–2461. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Pomej K, Scheiner B, Park D, Bauer D, Balcar L, Meischl T, Mandorfer M, Reiberger T, Müller C, Trauner M and Pinter M: Vascular complications in patients with hepatocellular carcinoma treated with sorafenib. Cancers (Basel). 12:29612020. View Article : Google Scholar : PubMed/NCBI | |
|
Choueiri TK, Schutz FAB, Je Y, Rosenberg JE and Bellmunt J: Risk of arterial thromboembolic events with sunitinib and sorafenib: A systematic review and Meta-analysis of clinical trials. J Clin Oncol. 28:2280–2285. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Pearson JD: Endothelial cell function and thrombosis. Best Pract Res Clin Haematol. 12:329–341. 1999. View Article : Google Scholar | |
|
Herrmann J, Yang EH, Iliescu CA, Cilingiroglu M, Charitakis K, Hakeem A, Toutouzas K, Leesar MA, Grines CL and Marmagkiolis K: Vascular toxicities of cancer therapies. Circulation. 133:1272–1289. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Brose MS, Frenette CT, Keefe SM and Stein SM: Management of Sorafenib-related adverse events: A clinician's perspective. Semin Oncol. 41 (Suppl 2):S1–S16. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Je Y, Schutz FAB and Choueiri TK: Risk of bleeding with vascular endothelial growth factor receptor tyrosine-kinase inhibitors sunitinib and sorafenib: A systematic review and Meta-analysis of clinical trials. Lancet Oncol. 10:967–974. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Dai C, Zhou F, Shao JH, Wu LQ, Yu X and Yin XB: Bleeding risk in cancer patients treated with sorafenib: A meta-analysis of randomized controlled trials. J Cancer Res Ther. 14 (Suppl 1):S948–S956. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chu D, Lacouture ME, Fillos T and Wu S: Risk of hand-foot skin reaction with sorafenib: A systematic review and meta-analysis. Acta Oncol (Madr). 47:176–186. 2008. View Article : Google Scholar | |
|
Yeh CN, Huang WK, Lu CW, Chen CP, Lin SH, Pan YR and Wu CE: A potential association of zinc deficiency and tyrosine kinase Inhibitor-induced Hand-foot skin reaction. Biol Trace Elem Res. 201:5540–5545. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Luo P, Yan H, Chen X, Zhang Y, Zhao Z, Cao J, Zhu Y, Du J, Xu Z, Zhang X, et al: s-HBEGF/SIRT1 circuit-dictated crosstalk between vascular endothelial cells and keratinocytes mediates sorafenib-induced hand-foot skin reaction that can be reversed by nicotinamide. Cell Res. 30:779–793. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lacouture ME, Reilly LM, Gerami P and Guitart J: Hand foot skin reaction in cancer patients treated with the multikinase inhibitors sorafenib and sunitinib. Ann Oncol. 19:1955–1961. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Shah VH, Supekar BB, Singh RP and Mukhi JI: Sorafenib induced Hand-Foot skin reaction at low dose. Indian Dermatol Online J. 11:997–1000. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang P, Tan G, Zhu M, Li W, Zhai B and Sun X: Hand-foot skin reaction is a beneficial indicator of sorafenib therapy for patients with hepatocellular carcinoma: A systemic review and meta-analysis. Expert Rev Gastroenterol Hepatol. 12:1–8. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang E, Xia D, Bai W, Wang Z, Wang Q, Liu L, Wang W, Yuan J, Li X, Chen H, et al: Hand-foot-skin reaction of grade ≥ 2 within sixty days as the optimal clinical marker best help predict survival in sorafenib therapy for HCC. Invest New Drugs. 37:401–414. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Mir O, Coriat R, Blanchet B, Durand JP, Boudou-Rouquette P, Michels J, Ropert S, Vidal M, Pol S, Chaussade S and Goldwasser F: Sarcopenia predicts early Dose-limiting toxicities and pharmacokinetics of sorafenib in patients with hepatocellular carcinoma. PLoS One. 7:e375632012. View Article : Google Scholar : PubMed/NCBI | |
|
Escudier B, Szczylik C, Eisen T, Stadler WM, Schwartz B, Shan M and Bukowski RM: Randomized phase III trial of the Raf kinase and VEGFR inhibitor sorafenib (BAY 43-9006) in patients with advanced renal cell carcinoma (RCC). J Clin Oncol. 23:LBA4510. 2025. View Article : Google Scholar | |
|
FAN L and Iseki S: Immunohistochemical localization of vascular endothelial growth factor in the endocrine glands of the rat. Arch Histol Cytol. 61:17–28. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng W, Kuhlicke J, Jäckel K, Eltzschig HK, Singh A, Sjöblom M, Riederer B, Weinhold C, Seidler U, Colgan SP and Karhausen J: Hypoxia inducible factor-1 (HIF-l)-mediated repression of cystic fibrosis transmembrane conductance regulator (CFTR) in the intestinal epithelium. FASEB J. 23:204–213. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Y, Mo Y, Zhou W, Qin M, Li M, Yin G, Yu H, Chen Y, Du H, Jin Y, et al: Sorafenib induces intestinal toxicity by disturbing gut microbiota and activating the LPS/TLR4/NF-κB signaling pathway in mice. Toxicology. 517:1542202025. View Article : Google Scholar : PubMed/NCBI | |
|
Izzedine H, Massard C, Spano JP, Goldwasser F, Khayat D and Soria JC: VEGF signalling inhibition-induced proteinuria: Mechanisms, significance and management. Eur J Cancer. 46:439–448. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Tufro A and Veron D: VEGF and podocytes in diabetic nephropathy. Semin Nephrol. 32:385–393. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Azad NS, Posadas EM, Kwitkowski VE, Steinberg SM, Jain L, Annunziata CM, Minasian L, Sarosy G, Kotz HL, Premkumar A, et al: Combination targeted therapy with sorafenib and bevacizumab results in enhanced toxicity and antitumor activity. J Clin Oncol. 26:3709–3714. 2024. View Article : Google Scholar | |
|
Kuroda D, Hayashi H, Nitta H, Imai K, Abe S, Hashimoto D, Chikamoto A, Ishiko T, Beppu T and Baba H: Successful treatment for sorafenib-induced liver dysfunction: A report of case with liver biopsy. Surg Case Rep. 2:42016. View Article : Google Scholar : PubMed/NCBI | |
|
Van Hootegem A, Verslype C and Van Steenbergen W: Sorafenib-induced liver failure: A case report and review of the literature. Case Rep Hepatol. 2011:9413952011.PubMed/NCBI | |
|
Fernando J, Sancho P, Fernández-Rodriguez CM, Lledó JL, Caja L, Campbell JS, Fausto N and Fabregat I: Sorafenib sensitizes hepatocellular carcinoma cells to physiological apoptotic stimuli. J Cell Physiol. 227:1319–1325. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Stępniak J, Krawczyk-Lipiec J, Lewiński A and Karbownik-Lewińska M: Sorafenib versus lenvatinib causes stronger oxidative damage to membrane lipids in noncancerous tissues of the thyroid, liver, and kidney: Effective protection by melatonin and Indole-3-Propionic acid. Biomedicines. 10:28902022. View Article : Google Scholar : PubMed/NCBI | |
|
Zaafar D, Khalil HMA, Rasheed RA, Eltelbany RFA and Zaitone SA: Hesperetin mitigates sorafenib-induced cardiotoxicity in mice through inhibition of the TLR4/NLRP3 signaling pathway. PLoS One. 17:e02716312022. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu X, Li M, Wu L, Xin Y, Mu S, Li T and Song K: Severe Fatigue is an important factor in the prognosis of patients with advanced hepatocellular carcinoma treated with Sorafenib. Cancer Manag Res. 12:7983–7992. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Tamaskar I, Bukowski R, Elson P, Ioachimescu AG, Wood L, Dreicer R, Mekhail T, Garcia J and Rini BI: Thyroid function test abnormalities in patients with metastatic renal cell carcinoma treated with sorafenib. Ann Oncol. 19:265–268. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Beukhof CM, van Doorn L, Visser TJ, Bins S, Visser WE, van Heerebeek R, van Kemenade FJ, de Rijke YB, de Herder WW, Chaker L, et al: Sorafenib-induced changes in thyroid hormone levels in patients treated for hepatocellular carcinoma. J Clin Endocrinol Metab. 102:2922–2929. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Biondi B and Cooper DS: The clinical significance of subclinical thyroid dysfunction. Endocr Rev. 29:76–131. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Antoun S, Birdsell L, Sawyer MB, Venner P, Escudier B and Baracos VE: Association of skeletal muscle wasting with treatment with sorafenib in patients with advanced renal cell carcinoma: Results from a Placebo-controlled study. J Clin Oncol. 28:1054–1060. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Mir-Bonafé JF, Saceda-Corralo D and Vañó-Galván S: Adverse hair reactions to new targeted therapies for cancer. Actas Dermosifiliogr (Engl Ed). 110:182–192. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kim KI, Jung KE, Shin YB, Kim CD and Yoon TJ: Sorafenib induces pigmentation via the regulation of β-catenin signalling pathway in melanoma cells. Exp Dermatol. 31:57–63. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Man XY, Li CM, Chen JQ, Zhou J, Cai SQ, Lu ZF and Zheng M: VEGF induces proliferation of human hair follicle dermal papilla cells through VEGFR-2-mediated activation of ERK. Exp Cell Res. 318:1633–1640. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Hartmann JT and Kanz L: Sunitinib and periodic hair depigmentation due to temporary c-KIT inhibition. Arch Dermatol. 144:1525–1526. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Gole P, Madke B, Khopkar U, Kumar P, Noronha V and Yadav M: Side effects of Sorafenib and sunitinib: A new concern for dermatologist and oncologist. Indian Dermatol Online J. 5:89–91. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Jeong SM and Yoon TJ: Development of pigmentation-regulating agents by drug repositioning. Int J Mol Sci. 22:38942021. View Article : Google Scholar : PubMed/NCBI | |
|
Hansen T, Little AJ, Miller JJ and Ioffreda MD: A case of inflammatory nonscarring alopecia associated with the tyrosine kinase inhibitor nilotinib. JAMA Dermatol. 149:330–332. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Galanis A and Levis M: Inhibition of c-Kit by tyrosine kinase inhibitors. Haematologica. 100:e77–e79. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ibrahim N, Yu Y, Walsh R. W and Yang JL: Molecular targeted therapies for cancer: Sorafenib monotherapy and its combination with other therapies (Review). Oncol Rep. 27:1303–1311. 2012.PubMed/NCBI | |
|
Hsu CH, Shen YC, Shao YY, Hsu C and Cheng AL: Sorafenib in advanced hepatocellular carcinoma: Current status and future perspectives. J Hepatocell Carcinoma. 1:85–99. 2014.PubMed/NCBI | |
|
Gedaly R, Angulo P, Chen C, Creasy KT, Spear BT, Hundley J, Daily MF, Shah M and Evers BM: The role of PI3K/mTOR inhibition in combination with sorafenib in hepatocellular carcinoma treatment. Anticancer Res. 32:2531–2536. 2012.PubMed/NCBI | |
|
Dai N, Ye R, He Q, Guo P, Chen H and Zhang Q: Capsaicin and sorafenib combination treatment exerts synergistic anti-hepatocellular carcinoma activity by suppressing EGFR and PI3K/Akt/mTOR signaling. Oncol Rep. 40:3235–3248. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yao J, Man S, Dong H, Yang L, Ma L and Gao W: Combinatorial treatment of Rhizoma Paridis saponins and sorafenib overcomes the intolerance of sorafenib. J Steroid Biochem Mol Biol. 183:159–166. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Man S, Yao J, Lv P, Liu Y, Yang L and Ma L: Curcumin-enhanced antitumor effects of sorafenib via regulating the metabolism and tumor microenvironment. Food Funct. 11:6422–6432. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Li ZJ, Dai HQ, Huang XW, Feng J, Deng JH, Wang ZX, Yang XM, Liu YJ, Wu Y, Chen PH, et al: Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma. Acta Pharmacol Sin. 42:301–310. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ma Y, Xu R, Liu X, Zhang Y, Song L, Cai S, Zhou S, Xie Y, Li A, Cao W and Tang X: LY3214996 relieves acquired resistance to sorafenib in hepatocellular carcinoma cells. Int J Med Sci. 18:1456–1464. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chiou JF, Tai CJ, Wang YH, Liu TZ, Jen YM and Shiau CY: Sorafenib induces preferential apoptotic killing of a drug- and radio-resistant hep G2 cells through a mitochondria-dependent oxidative stress mechanism. Cancer Biol Ther. 8:1904–1913. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Tang K, Chen Q, Liu Y, Wang L and Lu W: Combination of metformin and sorafenib induces ferroptosis of hepatocellular carcinoma through p62-Keap1-Nrf2 pathway. J Cancer. 13:3234–3243. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Honma Y and Harada M: Sorafenib enhances proteasome inhibitor-mediated cytotoxicity via inhibition of unfolded protein response and keratin phosphorylation. Exp Cell Res. 319:2166–2178. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Duval AP, Troquier L, de Souza Silva O, Demartines N and Dormond O: Diclofenac potentiates Sorafenib-based treatments of hepatocellular carcinoma by enhancing oxidative stress. Cancers (Basel). 11:14532019. View Article : Google Scholar : PubMed/NCBI | |
|
Chen MY, Yadav VK, Chu YC, Ong JR, Huang TY, Lee KF, Lee KH, Yeh CT and Lee WH: Hydroxychloroquine (HCQ) modulates autophagy and oxidative DNA damage stress in hepatocellular carcinoma to overcome sorafenib resistance via TLR9/SOD1/hsa-miR-30a-5p/Beclin-1 axis. Cancers (Basel). 13:32272021. View Article : Google Scholar : PubMed/NCBI | |
|
Rong LW, Wang RX, Zheng XL, Feng XQ, Zhang L, Zhang L, Lin Y, Li ZP and Wang X: Combination of wogonin and sorafenib effectively kills human hepatocellular carcinoma cells through apoptosis potentiation and autophagy inhibition. Oncol Lett. 13:5028–5034. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Jakubowicz-Gil J, Langner E, Bądziul D, Wertel I and Rzeski W: Quercetin and sorafenib as a novel and effective couple in programmed cell death induction in human gliomas. Neurotox Res. 26:64–77. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Abdu S, Juaid N, Amin A, Moulay M and Miled N: Effects of sorafenib and quercetin alone or in combination in treating hepatocellular carcinoma: In vitro and in vivo approaches. Molecules. 272022.doi: 10.3390/molecules27228082. | |
|
Leung CON, Tong M, Chung KPS, Zhou L, Che N, Tang KH, Ding J, Lau EYT, Ng IOL, Ma S and Lee TKW: Overriding adaptive resistance to sorafenib through combination therapy with src homology 2 Domain-containing phosphatase 2 blockade in hepatocellular carcinoma. Hepatology. 72:155–168. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Nojiri K, Sugimoto K, Shiraki K, Tameda M, Inagaki Y, Ogura S, Kasai C, Kusagawa S, Yoneda M, Yamamoto N, et al: Sorafenib and TRAIL have synergistic effect on hepatocellular carcinoma. Int J Oncol. 42:101–108. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang Z and Dai C: Potential treatment strategies for hepatocellular carcinoma cell sensitization to sorafenib. J Hepatocell Carcinoma. 10:257–266. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Abdu S, Juaid N, Amin A, Moulay M and Miled N: Therapeutic effects of crocin alone or in combination with sorafenib against hepatocellular carcinoma: In vivo & in vitro insights. Antioxidants. 11:16452022. View Article : Google Scholar : PubMed/NCBI | |
|
Youssef MM, Tolba MF, Badawy NN, Liu AW, El-Ahwany E, Khalifa AE, Zada S and Abdel-Naim AB: Novel combination of sorafenib and biochanin-A synergistically enhances the anti-proliferative and pro-apoptotic effects on hepatocellular carcinoma cells. Sci Rep. 6:307172016. View Article : Google Scholar : PubMed/NCBI | |
|
Rouleau L, Antony AN, Bisetto S, Newberg A, Doria C, Levine M, Monti DA and Hoek JB: Synergistic effects of ascorbate and sorafenib in hepatocellular carcinoma: New insights into ascorbate cytotoxicity. Free Radic Biol Med. 95:308–322. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Liu J, Cheng L, Fan L, Wang F, Yu H, Li Y, Bu L, Li X, Wei W, et al: Melatonin increases the anti-tumor effects of sorafenib on human hepatoma cell lines via down-regulating autophagy. Int J Clin Exp Med. 10:14109–14120. 2017. | |
|
Lin S, Hoffmann K, Gao C, Petrulionis M, Herr I and Schemmer P: Melatonin promotes sorafenib-induced apoptosis through synergistic activation of JNK/c-jun pathway in human hepatocellular carcinoma. J Pineal Res. 62:e123982017. View Article : Google Scholar | |
|
Prieto-Domínguez N, Méndez-Blanco C, Carbajo-Pescador S, Fondevila F, García-Palomo A, González-Gallego J and Mauriz JL: Melatonin enhances sorafenib actions in human hepatocarcinoma cells by inhibiting mTORC1/p70S6K/HIF-1α and hypoxia-mediated mitophagy. Oncotarget. 8:914022017. View Article : Google Scholar : PubMed/NCBI | |
|
Prieto-Domínguez N, Ordóñez R, Fernández A, Méndez-Blanco C, Baulies A, Garcia-Ruiz C, Fernández-Checa JC, Mauriz JL and González-Gallego J: Melatonin-induced increase in sensitivity of human hepatocellular carcinoma cells to sorafenib is associated with reactive oxygen species production and mitophagy. J Pineal Res. 61:396–407. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Long F, Dong C, Jiang K, Xu Y, Chi X, Sun D, Liang R, Gao Z, Shao S and Wang L: Melatonin enhances the anti-tumor effect of sorafenib via AKT/p27-mediated cell cycle arrest in hepatocarcinoma cell lines. RSC Adv. 7:21342–21351. 2017. View Article : Google Scholar | |
|
Chen W, Yang J, Zhang Y, Cai H, Chen X and Sun D: Regorafenib reverses HGF-induced sorafenib resistance by inhibiting epithelial-mesenchymal transition in hepatocellular carcinoma. FEBS Open Bio. 9:335–347. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao F, Feng G, Zhu J, Su Z, Guo R, Liu J, Zhang H and Zhai Y: 3-Methyladenine-enhanced susceptibility to sorafenib in hepatocellular carcinoma cells by inhibiting autophagy. Anticancer Drugs. 32:386–393. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Dai W, Mo W, Li J, Feng J, Wu L, Liu T, Yu Q, Xu S, Wang W, et al: By inhibiting PFKFB3, aspirin overcomes sorafenib resistance in hepatocellular carcinoma. Int J Cancer. 141:2571–2584. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Shen YC, Ou DL, Hsu C, Lin KL, Chang CY, Lin CY, Liu SH and Cheng AL: Activating oxidative phosphorylation by a pyruvate dehydrogenase kinase inhibitor overcomes sorafenib resistance of hepatocellular carcinoma. Br J Cancer. 108:72–81. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Mao J, Yang H, Cui T, Pan P, Kabir N, Chen D, Ma J, Chen X, Chen Y and Yang Y: Combined treatment with sorafenib and silibinin synergistically targets both HCC cells and cancer stem cells by enhanced inhibition of the phosphorylation of STAT3/ERK/AKT. Eur J Pharmacol. 832:39–49. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Gu HR, Park SC, Choi SJ, Lee JC, Kim YC, Han CJ, Kim J, Yang KY, Kim YJ, Noh GY, et al: Combined treatment with silibinin and either sorafenib or gefitinib enhances their growth-inhibiting effects in hepatocellular carcinoma cells. Clin Mol Hepatol. 21:49–59. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Singh D, Khan MA, Akhtar K, Arjmand F and Siddique HR: Apigenin alleviates cancer drug Sorafenib induced multiple toxic effects in Swiss albino mice via anti-oxidative stress. Toxicol Appl Pharmacol. 447:1160722022. View Article : Google Scholar : PubMed/NCBI | |
|
Sharma A, Sinha S and Shrivastava N: Apigenin and kaempferol as novel renoprotective agent against cisplatin-induced toxicity: An in vitro study. Nat Prod Res. 36:6085–6090. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang H, Wang C, Zhang A, Li Y, Li J, Li Z, Yang X and Hou Y: ATF4 protects against sorafenib-induced cardiotoxicity by suppressing ferroptosis. Biomed Pharmacother. 153:1132802022. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Yan J, Zhao Q and Zhang Y and Zhang Y: ATF3 promotes ferroptosis in sorafenib-induced cardiotoxicity by suppressing Slc7a11 expression. Front Pharmacol. 13:9043142022. View Article : Google Scholar : PubMed/NCBI | |
|
Fatma H, Jameel M, Akhtar K, Ansari MA and Siddique HR: Implication of Lupeol in compensating Sorafenib-induced perturbations of redox homeostasis: A preclinical study in mouse model. Life Sci. 322:1216472023. View Article : Google Scholar : PubMed/NCBI | |
|
Sargazi S, Arshad R, Ghamari R, Rahdar A, Bakhshi A, Karkan SF, Ajalli N, Bilal M and Díez-Pascual AM: siRNA-based nanotherapeutics as emerging modalities for immune-mediated diseases: A preliminary review. Cell Biol Int. 46:1320–1344. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Fathi-karkan S, Zeeshan M, Qindeel M, Eshaghi Malekshah R, Rahdar A and Ferreira LFR: NPs loaded with zoledronic acid as an advanced tool for cancer therapy. J Drug Deliv Sci Technol. 87:1048052023. View Article : Google Scholar | |
|
Pourmadadi M, Gerami SE, Ajalli N, Yazdian F, Rahdar A, Fathi-karkan S and Aboudzadeh MA: Novel pH-responsive hybrid hydrogels for controlled delivery of curcumin: Overcoming conventional constraints and enhancing cytotoxicity in MCF-7 cells. Hybrid Adv. 6:1002102024. View Article : Google Scholar | |
|
Fathi-Karkan S, Qindeel M, Arshad R, Moafian Z, Ghazy E, Rahdar A and Ghotekar S: Recent advancements in Irinotecan-loaded nanomaterials as a smart drug delivery system for cancer therapy: A state-of-art-review. Inorg Chem Commun. 161:1120282024. View Article : Google Scholar | |
|
Naderi J, Valizadeh N, Banimohamad-Shotorbani B, Shahgolzari M, Shayegh F, Maleki-baladi R and Sargazi S and Sargazi S: Exploring the biomedical potential of iron vanadate Nanoparticles: A comprehensive review. Inorg Chem Commun. 157:1114232023. View Article : Google Scholar | |
|
Pourmadadi M, Abdouss H, Memarzadeh A, Abdouss M, Fathi-karkan S, Rahdar A and Díez-Pascual AM: Innovative chitosan-polyacrylic acid-MoS2 nanocomposite for enhanced and pH-responsive quercetin delivery. Mater Today Commun. 39:1087242024. View Article : Google Scholar | |
|
Yi H, Ye X, Long B, Ye T, Zhang L, Yan F, Yang Y and Li L: Inhibition of the AKT/mTOR pathway augments the anticancer effects of sorafenib in thyroid cancer. Cancer Biother Radiopharm. 32:176–183. 2017.PubMed/NCBI | |
|
Hamza R: Protective effect of antioxidants combinations (Vit A, C, E and Selenium) (Antox Drug) against oxidative stress and cellular toxicity induced by sorafenib in male albino rats. J Chem Pharmaceutical Res. 10:43–50. 2018. | |
|
Schott E, Ebert MP and Trojan J: Treatment of hepatocellular carcinoma with Sorafenib-focus on special populations and adverse event management. Z Gastroenterol. 50:1018–1027. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Faivre S, Rimassa L and Finn RS: Molecular therapies for HCC: Looking outside the box. J Hepatol. 72:342–352. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wen F, Zheng H, Zhang P, Liao W, Zhou K and Li Q: Atezolizumab and bevacizumab combination compared with sorafenib as the first-line systemic treatment for patients with unresectable hepatocellular carcinoma: A cost-effectiveness analysis in China and the United states. Liver Int. 41:1097–1104. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Zhang F, Yang J, Zhang Y, Wang Y, Fan W, Huang Y, Wang W, Ran H and Ke S: Combination of individualized local control and target-specific agent to improve unresectable liver cancer managements: A matched case-control study. Target Oncol. 10:287–295. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Galmiche A, Chauffert B and Barbare JC: New biological perspectives for the improvement of the efficacy of sorafenib in hepatocellular carcinoma. Cancer Lett. 346:159–162. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Huang A, Zhao X, Yang XR, Li FQ, Zhou XL, Wu K, Zhang X, Sun QM, Cao Y, Zhu HM, et al: Circumventing intratumoral heterogeneity to identify potential therapeutic targets in hepatocellular carcinoma. J Hepatol. 67:293–301. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Rani S, Kataria A, Bhambri P, Pareek PK and Puri V: Artificial Intelligence in Personalized Health Services for Better Patient Care BT-revolutionizing Healthcare: AI Integration with IoT for Enhanced Patient Outcomes. Gupta SK, Karras DA and Natarajan R: Springer Nature Switzerland; Cham: pp. 89–108. 2024, PubMed/NCBI | |
|
Fung AS, Tam VC, Meyers DE, Sim HW, Knox JJ, Zaborska V, Davies J, Ko YJ, Batuyong E, Samawi H, et al: Second-line treatment of hepatocellular carcinoma after sorafenib: Characterizing treatments used over the past 10 years and real-world eligibility for cabozantinib, regorafenib, and ramucirumab. Cancer Med. 9:4640–4647. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Rallis KS, Makrakis D, Ziogas IA and Tsoulfas G: Immunotherapy for advanced hepatocellular carcinoma: From clinical trials to real-world data and future advances. World J Clin Oncol. 13:4482022. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng L, Fang S, Wu F, Chen W, Chen M, Weng Q, Wu X, Song J, Zhao Z and Ji J: Efficacy and safety of TACE combined with sorafenib plus immune checkpoint inhibitors for the treatment of intermediate and advanced TACE-refractory hepatocellular carcinoma: A retrospective study. Front Mol Biosci. 7:6093222021. View Article : Google Scholar : PubMed/NCBI | |
|
Turcios L, Vilchez V, Acosta LF, Poyil P, Butterfield DA, Mitov M, Marti F and Gedaly R: Sorafenib and FH535 in combination act synergistically on hepatocellular carcinoma by targeting cell bioenergetics and mitochondrial function. Dig Liver Dis. 49:697–704. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Abbadessa G, Rimassa L, Pressiani T, Carrillo-Infante C, Cucchi E and Santoro A: Optimized management of advanced hepatocellular carcinoma: Four Long-lasting responses to sorafenib. World J Gastroenterol. 17:24502011. View Article : Google Scholar : PubMed/NCBI | |
|
Chen F, Fang Y, Chen X, Deng R, Zhang Y and Shao J: Recent advances of sorafenib nanoformulations for cancer therapy: Smart nanosystem and combination therapy. Asian J Pharm Sci. 16:318–336. 2021.PubMed/NCBI |