|
1
|
El-Sayed A, Aleya L and Kamel M:
Microbiota's role in health and diseases. Environ Sci Pollut Res
Int. 28:36967–36983. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Cho I and Blaser MJ: The human microbiome:
At the interface of health and disease. Nat Rev Genet. 13:260–270.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Wong-Rolle A, Wei HK, Zhao C and Jin C:
Unexpected guests in the tumor microenvironment: Microbiome in
cancer. Protein Cell. 12:426–435. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Sepich-Poore GD, Zitvogel L, Straussman R,
Hasty J, Wargo JA and Knight R: The microbiome and human cancer.
Science. 371:eabc45522021. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Cogdill AP, Gaudreau PO, Arora R,
Gopalakrishnan V and Wargo JA: The impact of intratumoral and
gastrointestinal microbiota on systemic cancer therapy. Trends
Immunol. 39:900–920. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Gong Y, Huang X, Wang M and Liang X:
Intratumor microbiota: A novel tumor component. J Cancer Res Clin
Oncol. 149:6675–6691. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Nejman D, Livyatan I, Fuks G, Gavert N,
Zwang Y, Geller LT, Rotter-Maskowitz A, Weiser R, Mallel G, Gigi E,
et al: The human tumor microbiome is composed of tumor
type-specific intracellular bacteria. Science. 368:973–980. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Cao Y, Xia H, Tan X, Shi C, Ma Y, Meng D,
Zhou M, Lv Z, Wang S and Jin Y: Intratumoural microbiota: A new
frontier in cancer development and therapy. Signal Transduct Target
Ther. 9:152024. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Hanus M, Parada-Venegas D, Landskron G,
Wielandt AM, Hurtado C, Alvarez K, Hermoso MA, López-Köstner F and
De la Fuente M: Immune system, microbiota, and microbial
metabolites: The unresolved triad in colorectal cancer
microenvironment. Front Immunol. 12:6128262021. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Walker SP, Tangney M and Claesson MJ:
Sequence-based characterization of intratumoral Bacteria-A guide to
best practice. Front Oncol. 10:1792020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Galeano Niño JL, Wu H, LaCourse KD,
Kempchinsky AG, Baryiames A, Barber B, Futran N, Houlton J, Sather
C, Sicinska E, et al: Effect of the intratumoral microbiota on
spatial and cellular heterogeneity in cancer. Nature. 611:810–817.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Gao B, Li X, Li S, Wang S, Wu J and Li J:
Pan-cancer analysis identifies RNA helicase DDX1 as a prognostic
marker. Phenomics. 2:33–49. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wang H and Chen L: Tumor microenviroment
and hepatocellular carcinoma metastasis. J Gastroenterol Hepatol.
28 (Suppl 1):S43–S48. 2013. View Article : Google Scholar
|
|
14
|
Zhou S, Lu J, Liu S, Shao J, Liu Z, Li J
and Xiao W: Role of the tumor microenvironment in malignant
melanoma organoids during the development and metastasis of tumors.
Front Cell Deve Biol. 11:11669162023. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Gao F, Yu B, Rao B, Sun Y, Yu J, Wang D,
Cui G and Ren Z: The effect of the intratumoral microbiome on tumor
occurrence, progression, prognosis and treatment. Front Immunol.
13:10519872022. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Yang L, Li A, Wang Y and Zhang Y:
Intratumoral microbiota: Roles in cancer initiation, development
and therapeutic efficacy. Signal Transduct Target Ther. 8:352023.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Garrett WS: Cancer and the microbiota.
Science. 348:80–86. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Rous P: A sarcoma of the fowl
transmissible by an agent separable from the tumor cells. J Exp
Med. 13:397–411. 1911. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Warren JR and Marshall B: Unidentified
curved bacilli on gastric epithelium in active chronic gastritis.
Lancet. 1:1273–1275. 1983.PubMed/NCBI
|
|
20
|
Narunsky-Haziza L, Sepich-Poore GD,
Livyatan I, Asraf O, Martino C, Nejman D, Gavert N, Stajich JE,
Amit G, González A, et al: Pan-cancer analyses reveal
cancer-type-specific fungal ecologies and bacteriome interactions.
Cell. 185:3789–3806.e17. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Felgner S, Kocijancic D, Frahm M and Weiss
S: Bacteria in cancer therapy: Renaissance of an old concept. Int J
Microbiol. 2016:84517282016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Budynek P, Dabrowska K, Skaradziński G and
Górski A: Bacteriophages and cancer. Arch Microbiol. 192:315–320.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Xiong X, Zheng LW, Ding Y, Chen YF, Cai
YW, Wang LP, Huang L, Liu CC, Shao ZM, Yu KD, et al: Breast cancer:
Pathogenesis and treatments. Signal Transduct Target Ther.
10:492025. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zhou B, Sun C, Huang J, Xia M, Guo E, Li
N, Lu H, Shan W, Wu Y, Li Y, et al: The biodiversity composition of
microbiome in ovarian carcinoma patients. Sci Rep. 9:16912019.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Qu D, Wang Y, Xia Q, Chang J, Jiang X and
Zhang H: Intratumoral microbiome of human primary liver cancer.
Hepatol Commun. 6:1741–1752. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Tzeng A, Sangwan N, Jia M, Liu CC, Keslar
KS, Downs-Kelly E, Fairchild RL, Al-Hilli Z, Grobmyer SR and Eng C:
Human breast microbiome correlates with prognostic features and
immunological signatures in breast cancer. Genome Med. 13:602021.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Sommariva M, Le Noci V, Bianchi F,
Camelliti S, Balsari A, Tagliabue E and Sfondrini L: The lung
microbiota: Role in maintaining pulmonary immune homeostasis and
its implications in cancer development and therapy. Cell Mol Life
Sci. 77:2739–2749. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Najafi S, Abedini F, Azimzadeh Jamalkandi
S, Shariati P, Ahmadi A and Gholami Fesharaki M: The composition of
lung microbiome in lung cancer: A systematic review and
meta-analysis. BMC Microbiol. 21:3152021. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kalaora S, Nagler A, Nejman D, Alon M,
Barbolin C, Barnea E, Ketelaars SLC, Cheng K, Vervier K, Shental N,
et al: Identification of bacteria-derived HLA-bound peptides in
melanoma. Nature. 592:138–143. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Park JY, Seo H, Kang CS, Shin TS, Kim JW,
Park JM, Kim JG and Kim YK: Dysbiotic change in gastric microbiome
and its functional implication in gastric carcinogenesis. Scie Rep.
12:42852022. View Article : Google Scholar
|
|
31
|
Smith A, Pierre JF, Makowski L, Tolley E,
Lyn-Cook B, Lu L, Vidal G and Starlard-Davenport A: Distinct
microbial communities that differ by race, stage, or breast-tumor
subtype in breast tissues of non-Hispanic Black and non-Hispanic
White women. Sci Rep. 9:119402019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wang Q, Liu Z, Ma A, Li Z, Liu B and Ma Q:
Computational methods and challenges in analyzing intratumoral
microbiome data. Trends Microbiol. 31:707–722. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Guo H: Interactions between the tumor
microbiota and breast cancer. Front Cell Infect Microbiol.
14:14992032024. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Thu MS, Chotirosniramit K, Nopsopon T,
Hirankarn N and Pongpirul K: Human gut, breast, and oral microbiome
in breast cancer: A systematic review and meta-analysis. Front
Oncol. 13:11440212023. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zalila-Kolsi I, Dhieb D, Osman HA and
Mekideche H: The gut microbiota and colorectal cancer:
Understanding the link and exploring therapeutic interventions.
Biology (Basel). 14:2512025.PubMed/NCBI
|
|
36
|
Castellarin M, Warren RL, Freeman JD,
Dreolini L, Krzywinski M, Strauss J, Barnes R, Watson P,
Allen-Vercoe E, Moore RA and Holt RA: Fusobacterium
nucleatum infection is prevalent in human colorectal carcinoma.
Genome Res. 22:299–306. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Matsuda T, Fujimoto A and Igarashi Y:
Colorectal cancer: Epidemiology, risk factors, and public health
strategies. Digestion. 106:91–99. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Li J, Ma X, Chakravarti D, Shalapour S and
DePinho RA: Genetic and biological hallmarks of colorectal cancer.
Genes Dev. 35:787–820. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Repass J: Replication Study:
Fusobacterium nucleatum infection is prevalent in human
colorectal carcinoma. ELife. 7:e258012018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ramírez-Labrada AG, Isla D, Artal A, Arias
M, Rezusta A, Pardo J and Gálvez EM: The Influence of lung
microbiota on lung carcinogenesis, immunity, and immunotherapy.
Trends Cancer. 6:86–97. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Liu NN, Yi CX, Wei LQ, Zhou JA, Jiang T,
Hu CC, Wang L, Wang YY, Zou Y, Zhao YK, et al: The intratumor
mycobiome promotes lung cancer progression via myeloid-derived
suppressor cells. Cancer Cell. 41:1927–1944.e9. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Vogtmann E, Hua X, Yu G, Purandare V,
Hullings AG, Shao D, Wan Y, Li S, Dagnall CL, Jones K, et al: The
oral microbiome and lung cancer risk: An analysis of 3 prospective
cohort studies. J Natl Cancer Inst. 114:1501–1510. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Klein AP: Pancreatic cancer epidemiology:
Understanding the role of lifestyle and inherited risk factors. Nat
Rev Gastroenterol Hepatol. 18:493–502. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Stoffel EM, Brand RE and Goggins M:
Pancreatic cancer: Changing epidemiology and new approaches to risk
assessment, early detection, and prevention. Gastroenterology.
164:752–765. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Cohen RJ, Shannon BA, McNeal JE, Shannon T
and Garrett KL: Propionibacterium acnes associated with
inflammation in radical prostatectomy specimens: A possible link to
cancer evolution? J Urol. 173:1969–1974. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
McAllister F, Khan MAW, Helmink B and
Wargo JA: The tumor microbiome in pancreatic cancer: Bacteria and
beyond. Cancer Cell. 36:577–579. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Kaune T, Griesmann H, Theuerkorn K,
Hämmerle M, Laumen H, Krug S, Plumeier I, Kahl S, Junca H, Gustavo
Dos Anjos Borges L, et al: Gender-specific changes of the gut
microbiome correlate with tumor development in murine models of
pancreatic cancer. iScience. 26:1068412023. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Riquelme E, Zhang Y, Zhang L, Montiel M,
Zoltan M, Dong W, Quesada P, Sahin I, Chandra V, San Lucas A, et
al: Tumor microbiome diversity and composition influence pancreatic
cancer outcomes. Cell. 178:795–806.e12. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Stewart OA, Wu F and Chen Y: The role of
gastric microbiota in gastric cancer. Gut Microbes. 11:1220–1230.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ianiro G, Molina-Infante J and Gasbarrini
A: Gastric microbiota. Helicobacter. 20 (Suppl 1):S68–S71. 2015.
View Article : Google Scholar
|
|
51
|
Coker OO, Dai Z, Nie Y, Zhao G, Cao L,
Nakatsu G, Wu WK, Wong SH, Chen Z, Sung JJY and Yu J: Mucosal
microbiome dysbiosis in gastric carcinogenesis. Gut. 67:1024–1032.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Engstrand L and Graham DY: Microbiome and
Gastric Cancer. Dig Dis Sci. 65:865–873. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Stewart C, Ralyea C and Lockwood S:
Ovarian cancer: An integrated review. Semin Oncol Nurs. 35:151–156.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Sipos A, Ujlaki G, Mikó E, Maka E, Szabó
J, Uray K, Krasznai Z and Bai P: The role of the microbiome in
ovarian cancer: Mechanistic insights into oncobiosis and to
bacterial metabolite signaling. Mol Med. 27:332021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Dhingra A, Sharma D, Kumar A, Singh S and
Kumar P: Microbiome and development of ovarian cancer. Endocr Metab
Immune Disord Drug Targets. 22:1073–1090. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Sun J, Xiang J, An Y, Xu J, Xiong Y, Wang
S and Xia Q: Unveiling the association between HPV and Pan-cancers:
A bidirectional two-sample mendelian randomization study. Cancers
Basel. 15:51472023. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ingerslev K, Hogdall E, Skovrider-Ruminski
W, Schnack TH, Karlsen MA, Nedergaard L, Hogdall C and Blaakær J:
High-risk HPV is not associated with epithelial ovarian cancer in a
Caucasian population. Infect Agent Cancer. 11:392016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Rizzo A, Santoni M, Mollica V, Fiorentino
M, Brandi G and Massari F: Microbiota and prostate cancer. Semin
Cancer Biol. 86:1058–1065. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Massari F, Mollica V, Di Nunno V, Gatto L,
Santoni M, Scarpelli M, Cimadamore A, Lopez-Beltran A, Cheng L,
Battelli N, et al: The human microbiota and prostate cancer: Friend
or Foe? Cancers (Basel). 11:4592019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Cavarretta I, Ferrarese R, Cazzaniga W,
Saita D, Lucianò R, Ceresola ER, Locatelli I, Visconti L, Lavorgna
G, Briganti A, et al: The microbiome of the prostate tumor
microenvironment. Eur Urol. 72:625–631. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Feng Y, Ramnarine VR, Bell R, Volik S,
Davicioni E, Hayes VM, Ren S and Collins CC: Metagenomic and
metatranscriptomic analysis of human prostate microbiota from
patients with prostate cancer. BMC Genomics. 20:1462019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Shrestha E, White JR, Yu SH, Kulac I,
Ertunc O, De Marzo AM, Yegnasubramanian S, Mangold LA, Partin AW
and Sfanos KS: Profiling the urinary microbiome in men with
positive versus negative biopsies for prostate cancer. J Urol.
199:161–171. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Banerjee S, Alwine JC, Wei Z, Tian T, Shih
N, Sperling C, Guzzo T, Feldman MD and Robertson ES: Microbiome
signatures in prostate cancer. Carcinogenesis. 40:749–764. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Ahmed B, Qadir MI and Ghafoor S: Malignant
melanoma: Skin cancer-diagnosis, prevention, and treatment. Crit
Rev Eukaryot Gene Expr. 30:291–297. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Byrd AL, Belkaid Y and Segre JA: The human
skin microbiome. Nat Rev Microbiol. 16:143–155. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Grice EA, Kong HH, Conlan S, Deming CB,
Davis J, Young AC; NISC Comparative Sequencing Program, ; Bouffard
GG, Blakesley RW, Murray PR, et al: Topographical and temporal
diversity of the human skin microbiome. Science. 324:1190–1192.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhu G, Su H, Johnson CH, Khan SA, Kluger H
and Lu L: Intratumour microbiome associated with the infiltration
of cytotoxic CD8+ T cells and patient survival in cutaneous
melanoma. Eur J Cancer. 151:25–34. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kozmin SG, Rogozin IB, Moore EA, Abney M,
Schaaper RM and Pavlov YI: Comment on A commensal strain of
Staphylococcus epidermidis protects against skin neoplasia
by Nakatsuji et al. Sci Adv. 5:eaaw39152019. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Long J, Wang J, Xiao C, You F, Jiang Y and
Li X: Intratumoral microbiota in colorectal cancer: Focus on
specific distribution and potential mechanisms. Cell Commun Signal.
22:4552024. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Ding T, Liu C and Li Z: The mycobiome in
human cancer: Analytical challenges, molecular mechanisms, and
therapeutic implications. Mol Cancer. 24:182025. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Guo P, Tian Z, Kong X, Yang L, Shan X,
Dong B, Ding X, Jing X, Jiang C, Jiang N and Yu Y: FadA promotes
DNA damage and progression of Fusobacterium
nucleatum-induced colorectal cancer through up-regulation of
chk2. J Exp Clin Cancer Res. 39:2022020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Dejea CM, Fathi P, Craig JM, Boleij A,
Taddese R, Geis AL, Wu X, DeStefano Shields CE, Hechenbleikner EM,
Huso DL, et al: Patients with familial adenomatous polyposis harbor
colonic biofilms containing tumorigenic bacteria. Science.
359:592–597. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhang H, Fu L, Leiliang X, Qu C, Wu W, Wen
R, Huang N, He Q, Cheng Q, Liu G and Cheng Y: Beyond the Gut: The
intratumoral microbiome's influence on tumorigenesis and treatment
response. Cancer Commun (Lond). 44:1130–1167. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Fu Y, Li J, Cai W, Huang Y, Liu X, Ma Z,
Tang Z, Bian X, Zheng J, Jiang J and Li C: The emerging tumor
microbe microenvironment: From delineation to multidisciplinary
approach-based interventions. Acta Pharm Sin B. 14:1560–1591. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Chen X, Sun F, Wang X, Feng X, Aref AR,
Tian Y, Ashrafizadeh M and Wu D: Inflammation, microbiota, and
pancreatic cancer. Cancer Cell Int. 25:622025. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Yan X, Qu X, Wang J, Lu L, Wu W, Mao J, Li
D, Wang Y, Wei Q and Liu J: Fusobacterium nucleatum promotes
the growth and metastasis of colorectal cancer by activating
E-Cadherin/Krüppel-Like Factor 4/Integrin α5 Signaling in a
Calcium-dependent manner. MedComm. 6:e701372025. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Ghaddar B, Biswas A, Harris C, Omary MB,
Carpizo DR, Blaser MJ and De S: Tumor microbiome links cellular
programs and immunity in pancreatic cancer. Cancer Cell.
40:1240–1253.e5. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Jiang XW, Zhang L, Liu ZC, Zhou T, Li WQ,
Liu WD, Zhang LF, You WC, Zhang Y and Pan KF: Integrative
metabolomics and microbiomics analysis reveals distinctive
microbiota-metabolites interactions in gastric carcinogenesis. Int
J Cancer. 156:2389–2400. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Flores-García LC, García-Castillo V,
Pérez-Toledo E, Trujano-Camacho S, Millán-Catalán O, Pérez-Yepez
EA, Coronel-Hernández J, Rodríguez-Dorantes M, Jacobo-Herrera N and
Pérez-Plasencia C: HOTAIR participation in glycolysis and
glutaminolysis through lactate and glutamate production in
colorectal cancer. Cells. 14:3882025. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Hayashi M, Ikenaga N, Nakata K, Luo H,
Zhong P, Date S, Oyama K, Higashijima N, Kubo A, Iwamoto C, et al:
Intratumor Fusobacterium nucleatum promotes the progression
of pancreatic cancer via the CXCL1-CXCR2 axis. Cancer Sci.
114:3666–3678. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wei H, Suo C, Gu X, Shen S, Lin K, Zhu C,
Yan K, Bian Z, Chen L, Zhang T, et al: AKR1D1 suppresses liver
cancer progression by promoting bile acid metabolism-mediated NK
cell cytotoxicity. Cell Metab. 37:1103–1118.e7. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Martignano F, Munagala U, Crucitta S,
Mingrino A, Semeraro R, Del Re M, Petrini I, Magi A and Conticello
SG: Nanopore sequencing from liquid biopsy: Analysis of copy number
variations from cell-free DNA of lung cancer patients. Mol Cancer.
20:322021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Dao J, Conway PJ, Subramani B, Meyyappan
D, Russell S and Mahadevan D: Using cfDNA and ctDNA as oncologic
markers: A path to clinical validation. Int J Mol Sci.
24:132192023. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Malla M, Loree JM, Kasi PM and Parikh AR:
Using circulating tumor DNA in colorectal cancer: Current and
evolving practices. J Clin Oncol. 40:2846–2857. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Kwong TNY, Wang X, Nakatsu G, Chow TC,
Tipoe T, Dai RZW, Tsoi KKK, Wong MCS, Tse G, Chan MTV, et al:
Association between bacteremia from specific microbes and
subsequent diagnosis of colorectal cancer. Gastroenterology.
155:383–390.e8. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Vittone J, Gill D, Goldsmith A, Klein EA
and Karlitz JJ: A multi-cancer early detection blood test using
machine learning detects early-stage cancers lacking
USPSTF-recommended screening. NPJ Precis Oncol. 8:912024.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wang Y, Wang Y, Han W, Han M, Liu X, Dai
J, Dong Y, Sun T and Xu J: Intratumoral and fecal microbiota
reveals microbial markers associated with gastric carcinogenesis.
Front Cell Infect Microbiol. 14:13974662024. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Poore GD, Kopylova E, Zhu Q, Carpenter C,
Fraraccio S, Wandro S, Kosciolek T, Janssen S, Metcalf J, Song SJ,
et al: Microbiome analyses of blood and tissues suggest cancer
diagnostic approach. Nature. 579:567–574. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Wang N, Wu S, Huang L, Hu Y, He X, He J,
Hu B, Xu Y, Rong Y, Yuan C, et al: Intratumoral microbiome:
Implications for immune modulation and innovative therapeutic
strategies in cancer. J Biomed Sci. 32:232025. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Chrzanowska NM, Kowalewski J and
Lewandowska MA: Use of fluorescence in situ hybridization (FISH) in
diagnosis and tailored therapies in solid tumors. Molecules.
25:18642020. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
El Tekle G and Garrett WS: Bacteria in
cancer initiation, promotion and progression. Nat Rev Cancer.
23:600–618. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Chai X, Wang J, Li H, Gao C, Li S, Wei C,
Huang J, Tian Y, Yuan J, Lu J, et al: Intratumor microbiome
features reveal antitumor potentials of intrahepatic
cholangiocarcinoma. Gut Microbes. 15:21562552023. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Mitsuhashi K, Nosho K, Sukawa Y, Matsunaga
Y, Ito M, Kurihara H, Kanno S, Igarashi H, Naito T, Adachi Y, et
al: Association of Fusobacterium species in pancreatic cancer
tissues with molecular features and prognosis. Oncotarget.
6:7209–7220. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zhang M, Zhang Y, Sun Y, Wang S, Liang H
and Han Y: Intratumoral microbiota impacts the First-line treatment
efficacy and survival in Non-Small cell lung cancer patients free
of lung infection. J Healthc Eng. 2022:54668532022.PubMed/NCBI
|
|
95
|
Yamamura K, Izumi D, Kandimalla R,
Sonohara F, Baba Y, Yoshida N, Kodera Y, Baba H and Goel A:
Intratumoral Fusobacterium nucleatum levels predict
therapeutic response to neoadjuvant chemotherapy in esophageal
squamous cell carcinoma. Clin Cancer Res. 25:6170–6179. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Jiang SS, Xie YL, Xiao XY, Kang ZR, Lin
XL, Zhang L, Li CS, Qian Y, Xu PP, Leng XX, et al: Fusobacterium
nucleatum-derived succinic acid induces tumor resistance to
immunotherapy in colorectal cancer. Cell Host Microbe.
31:781–797.e9. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Cercek A, Lumish M, Sinopoli J, Weiss J,
Shia J, Lamendola-Essel M, El Dika IH, Segal N, Shcherba M,
Sugarman R, et al: PD-1 blockade in mismatch Repair-deficient,
locally advanced rectal cancer. N Engl J Med. 386:2363–2376. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Baruch EN, Youngster I, Ben-Betzalel G,
Ortenberg R, Lahat A, Katz L, Adler K, Dick-Necula D, Raskin S,
Bloch N, et al: Fecal microbiota transplant promotes response in
immunotherapy-refractory melanoma patients. Science. 371:602–609.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Shan J, Han D, Shen C, Lei Q and Zhang Y:
Mechanism and strategies of immunotherapy resistance in colorectal
cancer. Front Immunoly. 13:10166462022. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Park AK, Fong Y, Kim SI, Yang J, Murad JP,
Lu J, Jeang B, Chang WC, Chen NG, Thomas SH, et al: Effective
combination immunotherapy using oncolytic viruses to deliver CAR
targets to solid tumors. Sci Transl Med. 12:eaaz18632020.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Guo F, Das JK, Kobayashi KS, Qin QM, A
Ficht T, Alaniz RC, Song J and Figueiredo P: Live attenuated
bacterium limits cancer resistance to CAR-T therapy by remodeling
the tumor microenvironment. J Immunother Cancer. 10:e0037602022.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
LaCourse KD, Zepeda-Rivera M, Kempchinsky
AG, Baryiames A, Minot SS, Johnston CD and Bullman S: The cancer
chemotherapeutic 5-fluorouracil is a potent Fusobacterium
nucleatum inhibitor and its activity is modified by
intratumoral microbiota. Cell Rep. 41:1116252022. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Jia D, Wang Q, Qi Y, Jiang Y, He J, Lin Y,
Sun Y, Xu J, Chen W, Fan L, et al: Microbial metabolite enhances
immunotherapy efficacy by modulating T cell stemness in pan-cancer.
Cell. 187:1651–1665.e21. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Shi Y, Zheng W, Yang K, Harris KG, Ni K,
Xue L, Lin W, Chang EB, Weichselbaum RR and Fu YX: Intratumoral
accumulation of gut microbiota facilitates CD47-based immunotherapy
via STING signaling. J Exp Med. 217:e201922822020. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Si W, Liang H, Bugno J, Xu Q, Ding X, Yang
K, Fu Y, Weichselbaum RR, Zhao X and Wang L: Lactobacillus
rhamnosus GG induces cGAS/STING-dependent type I interferon and
improves response to immune checkpoint blockade. Gut. 71:521–533.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Linn YH, Thu KK and Win NHH: Effect of
probiotics for the prevention of acute Radiation-induced diarrhoea
among cervical cancer patients: A randomized Double-Blind
Placebo-controlled study. Probiotics Antimicrob Proteins.
11:638–647. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Montalban-Arques A, Katkeviciute E,
Busenhart P, Bircher A, Wirbel J, Zeller G, Morsy Y, Borsig L,
Glaus Garzon JF, Müller A, et al: Commensal Clostridiales strains
mediate effective anti-cancer immune response against solid tumors.
Cell Host Microbe. 29:1573–1588.e7. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Canale FP, Basso C, Antonini G, Perotti M,
Li N, Sokolovska A, Neumann J, James MJ, Geiger S, Jin W, et al:
Metabolic modulation of tumours with engineered bacteria for
immunotherapy. Nature. 598:662–666. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Lam KC, Araya RE, Huang A, Chen Q, Di
Modica M, Rodrigues RR, Lopès A, Johnson SB, Schwarz B, Bohrnsen E,
et al: Microbiota triggers STING-type I IFN-dependent monocyte
reprogramming of the tumor microenvironment. Cell.
184:5338–5356.e21. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Feng T, Li P, Li S, Wang Y, Lv J, Xia T,
Lee HJ, Piao HL, Chen D and Ma Y: Metabolic state uncovers
prognosis insights of esophageal squamous cell carcinoma patients.
J Transl Med. 23:3422025. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Xue C, Chu Q, Zheng Q, Yuan X, Su Y, Bao
Z, Lu J and Li L: Current understanding of the intratumoral
microbiome in various tumors. Cell Rep Med. 4:1008842023.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Elhanani O, Ben-Uri R and Keren L: Spatial
profiling technologies illuminate the tumor microenvironment.
Cancer Cell. 41:404–420. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Meng YF, Fan ZY, Zhou B and Zhan HX: Role
of the intratumoral microbiome in tumor progression and
therapeutics implications. Biochim Biophys Acta Rev Cancer.
1878:1890142023. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Liu H, Zhang J, Rao Y, Jin S, Zhang C and
Bai D: Intratumoral microbiota: An emerging force in diagnosing and
treating hepatocellular carcinoma. Med Oncol. 41:3002024.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Wang N, Li X, Wang R and Ding Z: Spatial
transcriptomics and proteomics technologies for deconvoluting the
tumor microenvironment. Biotechnol J. 16:e21000412021. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Fang P, Yang J, Zhang H, Shuai D, Li M,
Chen L and Liu L: Emerging roles of intratumoral microbiota: A key
to novel cancer therapies. Front Oncol. 15:15065772025. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Su ACY, Ding X, Lau HCH, Kang X, Li Q,
Wang X, Liu Y, Jiang L, Lu Y, Liu W, et al: Lactococcus lactis
HkyuLL 10 suppresses colorectal tumourigenesis and restores gut
microbiota through its generated alpha-mannosidase. Gut.
73:1478–1488. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Liu J, Xie J and Dong P: Editorial:
Transcriptome analysis in tumor microenvironment and tumor
heterogeneity. Oncol Res. 32:99–100. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Horvath TD, Haidacher SJ, Engevik MA, Luck
B, Ruan W, Ihekweazu F, Bajaj M, Hoch KM, Oezguen N, Spinler JK, et
al: Interrogation of the mammalian gut-brain axis using
LC-MS/MS-based targeted metabolomics with in vitro bacterial and
organoid cultures and in vivo gnotobiotic mouse models. Nat Protoc.
18:490–529. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Geng S, Guo P, Li X, Shi Y, Wang J, Cao M,
Zhang Y, Zhang K, Li A, Song H, et al: Biomimetic
nanovehicle-enabled targeted depletion of intratumoral
Fusobacterium nucleatum synergizes with PD-L1 blockade
against breast cancer. ACS Nano. 18:8971–8987. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Puschhof J, Pleguezuelos-Manzano C,
Martinez-Silgado A, Akkerman N, Saftien A, Boot C, de Waal A,
Beumer J, Dutta D, Heo I and Clevers H: Intestinal organoid
cocultures with microbes. Nature Protoc. 16:4633–4649. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Puschhof J, Pleguezuelos-Manzano C and
Clevers H: Organoids and organs-on-chips: Insights into human
gut-microbe interactions. Cell Host Microbe. 29:867–878. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Allam-Ndoul B, Castonguay-Paradis S and
Veilleux A: Gut microbiota and intestinal Trans-epithelial
permeability. Int J Mol Sci. 21:64022020. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Dutta D, Heo I and Clevers H: Disease
modeling in stem Cell-derived 3D organoid systems. Trends Mol Med.
23:393–410. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Chen S, Zhou Z, Li Y, Du Y and Chen G:
Application of single-cell sequencing to the research of tumor
microenvironment. Fron Immunol. 14:12855402023. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Lau HCH, Kranenburg O, Xiao H and Yu J:
Organoid models of gastrointestinal cancers in basic and
translational research. Nat Rev Gastroenterol Hepatol. 17:203–222.
2020. View Article : Google Scholar : PubMed/NCBI
|