You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
|
Sen R and Baltimore D: Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 46:705–716. 1986. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Q, Lenardo MJ and Baltimore D: 30 years of NF-κB: A blossoming of relevance to human pathobiology. Cell. 168:37–57. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Millar MW, Fazal F and Rahman A: Therapeutic targeting of NF-κB in acute lung injury: A double-edged sword. Cells. 11:33172022. View Article : Google Scholar : PubMed/NCBI | |
|
Ivanenkov YA, Balakin KV and Lavrovsky Y: Small molecule inhibitors of NF-κB and JAK/STAT signal transduction pathways as promising anti-inflammatory therapeutics. Mini Rev Med Chem. 11:55–78. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hayden MS and Ghosh S: Shared principles in NF-kappaB signaling. Cell. 132:344–362. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Hoffmann A, Natoli G and Ghosh G: Transcriptional regulation via the NF-kappaB signaling module. Oncogene. 25:6706–6716. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Liu P, Li Y, Wang W, Bai Y, Jia H and Yuan Z: Role and mechanisms of the NF-ĸB signaling pathway in various developmental processes. Biomed Pharmacother. 153:1135132022. View Article : Google Scholar : PubMed/NCBI | |
|
Mulero MC, Huxford T and Ghosh G: NF-κB, IκB, and IKK: Integral components of immune system signaling. Adv Exp Med Biol. 1172:207–226. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Deka K and Li Y: Transcriptional regulation during aberrant activation of NF-κB signalling in cancer. Cells. 12:7882023. View Article : Google Scholar : PubMed/NCBI | |
|
Dolcet X, Llobet D, Pallares J and Matias-Guiu X: NF-κB in development and progression of human cancer. Virchows Arch. 446:475–482. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Yang W, Liu L, Li C, Luo N, Chen R, Li L, Yu F and Cheng Z: TRIM52 plays an oncogenic role in ovarian cancer associated with NF-κB pathway. Cell Death Dis. 9:9082018. View Article : Google Scholar : PubMed/NCBI | |
|
Man X, Piao C, Lin X, Kong C, Cui X and Jiang Y: USP13 functions as a tumor suppressor by blocking the NF-κB-mediated PTEN downregulation in human bladder cancer. J Exp Clin Cancer Res. 38:2592019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Song L, Xu Y, Xu Y, Zheng M, Zhang P and Wang Q: Midkine promotes breast cancer cell proliferation and migration by upregulating NR3C1 expression and activating the NF-κB pathway. Mol Biol Rep. 49:2953–2961. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wen X, Liu M, Du J and Wang X: Meis homeobox 2 (MEIS2) inhibits the proliferation and promotes apoptosis of thyroid cancer cell and through the NF-κB signaling pathway. Bioengineered. 12:1766–1772. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hou J, Zhuo H, Chen X, Cheng J, Zheng W, Zhong M and Cai J: MiR-139-5p negatively regulates PMP22 to repress cell proliferation by targeting the NF-κB signaling pathway in gastric cancer. Int J Biol Sci. 16:1218–1229. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou JL, Deng S, Fang HS, Yu G and Peng H: Hsa-let-7g promotes osteosarcoma by reducing HOXB1 to activate NF-κB pathway. Biomed Pharmacother. 109:2335–2341. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Zhang Z, Zhao W and Han N: Transglutaminase 3 protein modulates human esophageal cancer cell growth by targeting the NF-κB signaling pathway. Oncol Rep. 36:1723–1730. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Liu C, Wang L, Chen W, Zhao S, Yin C, Lin Y, Jiang A and Zhang P: USP35 activated by miR let-7a inhibits cell proliferation and NF-κB activation through stabilization of ABIN-2. Oncotarget. 6:27891–27906. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Liang K, Liu Y, Eer D, Liu J, Yang F and Hu K: High CXC chemokine ligand 16 (CXCL16) expression promotes proliferation and metastasis of lung cancer via regulating the NF-κB pathway. Med Sci Monit. 24:405–411. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ren C, Han X, Lu C, Yang T, Qiao P, Sun Y and Yu Z: Ubiquitination of NF-κB p65 by FBXW2 suppresses breast cancer stemness, tumorigenesis, and paclitaxel resistance. Cell Death Differ. 29:381–392. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Li K, Zhang Z, Mei Y, Yang Q, Qiao S, Ni C, Yao Y, Li X, Li M, Wei D, et al: Metallothionein-1G suppresses pancreatic cancer cell stemness by limiting activin A secretion via NF-κB inhibition. Theranostics. 11:3196–3212. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu W, Lu X, Shi P, Yang G, Zhou Z, Li W, Mao X, Jiang D and Chen C: TNF-α increases breast cancer stem-like cells through up-regulating TAZ expression via the non-canonical NF-κB pathway. Sci Rep. 10:18042020. View Article : Google Scholar : PubMed/NCBI | |
|
Kim RJ, Bae E, Hong YK, Hong JY, Kim NK, Ahn HJ, Oh JJ and Park DS: PTEN loss-mediated Akt activation increases the properties of cancer stem-like cell populations in prostate cancer. Oncology. 87:270–279. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lee YS, Lee CH, Bae JT, Nam KT, Moon DB, Hwang OK, Choi JS, Kim TH, Jun HO, Jung YS, et al: Inhibition of skin carcinogenesis by suppression of NF-κB dependent ITGAV and TIMP-1 expression in IL-32γ overexpressed condition. J Exp Clin Cancer Res. 37:2932018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Yin H, Zhang H, Hu J, Lu H, Li C, Cao M, Yan S and Cai L: NF-κB-driven improvement of EHD1 contributes to erlotinib resistance in EGFR-mutant lung cancers. Cell Death Dis. 9:4182018. View Article : Google Scholar : PubMed/NCBI | |
|
Hoesel B and Schmid JA: The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer. 12:862013. View Article : Google Scholar : PubMed/NCBI | |
|
Gao X, Xu F, Zhang HT, Chen M, Huang W, Zhang Q, Zeng Q and Liu L: PKCα-GSK3β-NF-κB signaling pathway and the possible involvement of TRIM21 in TRAIL-induced apoptosis. Biochem Cell Biol. 94:256–264. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Duan J, Lang Y, Song C, Xiong J, Wang Y and Yan Y: siRNA targeting of PRDX3 enhances cisplatin-induced apoptosis in ovarian cancer cells through the suppression of the NF-κB signaling pathway. Mol Med Rep. 7:1688–1694. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Wu J, Jing H, Huang G, Sun Z and Xu S: Long noncoding RNA MEG3 inhibits breast cancer growth via upregulating endoplasmic reticulum stress and activating NF-κB and p53. J Cell Biochem. 120:6789–6797. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Rangel M, Kong J, Bhatt V, Khayati K and Guo JY: Autophagy and tumorigenesis. FEBS J. 289:7177–7198. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Orlandi G, Roncucci L, Carnevale G and Sena P: Different roles of apoptosis and autophagy in the development of human colorectal cancer. Int J Mol Sci. 24:102012023. View Article : Google Scholar : PubMed/NCBI | |
|
Verzella D, Pescatore A, Capece D, Vecchiotti D, Ursini MV, Franzoso G, Alesse E and Zazzeroni F: Life, death, and autophagy in cancer: NF-κB turns up everywhere. Cell Death Dis. 11:2102020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang B, Mao JH, Wang BY, Wang LX, Wen HY, Xu LJ, Fu JX and Yang H: Exosomal miR-1910-3p promotes proliferation, metastasis, and autophagy of breast cancer cells by targeting MTMR3 and activating the NF-κB signaling pathway. Cancer Lett. 489:87–99. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kim JY, Shin JH, Kim MJ, Kang Y, Lee JS, Son J, Jeong SK, Kim D, Kim DH, Chun E and Lee KY: β-arrestin 2 negatively regulates lung cancer progression by inhibiting the TRAF6 signaling axis for NF-κB activation and autophagy induced by TLR3 and TLR4. Cell Death Dis. 14:4222023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu S, Huttad L, He G, He W, Liu C, Cai D, Chen H and Qiu J: Long noncoding RNA HULC regulates the NF-κB pathway and represents a promising prognostic biomarker in liver cancer. Cancer Med. 12:5124–5136. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Taniguchi K and Karin M: NF-κB, inflammation, immunity and cancer: Coming of age. Nat Rev Immunol. 18:309–324. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y and Li Y: Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct Target Ther. 6:2632021. View Article : Google Scholar : PubMed/NCBI | |
|
Yu H, Lin L, Zhang Z, Zhang H and Hu H: Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduct Target Ther. 5:2092020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Yang L, Jiang S, Yang T, Lan J, Lei Y, Tan H and Pan K: HMGB1 mediates lipopolysaccharide-induced inflammation via interacting with GPX4 in colon cancer cells. Cancer Cell Int. 20:2052020. View Article : Google Scholar : PubMed/NCBI | |
|
Lin L, Chen S, Wang H, Gao B, Kallakury B, Bhuvaneshwar K, Cahn K, Gusev Y, Wang X, Wu Y, et al: SPTBN1 inhibits inflammatory responses and hepatocarcinogenesis via the stabilization of SOCS1 and downregulation of p65 in hepatocellular carcinoma. Theranostics. 11:4232–4250. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao Y and Yu D: Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 221:1077532021. View Article : Google Scholar : PubMed/NCBI | |
|
Fang Z, Meng Q, Xu J, Wang W, Zhang B, Liu J, Liang C, Hua J, Zhao Y, Yu X and Shi S: Signaling pathways in cancer-associated fibroblasts: Recent advances and future perspectives. Cancer Commun (Lond). 43:3–41. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yeung TL, Leung CS, Wong KK, Samimi G, Thompson MS, Liu J, Zaid TM, Ghosh S, Birrer MJ and Mok SC: TGF-β modulates ovarian cancer invasion by upregulating CAF-derived versican in the tumor microenvironment. Cancer Res. 73:5016–5028. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Jin Y, Cai Q, Wang L, Ji J, Sun Y, Jiang J, Wang C, Wu J, Zhang B, Zhao L, et al: Paracrine activin B-NF-κB signaling shapes an inflammatory tumor microenvironment in gastric cancer via fibroblast reprogramming. J Exp Clin Cancer Res. 42:2692023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao T, Zeng J, Xu Y, Su Z, Chong Y, Ling T, Xu H, Shi H, Zhu M, Mo Q, et al: Chitinase-3 like-protein-1 promotes glioma progression via the NF-κB signaling pathway and tumor microenvironment reprogramming. Theranostics. 12:6989–7008. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Gong H, Chen S, Liu S, Hu Q, Li Y, Li Y, Li G, Huang K, Li R and Fang L: Overexpressing lipid raft protein STOML2 modulates the tumor microenvironment via NF-κB signaling in colorectal cancer. Cell Mol Life Sci. 81:392024. View Article : Google Scholar : PubMed/NCBI | |
|
He R, He Y, Du R, Liu C, Chen Z, Zeng A and Song L: Revisiting of TAMs in tumor immune microenvironment: Insight from NF-κB signaling pathway. Biomed Pharmacother. 165:1150902023. View Article : Google Scholar : PubMed/NCBI | |
|
Morrissey SM, Zhang F, Ding C, Montoya-Durango DE, Hu X, Yang C, Wang Z, Yuan F, Fox M, Zhang HG, et al: Tumor-derived exosomes drive immunosuppressive macrophages in a pre-metastatic niche through glycolytic dominant metabolic reprogramming. Cell Metab. 33:2040–2058.e10. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Cai H, Yan L, Liu N, Xu M and Cai H: IFI16 promotes cervical cancer progression by upregulating PD-L1 in immunomicroenvironment through STING-TBK1-NF-κB pathway. Biomed Pharmacother. 123:1097902020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang C and Wu S: BAP1 mutations inhibit the NF-κB signaling pathway to induce an immunosuppressive microenvironment in uveal melanoma. Mol Med. 29:1262023. View Article : Google Scholar : PubMed/NCBI | |
|
Tan Y, Sun R, Liu L, Yang D, Xiang Q, Li L, Tang J, Qiu Z, Peng W, Wang Y, et al: Tumor suppressor DRD2 facilitates M1 macrophages and restricts NF-κB signaling to trigger pyroptosis in breast cancer. Theranostics. 11:5214–5231. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Shen Y, Xue C, Li X, Ba L, Gu J, Sun Z, Han Q and Zhao RC: Effects of gastric cancer cell-derived exosomes on the immune regulation of mesenchymal stem cells by the NF-κB signaling pathway. Stem Cells Dev. 28:464–476. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Georgouli M, Herraiz C, Crosas-Molist E, Fanshawe B, Maiques O, Perdrix A, Pandya P, Rodriguez-Hernandez I, Ilieva KM, Cantelli G, et al: Regional activation of myosin II in cancer cells drives tumor progression via a secretory cross-talk with the immune microenvironment. Cell. 176:757–774.e23. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Zhao B, Peng J, Tang H, Wang S, Peng S, Ye F, Wang J, Ouyang K, Li J, et al: Inhibition of NF-κB signaling unveils novel strategies to overcome drug resistance in cancers. Drug Resist Updat. 73:1010422024. View Article : Google Scholar : PubMed/NCBI | |
|
Goka ET, Chaturvedi P, Lopez DTM, Garza A and Lippman ME: RAC1b overexpression confers resistance to chemotherapy treatment in colorectal cancer. Mol Cancer Ther. 18:957–968. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Azuma K, Ikeda K, Suzuki T, Aogi K, Horie-Inoue K and Inoue S: TRIM47 activates NF-κB signaling via PKC-ε/PKD3 stabilization and contributes to endocrine therapy resistance in breast cancer. Proc Natl Acad Sci USA. 118:e21007841182021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang M, Zhang Y, Xu Z, Qian P, Sun W, Wang X, Jian Z, Xia T, Xu Y and Tang J: RelB sustains endocrine resistant malignancy: An insight of noncanonical NF-κB pathway into breast cancer progression. Cell Commun Signal. 18:1282020. View Article : Google Scholar : PubMed/NCBI | |
|
Peng S, Wang R, Zhang X, Ma Y, Zhong L, Li K, Nishiyama A, Arai S, Yano S and Wang W: EGFR-TKI resistance promotes immune escape in lung cancer via increased PD-L1 expression. Mol Cancer. 18:1652019. View Article : Google Scholar : PubMed/NCBI | |
|
Somani VK, Zhang D, Dodhiawala PB, Lander VE, Liu X, Kang LI, Chen HP, Knolhoff BL, Li L, Grierson PM, et al: IRAK4 signaling drives resistance to checkpoint immunotherapy in pancreatic ductal adenocarcinoma. Gastroenterology. 162:2047–2062. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Gao Z, Xu J, Fan Y, Zhang Z, Wang H, Qian M, Zhang P, Deng L, Shen J, Xue H, et al: ARPC1B promotes mesenchymal phenotype maintenance and radiotherapy resistance by blocking TRIM21-mediated degradation of IFI16 and HuR in glioma stem cells. J Exp Clin Cancer Res. 41:3232022. View Article : Google Scholar : PubMed/NCBI | |
|
Kumar S, Nandi A, Singh S, Regulapati R, Li N, Tobias JW, Siebel CW, Blanco MA, Klein-Szanto AJ, Lengner C, et al: Author correction: Dll1+ quiescent tumor stem cells drive chemoresistance in breast cancer through NF-κB survival pathway. Nat Commun. 13:39272022. View Article : Google Scholar : PubMed/NCBI | |
|
Liang Y, Wang Y, Zhang Y, Ye F, Luo D, Li Y, Jin Y, Han D, Wang Z, Chen B, et al: HSPB1 facilitates chemoresistance through inhibiting ferroptotic cancer cell death and regulating NF-κB signaling pathway in breast cancer. Cell Death Dis. 14:4342023. View Article : Google Scholar : PubMed/NCBI | |
|
Yu H, Xie M, Meng Z, Lo CY, Chan FL, Jiang L, Meng X and Yao X: Endolysosomal ion channel MCOLN2 (Mucolipin-2) promotes prostate cancer progression via IL-1β/NF-κB pathway. Br J Cancer. 125:1420–1431. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang W, Li X, Xu Y, Guo W, Yu H, Zhang L, Wang Y and Chen X: Acetylation-stabilized chloride intracellular channel 1 exerts a tumor-promoting effect on cervical cancer cells by activating NF-κB. Cell Oncol (Dordr). 44:557–568. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Nakanishi M, Korechika A, Yamakawa H, Kawabe N, Nakai K and Muragaki Y: Acidic microenvironment induction of interleukin-8 expression and matrix metalloproteinase-2/-9 activation via acid-sensing ion channel 1 promotes breast cancer cell progression. Oncol Rep. 45:1284–1294. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Alaimo A, Genovesi S, Annesi N, De Felice D, Subedi S, Macchia A, La Manna F, Ciani Y, Vannuccini F, Mugoni V, et al: Sterile inflammation via TRPM8 RNA-dependent TLR3-NF-κB/IRF3 activation promotes antitumor immunity in prostate cancer. EMBO J. 43:780–805. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Bachmann M, Rossa A, Varanita T, Fioretti B, Biasutto L, Milenkovic S, Checchetto V, Peruzzo R, Ahmad SA, Patel SH, et al: Pharmacological targeting of the mitochondrial calcium-dependent potassium channel KCa3.1 triggers cell death and reduces tumor growth and metastasis in vivo. Cell Death Dis. 13:10552024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Q, Liu X, Luo Z, Wang S, Lin J, Xie Z, Li M, Li C, Cao H, Huang Q, et al: Chloride channel-3 mediates multidrug resistance of cancer by upregulating P-glycoprotein expression. J Cell Physiol. 234:6611–6623. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Fernández-Gallardo M, Corzo-Lopez A, Muñoz-Herrera D, Leyva-Leyva M, González-Ramírez R, Sandoval A, Delgado-Lezama R, Monjaraz E and Felix R: Role of the Ca2+ channel α2δ-1 auxiliary subunit in proliferation and migration of human glioblastoma cells. PLoS One. 17:e02791862022. View Article : Google Scholar : PubMed/NCBI | |
|
Wong JH, Ho KH, Nam S, Hsu WL, Lin CH, Chang CM, Wang JY and Chang WC: Store-operated Ca2+ entry facilitates the lipopolysaccharide-induced cyclooxygenase-2 expression in gastric cancer cells. Sci Rep. 7:128132017. View Article : Google Scholar : PubMed/NCBI | |
|
Xue C, Gao Y, Li X, Zhang M, Yang Y, Han Q, Sun Z, Bai C and Zhao RC: Mesenchymal stem cells derived from adipose accelerate the progression of colon cancer by inducing a MT-CAFs phenotype via TRPC3/NF-κB axis. Stem Cell Res Ther. 13:3352022. View Article : Google Scholar : PubMed/NCBI | |
|
Basson MD, Zeng B, Downey C, Sirivelu MP and Tepe JJ: Increased extracellular pressure stimulates tumor proliferation by a mechanosensitive calcium channel and PKC-β. Mol Oncol. 9:513–526. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Liang L, Liu X, He J, Shao Y, Liu J, Wang Z, Xia L, Han T and Wu P: Cyanidin-3-glucoside induces mesenchymal to epithelial transition via activating Sirt1 expression in triple negative breast cancer cells. Biochimie. 162:107–115. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Rasanen K, Sriswasdi S, Valiga A, Tang HY, Zhang G, Perego M, Somasundaram R, Li L, Speicher K, Klein-Szanto AJ, et al: Comparative secretome analysis of epithelial and mesenchymal subpopulations of head and neck squamous cell carcinoma identifies S100A4 as a potential therapeutic target. Mol Cell Proteomics. 12:3778–3792. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Wu W, Wang Y, Niu C, Wahafu A, Huo L, Guo X, Xiang J, Li X, Xie W, Bai X, et al: Retinol binding protein 1-dependent activation of NF- κB signaling enhances the malignancy of non-glioblastomatous diffuse gliomas. Cancer Sci. 113:517–528. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Wahafu A, Wu W, Xiang J, Huo L, Ma X, Wang N, Liu H, Bai X, Xu D, et al: FABP5 enhances malignancies of lower-grade gliomas via canonical activation of NF-κB signaling. J Cell Mol Med. 25:4487–4500. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Mi Y, Mu L, Huang K, Hu Y, Yan C, Zhao H, Ma C, Li X, Tao D and Qin J: Hypoxic colorectal cancer cells promote metastasis of normoxic cancer cells depending on IL-8/p65 signaling pathway. Cell Death Dis. 11:6102020. View Article : Google Scholar : PubMed/NCBI | |
|
Du R, Liu B, Zhou L, Wang D, He X, Xu X, Zhang L, Niu C and Liu S: Downregulation of annexin A3 inhibits tumor metastasis and decreases drug resistance in breast cancer. Cell Death Dis. 9:1262018. View Article : Google Scholar : PubMed/NCBI | |
|
Holmberg R, Robinson M, Gilbert SF, Lujano-Olazaba O, Waters JA, Kogan E, Velasquez CLR, Stevenson D, Cruz LS, Alexander LJ, et al: TWEAK-Fn14-RelB signaling cascade promotes stem cell-like features that contribute to post-chemotherapy ovarian cancer relapse. Mol Cancer Res. 21:170–186. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Long X, Hu Y, Duan S, Liu X, Huang W, Liu X, Xu Q, Song W and Zhou J: MRGBP promotes colorectal cancer metastasis via DKK1/Wnt/β-catenin and NF-κB/p65 pathways mediated EMT. Exp Cell Res. 421:1133752022. View Article : Google Scholar : PubMed/NCBI | |
|
Lin X, Yoshikawa N, Liu W, Matsukawa T, Nakamura K, Yoshihara M, Koya Y, Sugiyama M, Tamauchi S, Ikeda Y, et al: DDIT4 facilitates lymph node metastasis via the activation of NF-κB pathway and epithelial-mesenchymal transition. Reprod Sci. 30:2829–2841. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Li P, Zhang W, Zhou H, Guo E, Hu G and Zhang L: FERMT1 contributes to the migration and invasion of nasopharyngeal carcinoma through epithelial-mesenchymal transition and cell cycle arrest. Cancer Cell Int. 22:702022. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Deng Z, Wang Z, Wang D, Zhang L, Su Q, Lai Y, Li B, Luo Z, Chen X, et al: Zipper-interacting protein kinase promotes epithelial-mesenchymal transition, invasion and metastasis through AKT and NF-κB signaling and is associated with metastasis and poor prognosis in gastric cancer patients. Oncotarget. 6:8323–8338. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Li T, Li X, Mao R, Pan L, Que Y, Zhu C, Jin L and Li S: NLRP2 inhibits cell proliferation and migration by regulating EMT in lung adenocarcinoma cells. Cell Biol Int. 46:588–598. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Soror AA, Eshagh R, Fahim MR, Jamshidian A and Monfared GH: Prostate cancer invasion is promoted by the miR-96-5p-induced NDRG1 deficiency through NF-κB regulation. Klin Onkol. 38:95–101. 2024.PubMed/NCBI | |
|
Meng DF, Sun R, Liu GY, Peng LX, Zheng LS, Xie P, Lin ST, Mei Y, Qiang YY, Li CZ, et al: S100A14 suppresses metastasis of nasopharyngeal carcinoma by inhibition of NF-κB signaling through degradation of IRAK1. Oncogene. 39:5307–5322. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lyu G, Su P, Hao X, Chen S, Ren S, Zhao Z, Gong Y, Liu Q and Shao C: RECQL4 regulates DNA damage response and redox homeostasis in esophageal cancer. Cancer Biol Med. 18:120–138. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Wu H, Wang L, Zhang H, Lu J, Liang Z and Liu T: Asporin promotes pancreatic cancer cell invasion and migration by regulating the epithelial-to-mesenchymal transition (EMT) through both autocrine and paracrine mechanisms. Cancer Lett. 398:24–36. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Feng M, Feng J, Chen W, Wang W, Wu X, Zhang J, Xu F and Lai M: Lipocalin2 suppresses metastasis of colorectal cancer by attenuating NF-κB-dependent activation of snail and epithelial mesenchymal transition. Mol Cancer. 15:772016. View Article : Google Scholar : PubMed/NCBI | |
|
Nagaraju GP, Long TE, Park W, Landry JC, Taliaferro-Smith L, Farris AB, Diaz R and El-Rayes BF: Heat shock protein 90 promotes epithelial to mesenchymal transition, invasion, and migration in colorectal cancer. Mol Carcinog. 54:1147–1158. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ren D, Yang Q, Dai Y, Guo W, Du H, Song L and Peng X: Oncogenic miR-210-3p promotes prostate cancer cell EMT and bone metastasis via NF-κB signaling pathway. Mol Cancer. 16:1172017. View Article : Google Scholar : PubMed/NCBI | |
|
Bai Y, Ren C, Wang B, Xue J, Li F, Liu J and Yang L: LncRNA MAFG-AS1 promotes the malignant phenotype of ovarian cancer by upregulating NFKB1-dependent IGF1. Cancer Gene Ther. 29:277–291. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu B, Yan S, Jia Y, Ma J, Wu S, Xu Y, Shang M and Mao A: TLR2 promotes human intrahepatic cholangiocarcinoma cell migration and invasion by modulating NF-κB pathway-mediated inflammatory responses. FEBS J. 283:3839–3850. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Liu P, Yang P, Zhang Z, Liu M and Hu S: Ezrin/NF-κB pathway regulates EGF-induced epithelial-mesenchymal transition (EMT), metastasis, and progression of osteosarcoma. Med Sci Monit. 24:2098–2108. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Wu Z, Han D, Wei C, Liang Y, Jiang T, Chen L, Sha M, Cao Y, Huang F, et al: Mesencephalic astrocyte-derived neurotrophic factor inhibits liver cancer through small ubiquitin-related modifier (SUMO)ylation-related suppression of NF-κB/snail signaling pathway and epithelial-mesenchymal transition. Hepatology. 71:1262–1278. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang F, Jiang X and Wang P: NF-κB interaction long non-coding RNA inhibits migration, invasion and epithelial-mesenchymal transition of cervical cancer cells through inhibiting NF-κB signaling pathways. Exp Ther Med. 20:1039–1047. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu W, Wang S, Sun Q, Yang Z, Liu M and Tang H: DCLK1 promotes epithelial-mesenchymal transition via the PI3K/Akt/NF-κB pathway in colorectal cancer. Int J Cancer. 142:2068–2079. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Cui X, Wang Y, Lan W, Wang S, Cui Y, Zhang X, Lin Z and Piao J: SPOCK1 promotes metastasis in pancreatic cancer via NF-κB-dependent epithelial-mesenchymal transition by interacting with IκB-α. Cell Oncol (Dordr). 45:69–84. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Wang L, Zhang H, Lu J, Zhang Z, Wu H and Liang Z: AREG mediates the epithelial-mesenchymal transition in pancreatic cancer cells via the EGFR/ERK/NF-κB signalling pathway. Oncol Rep. 43:1558–1568. 2020.PubMed/NCBI | |
|
Zhou W, Wang Q, Xu Y, Jiang J, Guo J, Yu H and Wei W: RMP promotes epithelial-mesenchymal transition through NF-κB/CSN2/snail pathway in hepatocellular carcinoma. Oncotarget. 8:40373–40388. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Liu W, Wang H, Bai F, Ding L, Huang Y, Lu C, Chen S, Li C, Yue X, Liang X, et al: IL-6 promotes metastasis of non-small-cell lung cancer by up-regulating TIM-4 via NF-κB. Cell Prolif. 53:e127762020. View Article : Google Scholar : PubMed/NCBI | |
|
Ma J, Gao Q, Zeng S and Shen H: Knockdown of NDRG1 promote epithelial-mesenchymal transition of colorectal cancer via NF-κB signaling. J Surg Oncol. 114:520–527. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Shen T, Yang Z, Cheng X, Xiao Y, Yu K, Cai X, Xia C and Li Y: CXCL8 induces epithelial-mesenchymal transition in colon cancer cells via the PI3K/Akt/NF-κB signaling pathway. Oncol Rep. 37:2095–2100. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lv N, Shan Z, Gao Y, Guan H, Fan C, Wang H and Teng W: Twist1 regulates the epithelial-mesenchymal transition via the NF-κB pathway in papillary thyroid carcinoma. Endocrine. 51:469–477. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Nomura A, Banerjee S, Chugh R, Dudeja V, Yamamoto M, Vickers SM and Saluja AK: CD133 initiates tumors, induces epithelial-mesenchymal transition and increases metastasis in pancreatic cancer. Oncotarget. 6:8313–8322. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Z, Zhong T, Zhong J, Tang Y, Ling B and Wang L: MicroRNA-129 inhibits colorectal cancer cell proliferation, invasion and epithelial-to-mesenchymal transition by targeting SOX4. Oncol Rep. 45:612021. View Article : Google Scholar : PubMed/NCBI | |
|
He Z, Dong W, Hu J and Ren X: AQP5 promotes hepatocellular carcinoma metastasis via NF-κB-regulated epithelial-mesenchymal transition. Biochem Biophys Res Commun. 490:343–348. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ma T, Zhao Z, Wang Z, Wang C and Zhang L: MiR-940 inhibits migration and invasion of tongue squamous cell carcinoma via regulatingCXCR2/NF-κB system-mediated epithelial-mesenchymal transition. Naunyn Schmiedebergs Arch Pharmacol. 392:1359–1369. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Mei LL, Wang WJ, Qiu YT, Xie XF, Bai J and Shi ZZ: miR-145-5p suppresses tumor cell migration, invasion and epithelial to mesenchymal transition by regulating the Sp1/NF-κB signaling pathway in esophageal squamous cell carcinoma. Int J Mol Sci. 18:18332017. View Article : Google Scholar : PubMed/NCBI | |
|
Tsuboi K, Matsuo Y, Shamoto T, Shibata T, Koide S, Morimoto M, Guha S, Sung B, Aggarwal BB, Takahashi H and Takeyama H: Zerumbone inhibits tumor angiogenesis via NF-κB in gastric cancer. Oncol Rep. 31:57–64. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Song L, Chen X, Mi L, Liu C, Zhu S, Yang T, Luo X, Zhang Q, Lu H and Liang X: Icariin-induced inhibition of SIRT6/NF-κB triggers redox mediated apoptosis and enhances anti-tumor immunity in triple-negative breast cancer. Cancer Sci. 111:4242–4256. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang T, Guo S, Zhu X, Qiu J, Deng G and Qiu C: Alpinetin inhibits breast cancer growth by ROS/NF-κB/HIF-1α axis. J Cell Mol Med. 24:8430–8440. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Sun X, Chang X, Wang Y, Xu B and Cao X: Oroxylin A suppresses the cell proliferation, migration, and EMT via NF-κB signaling pathway in human breast cancer cells. Biomed Res Int. 2019:92417692019. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu J, Zhang T, Zhu X, Yang C, Wang Y, Zhou N, Ju B, Zhou T, Deng G and Qiu C: Hyperoside induces breast cancer cells apoptosis via ROS-mediated NF-κB signaling pathway. Int J Mol Sci. 21:1312019. View Article : Google Scholar : PubMed/NCBI | |
|
Yu X, Liu Y, Wang Y, Mao X, Zhang Y and Xia J: Baicalein induces cervical cancer apoptosis through the NF-κB signaling pathway. Mol Med Rep. 17:5088–5094. 2018.PubMed/NCBI | |
|
Junmin S, Hongxiang L, Zhen L, Chao Y and Chaojie W: Ginsenoside Rg3 inhibits colon cancer cell migration by suppressing nuclear factor kappa B activity. J Tradit Chin Med. 35:440–444. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Sun L, Lei J, Wu Z, Ma Q and Wang Z: Curcumin inhibits pancreatic cancer cell invasion and EMT by interfering with tumor-stromal crosstalk under hypoxic conditions via the IL-6/ERK/NF-κB axis. Oncol Rep. 44:382–392. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kumar S, Singh R, Dutta D, Chandel S, Bhattacharya A, Ravichandiran V and Sukla S: In vitro anticancer activity of methanolic extract of Justicia adhatoda leaves with special emphasis on human breast cancer cell line. Molecules. 27:82222022. View Article : Google Scholar : PubMed/NCBI | |
|
De D, Chowdhury P, Panda SK and Ghosh U: Leaf extract and active fractions of Dillenia pentagyna Roxb. Reduce in vitro human cancer cell migration Via NF-κB pathway. Integr Cancer Ther. 21:153473542211288322022. View Article : Google Scholar : PubMed/NCBI | |
|
Jung EJ, Paramanantham A, Kim HJ, Shin SC, Kim GS, Jung JM, Hong SC, Chung KH, Kim CW and Lee WS: Identification of growth factors, cytokines and mediators regulated by Artemisia annua L. Polyphenols (pKAL) in HCT116 colorectal cancer cells: TGF-β1 and NGF-β attenuate pKAL-induced anticancer effects via NF-κB p65 upregulation. Int J Mol Sci. 23:15982022. View Article : Google Scholar : PubMed/NCBI | |
|
Jin J, Zhou M, Wang X, Liu M, Huang H, Yan F, Yu Z, Shu X, Huo X, Feng L, et al: Triptolidenol, isolated from Tripterygium wilfordii, disrupted NF-κB/COX-2 pathway by targeting ATP-binding sites of IKKβ in clear cell renal cell carcinoma. Fitoterapia. 148:1047792021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhen X, Choi HS, Kim JH, Kim SL, Liu R, Yun BS and Lee DS: Machilin D, a lignin derived from saururus chinensis, suppresses breast cancer stem cells and inhibits NF-κB signaling. Biomolecules. 10:2452020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Chen Z, Li X, Jiang ZK, Zhao YQ and Ping FF: Geraniin suppresses ovarian cancer growth through inhibition of NF-κB activation and downregulation of Mcl-1 expression. J Biochem Mol Toxicol. 31:2017. View Article : Google Scholar | |
|
Kong Y, Li F, Nian Y, Zhou Z, Yang R, Qiu MH and Chen C: KHF16 is a leading structure from cimicifuga foetida that suppresses breast cancer partially by inhibiting the NF-κB signaling pathway. Theranostics. 6:875–886. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Huang Y, Liu Z, Li L, Jiang M, Tang Y, Zhou L, Li J and Chen Y: Sesamin inhibits hypoxia-stimulated angiogenesis via the NF-κB p65/HIF-1α/VEGFA signaling pathway in human colorectal cancer. Food Funct. 13:8989–8997. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang H, Chen H, Jin C, Mo J and Wang H: Nobiletin flavone inhibits the growth and metastasis of human pancreatic cancer cells via induction of autophagy, G0/G1 cell cycle arrest and inhibition of NF-κB signalling pathway. J BUON. 25:1070–1075. 2020.PubMed/NCBI | |
|
Zhang Y, Zhao Y, Ran Y, Guo J, Cui H and Liu S: Alantolactone exhibits selective antitumor effects in HELA human cervical cancer cells by inhibiting cell migration and invasion, G2/M cell cycle arrest, mitochondrial mediated apoptosis and targeting Nf-κB signalling pathway. J BUON. 24:2310–2315. 2019.PubMed/NCBI | |
|
Zhang Y, Li G and Ji C: Inhibition of human cervical cancer cell growth by Salviolone is mediated via autophagy induction, cell migration and cell invasion suppression, G2/M cell cycle arrest and downregulation of Nf-κB/m-TOR/PI3K/AKT pathway. J BUON. 23:1739–1744. 2018.PubMed/NCBI | |
|
Chou YJ, Lin CC, Hsu YC, Syu JL, Tseng LM, Chiu JH, Lo JF, Lin CH and Fu SL: Andrographolide suppresses the malignancy of triple-negative breast cancer by reducing THOC1-promoted cancer stem cell characteristics. Biochem Pharmacol. 206:1153272022. View Article : Google Scholar : PubMed/NCBI | |
|
Kumar R, Bhardwaj P, Soni M, Singh R, Choudhary S, Virmani N, Asrani RK, Patial V, Sharma D, Gupta VK and Tripathi BN: Modulation of mammary tumour progression using murine model by ethanol root extract of Saussurea costus (falc.) lipsch. J Ethnopharmacol. 319:1173022024. View Article : Google Scholar : PubMed/NCBI | |
|
Rojo D, Madrid A, Martín SS, Párraga M, Silva Pinhal MA, Villena J and Valenzuela-Valderrama M: Resveratrol decreases the invasion potential of gastric cancer cells. Molecules. 27:30472022. View Article : Google Scholar : PubMed/NCBI | |
|
Chung SS, Wu Y, Okobi Q, Adekoya D, Atefi M, Clarke O, Dutta P and Vadgama JV: Proinflammatory cytokines IL-6 and TNF-α increased telomerase activity through NF-κB/STAT1/STAT3 activation, and Withaferin A inhibited the signaling in colorectal cancer cells. Mediators Inflamm. 2017:59584292017. View Article : Google Scholar : PubMed/NCBI | |
|
Han B, Jiang P, Liu W, Xu H, Li Y, Li Z, Ma H, Yu Y, Li X and Ye X: Role of daucosterol linoleate on breast cancer: Studies on apoptosis and metastasis. J Agric Food Chem. 66:6031–6041. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Paramanantham A, Kim MJ, Jung EJ, Nagappan A, Yun JW, Kim HJ, Shin SC, Kim GS and Lee WS: Pretreatment of anthocyanin from the fruit of vitis coignetiae pulliat acts as a potent inhibitor of TNF-α effect by inhibiting NF-κB-regulated genes in human breast cancer cells. Molecules. 25:23962020. View Article : Google Scholar : PubMed/NCBI | |
|
Lin CL, Hsieh SL, Leung W, Jeng JH, Huang GC, Lee CT, Lee CT and Wu CC: 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside suppresses human colorectal cancer cell metastasis through inhibiting NF-κB activation. Int J Oncol. 49:629–638. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao W, Jiang Y, Jia X, Wang X and Guo Y: Berbamine inhibits the biological activities of prostate cancer cells by modulating the ROS/NF-κB axis. Anticancer Agents Med Chem. 23:1626–1633. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Jia W, Luo S, Lai G, Li S, Huo S, Li M and Zeng X: Homogeneous polyporus polysaccharide inhibits bladder cancer by polarizing macrophages to M1 subtype in tumor microenvironment. BMC Complement Med Ther. 21:1502021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu R, Choi HS, Kim SL, Kim JH, Yun BS and Lee DS: 6-Methoxymellein isolated from carrot (Daucus carota L.) targets breast cancer stem cells by regulating NF-κB signaling. Molecules. 25:43742020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Wang Y, Zhang L and Gao Y: Hydroxysafflor yellow A of Carthamus Tinctorius L., represses the malignant development of esophageal cancer cells via regulating NF-κB signaling pathway. Cell Biochem Biophys. 78:511–520. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ghasemi F, Shafiee M, Banikazemi Z, Pourhanifeh MH, Khanbabaei H, Shamshirian A, Amiri Moghadam S, ArefNezhad R, Sahebkar A, Avan A and Mirzaei H: Curcumin inhibits NF-κB and Wnt/β-catenin pathways in cervical cancer cells. Pathol Res Pract. 215:1525562019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Chinnathambi A, Alharbi SA, Veeraraghavan VP, Mohan SK and Zhang G: Punicalagin promotes the apoptosis in human cervical cancer (ME-180) cells through mitochondrial pathway and by inhibiting the NF-κB signaling pathway. Saudi J Biol Sci. 27:1100–1106. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Su J, Yan Y, Qu J, Xue X, Liu Z and Cai H: Emodin induces apoptosis of lung cancer cells through ER stress and the TRIB3/NF-κB pathway. Oncol Rep. 37:1565–1572. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Han S, Lim SL, Kim H, Choi H, Lee MY, Shim SY, Le DD, Ha IJ, Lee M and Lee SG: Ethyl acetate fraction of Osmanthus fragrans var. aurantiacus and its triterpenoids suppress proliferation and survival of colorectal cancer cells by inhibiting NF-κB and COX2. J Ethnopharmacol. 319:1173622024. View Article : Google Scholar : PubMed/NCBI | |
|
Luo KW, Wei C, Lung WY, Wei XY, Cheng BH, Cai ZM and Huang WR: EGCG inhibited bladder cancer SW780 cell proliferation and migration both in vitro and in vivo via down-regulation of NF-κB and MMP-9. J Nutr Biochem. 41:56–64. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang W, Yin G, Dai J, Sun YU, Hoffman RM, Yang Z and Fan Y: Chemoprevention by quercetin of oral squamous cell carcinoma by suppression of the NF-κB signaling pathway in DMBA-treated hamsters. Anticancer Res. 37:4041–4049. 2017.PubMed/NCBI | |
|
Yu Z, Gao J, Zhang X, Peng Y, Wei W, Xu J, Li Z, Wang C, Zhou M, Tian X, et al: Characterization of a small-molecule inhibitor targeting NEMO/IKKβ to suppress colorectal cancer growth. Signal Transduct Target Ther. 7:712022. View Article : Google Scholar : PubMed/NCBI | |
|
Lawal B, Kuo YC, Wu AT and Huang HS: Therapeutic potential of EGFR/mTOR/Nf-kb targeting small molecule for the treatment of non-small cell lung cancer. Am J Cancer Res. 13:2598–2616. 2023.PubMed/NCBI | |
|
Véquaud E, Séveno C, Loussouarn D, Engelhart L, Campone M, Juin P and Barillé-Nion S: YM155 potently triggers cell death in breast cancer cells through an autophagy-NF-κB network. Oncotarget. 6:13476–13486. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wong JH, Lui VW, Umezawa K, Ho Y, Wong EY, Ng MHL, Cheng SH, Tsang CM, Tsao SW and Chan AT: A small molecule inhibitor of NF-kappaB, dehydroxymethylepoxyquinomicin (DHMEQ), suppresses growth and invasion of nasopharyngeal carcinoma (NPC) cells. Cancer Lett. 287:23–32. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Li MY, Mi C, Wang KS, Ma J and Jin X: Mollugin has an anti-cancer therapeutic effect by inhibiting TNF-α-induced NF-κB activation. Int J Mol Sci. 18:16192017. View Article : Google Scholar : PubMed/NCBI | |
|
Wu W, Chen F, Cui X, Yang L, Chen J, Zhao J, Huang D, Liu J, Yang L, Zeng J, et al: LncRNA NKILA suppresses TGF-β-induced epithelial-mesenchymal transition by blocking NF-κB signaling in breast cancer. Int J Cancer. 143:2213–2224. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang Z, Zhang J, Chen F and Sun Y: MiR-148b suppressed non-small cell lung cancer progression via inhibiting ALCAM through the NF-κB signaling pathway. Thorac Cancer. 11:415–425. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ou J, Meng F, Liu J, Li D, Cao H and Sun B: Ovatodiolide exerts anticancer effects on human cervical cancer cells via mitotic catastrophe, apoptosis and inhibition of NF-κB pathway. J BUON. 25:87–92. 2020.PubMed/NCBI | |
|
Yin M, Ren X, Zhang X, Luo Y, Wang G, Huang K, Feng S, Bao X, Huang K, He X, et al: Selective killing of lung cancer cells by miRNA-506 molecule through inhibiting NF-κB p65 to evoke reactive oxygen species generation and p53 activation. Oncogene. 34:691–703. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ginzburg S, Golovine KV, Makhov PB, Uzzo RG, Kutikov A and Kolenko VM: Piperlongumine inhibits NF-κB activity and attenuates aggressive growth characteristics of prostate cancer cells. Prostate. 74:177–186. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Minocha T, Das M, Rai V, Verma SS, Awasthee N, Gupta SC, Haldar C and Yadav SK: Melatonin induces apoptosis and cell cycle arrest in cervical cancer cells via inhibition of NF-κB pathway. Inflammopharmacology. 30:1411–1429. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Srivastava A, Mishra S, Avadhesh Shekher A, Rai V, Dhasmana A, Das J, Perenzoni D, Iori R and Gupta SC: Moringin, an isothiocyanate modulates multiple cellular signalling molecules in breast cancer cells. Cell Signal. 119:1111812024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Yuan XN, Zhang Z, Gong PJ, Yin WN, Jiang Q, Xu J, Xu XL, Gao Y, Chen WL, et al: Betulinic acid inhibits cell proliferation and migration in gastric cancer by targeting the NF-κB/VASP pathway. Eur J Pharmacol. 889:1734932020. View Article : Google Scholar : PubMed/NCBI | |
|
Lim JCW, Jeyaraj EJ, Sagineedu SR, Wong WSF and Stanslas J: SRS06, a new semisynthetic andrographolide derivative with improved anticancer potency and selectivity, inhibits nuclear factor-κB nuclear binding in the A549 non-small cell lung cancer cell line. Pharmacol. 95:70–77. 2015. View Article : Google Scholar | |
|
El-Deeb NM, Yassin AM, Al-Madboly LA and El-Hawiet A: A novel purified Lactobacillus acidophilus 20079 exopolysaccharide, LA-EPS-20079, molecularly regulates both apoptotic and NF-κB inflammatory pathways in human colon cancer. Microb Cell Fact. 17:292018. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Gao Z, Wang X and Shen Y: Parthenolide targets NF-κB (P50) to inhibit HIF-1α-mediated metabolic reprogramming of HCC. Aging (Albany NY). 14:8346–8356. 2022.PubMed/NCBI | |
|
Leung HW, Wang Z, Yue GG, Zhao SM, Lee JK, Fung KP, Leung PC, Lau CB and Tan NH: Cyclopeptide RA-V inhibits cell adhesion and invasion in both estrogen receptor positive and negative breast cancer cells via PI3K/AKT and NF-κB signaling pathways. Biochim Biophys Acta. 1853:1827–1840. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Chen K, Pan Q, Gao Y, Yang X, Wang S, Peppelenbosch MP and Kong X: DMS triggers apoptosis associated with the inhibition of SPHK1/NF-κB activation and increase in intracellular Ca2+ concentration in human cancer cells. Int J Mol Med. 33:17–24. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Acuña UM, Mo S, Zi J, Orjala J and DE Blanco EJC: Hapalindole H induces apoptosis as an inhibitor of NF-ĸB and affects the intrinsic mitochondrial pathway in PC-3 androgen-insensitive prostate cancer cells. Anticancer Res. 38:3299–3307. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Al-Halabi R, Bou Chedid M, Abou Merhi R, El-Hajj H, Zahr H, Schneider-Stock R, Bazarbachi A and Gali-Muhtasib H: Gallotannin inhibits NFĸB signaling and growth of human colon cancer xenografts. Cancer Biol Ther. 12:59–68. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang T, Yu H, Dong G, Cai L and Bai Y: Chamaejasmine arrests cell cycle, induces apoptosis and inhibits nuclear NF-κB translocation in the human breast cancer cell line MDA-MB-231. Molecules. 18:845–858. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Annamalai G and Suresh K: [6]-Shogaol attenuates inflammation, cell proliferation via modulate NF-κB and AP-1 oncogenic signaling in 7,12-dimethylbenz[a]anthracene induced oral carcinogenesis. Biomed Pharmacother. 98:484–490. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Delma CR, Thirugnanasambandan S, Srinivasan GP, Raviprakash N, Manna SK, Natarajan M and Aravindan N: Fucoidan from marine brown algae attenuates pancreatic cancer progression by regulating p53-NFκB crosstalk. Phytochemistry. 167:1120782019. View Article : Google Scholar : PubMed/NCBI | |
|
Duan M, Hu F, Li D, Wu S and Peng N: Silencing KPNA2 inhibits IL-6-induced breast cancer exacerbation by blocking NF-κB signaling and c-Myc nuclear translocation in vitro. Life Sci. 253:1177362020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Ruan J, Yan L, Li W, Wu Y, Tao L, Zhang F, Zheng S, Wang A and Lu Y: Xanthatin induces cell cycle arrest at G2/M checkpoint and apoptosis via disrupting NF-κB pathway in A549 non-small-cell lung cancer cells. Molecules. 17:3736–3750. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu J, Zhao J, Yu Z, Shrestha S, Song J, Liu W, Lan W, Xing J, Liu S, Chen C, et al: Epoxymicheliolide, a novelguaiane-type sesquiterpene lactone, inhibits NF-κB/COX-2 signaling pathways by targeting leucine 281 and leucine 25 in IKKβ in renal cell carcinoma. Int J Oncol. 53:987–1000. 2018.PubMed/NCBI | |
|
Wang R, Ma Y, Zhan S, Zhang G, Cao L, Zhang X, Shi T and Chen W: B7-H3 promotes colorectal cancer angiogenesis through activating the NF-κB pathway to induce VEGFA expression. Cell Death Dis. 11:552020. View Article : Google Scholar : PubMed/NCBI | |
|
Al-Saeedi FJ: Asiaticoside increases caspase-9 activity in MCF-7 cells and inhibits TNF-α and IL-6 expression in nude mouse xenografts via the NF-κB pathway. Molecules. 28:21012023. View Article : Google Scholar : PubMed/NCBI | |
|
Shiode Y, Kodama T, Shigeno S, Murai K, Tanaka S, Newberg JY, Kondo J, Kobayashi S, Yamada R, Hikita H, et al: TNF receptor-related factor 3 inactivation promotes the development of intrahepatic cholangiocarcinoma through NF-κB-inducing kinase-mediated hepatocyte transdifferentiation. Hepatology. 77:395–410. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang P, Xun W, Han T and Cheng Z: FAIM-S functions as a negative regulator of NF-κB pathway and blocks cell cycle progression in NSCLC cells. Cell Cycle. 19:3458–3467. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chang H, Xu Q, Li J, Li M, Zhang Z, Ma H and Yang X: Lactate secreted by PKM2 upregulation promotes galectin-9-mediated immunosuppression via inhibiting NF-κB pathway in HNSCC. Cell Death Dis. 12:7252021. View Article : Google Scholar : PubMed/NCBI | |
|
Karelia DN, Kim S, M KP, Plano D, Amin S, Lu J and Sharma AK: Novel seleno-aspirinyl compound AS-10 induces apoptosis, G1 arrest of pancreatic ductal adenocarcinoma cells, inhibits their NF-κB signaling, and synergizes with gemcitabine cytotoxicity. Int J Mol Sci. 22:49662021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Wang F, Zhang ZG, Yang XM and Zhang R: STK3 suppresses ovarian cancer progression by activating NF-κB signaling to recruit CD8+ T-cells. J Immunol Res. 2020:72636022020. View Article : Google Scholar : PubMed/NCBI | |
|
Yodkeeree S, Pompimon W and Limtrakul P: Crebanine, an aporphine alkaloid, sensitizes TNF-α-induced apoptosis and suppressed invasion of human lung adenocarcinoma cells A549 by blocking NF-κB-regulated gene products. Tumour Biol. 35:8615–8624. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Zhang ZC, Yuan XS, Tang SS, Wang T, Liu HF and Cao Y: TOPK affects autophagy of skin squamous cell carcinoma by regulating NF-KB pathway through HDAC1. Dis Markers. 2022:37717112022.PubMed/NCBI | |
|
Hai Ping P, Feng Bo T, Li L, Nan Hui Y and Hong Z: IL-1β/NF-kb signaling promotes colorectal cancer cell growth through miR-181a/PTEN axis. Arch Biochem Biophys. 604:20–26. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Fang X, Shi H and Sun F: The microRNA-520a-3p inhibits invasion and metastasis by targeting NF-kappaB signaling pathway in non-small cell lung cancer. Clin Transl Oncol. 24:1569–1579. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Sheng YH, He Y, Hasnain SZ, Wang R, Tong H, Clarke DT, Lourie R, Oancea I, Wong KY, Lumley JW, et al: MUC13 protects colorectal cancer cells from death by activating the NF-κB pathway and is a potential therapeutic target. Oncogene. 36:700–713. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yong-Zheng X, Wan-Li M, Ji-Ming M and Xue-Qun R: Receptor for activated protein kinase C 1 suppresses gastric tumor progression through nuclear factor-κB pathway. Indian J Cancer. 52 (Suppl 3):E172–E175. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Barbie TU, Alexe G, Aref AR, Li S, Zhu Z, Zhang X, Imamura Y, Thai TC, Huang Y, Bowden M, et al: Targeting an IKBKE cytokine network impairs triple-negative breast cancer growth. J Clin Invest. 124:5411–5423. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lim EY, Park J, Kim YT and Kim MJ: Imipramine inhibits migration and invasion in metastatic castration-resistant prostate cancer PC-3 cells via AKT-mediated NF-κB signaling pathway. Molecules. 25:46192020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen MC, Lee NH, Hsu HH, Ho TJ, Tu CC, Chen RJ, Lin YM, Viswanadha VP, Kuo WW and Huang CY: Inhibition of NF-κB and metastasis in irinotecan (CPT-11)-resistant LoVo colon cancer cells by thymoquinone via JNK and p38. Environ Toxicol. 32:669–678. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Xu CY, Qin MB, Tan L, Liu SQ and Huang JA: NIBP impacts on the expression of E-cadherin, CD44 and vimentin in colon cancer via the NF-κB pathway. Mol Med Rep. 13:5379–5385. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Zhang DL, Jiao XL and Dong Q: S100A4 regulates migration and invasion in hepatocellular carcinoma HepG2 cells via NF-κB-dependent MMP-9 signal. Eur Rev Med Pharmacol Sci. 17:2372–2382. 2013.PubMed/NCBI | |
|
Chiu CT, Chen JH, Chou FP and Lin HH: Hibiscus sabdariffa leaf extract inhibits human prostate cancer cell invasion via down-regulation of Akt/NF-κB/MMP-9 pathway. Nutrients. 7:5065–5087. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yi S, Liu G, Wu Y, Liang Q and Li L: Baicalein suppresses the growth of the human thyroid cancer cells by inducing mitotic catastrophe, apoptosis and autophagy via NF-κB signalling pathway. J BUON. 25:389–394. 2020.PubMed/NCBI | |
|
Sun Y, Pang B, Wang Y, Xiao J and Jiang D: Baohuoside I inhibits the proliferation of hepatocellular carcinoma cells via apoptosis signaling and NF-κB pathway. Chem Biodivers. 18:e21000632021. View Article : Google Scholar : PubMed/NCBI | |
|
Ren K, Li Z, Li Y, Zhang W and Han X: Sulforaphene enhances radiosensitivity of hepatocellular carcinoma through suppression of the NF-κB pathway. J Biochem Mol Toxicol. 31:2017. View Article : Google Scholar | |
|
Mohankumar K, Francis AP, Pajaniradje S and Rajagopalan R: Synthetic curcumin analog: Inhibiting the invasion, angiogenesis, and metastasis in human laryngeal carcinoma cells via NF-κB pathway. Mol Biol Rep. 48:6065–6074. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Moghadamtousi SZ, Kadir HA, Paydar M, Rouhollahi E and Karimian H: Annona muricata leaves induced apoptosis in A549 cells through mitochondrial-mediated pathway and involvement of NF-κB. BMC Complement Altern Med. 14:2992014. View Article : Google Scholar : PubMed/NCBI | |
|
Mohammad KS and Guise TA: Breaking down barriers to chemoresistance: Role of chemotherapy-induced osteoblastic Jagged1. Cancer Cell. 32:717–718. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Giuliani N, Colla S and Rizzoli V: New insight in the mechanism of osteoclast activation and formation in multiple myeloma: Focus on the receptor activator of NF-kappaB ligand (RANKL). Exp Hematol. 32:685–691. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Liu S, Li DQ, Ye F and Zhang J: Research progress in mechanism of action of p62 protein in primary bone tumors. Medical Recapitulate. 26:2945–2950. 2020.(In Chinese). | |
|
Takeda T, Tsubaki M, Genno S, Tomita K and Nishida S: RANK/RANKL axis promotes migration, invasion, and metastasis of osteosarcoma via activating NF-κB pathway. Exp Cell Res. 436:1139782024. View Article : Google Scholar : PubMed/NCBI | |
|
Dai W, Wu J, Shui Y, Wu Q, Wang J and Xia X: NF-κB-activated oncogene inhibition strategy for cancer gene therapy. Cancer Gene Ther. 31:1632–1645. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Han Z, Xu L, Wang A, Wang B, Liu Q, Liu H, Liu Q, Gang Z, Yu S, Mu L, et al: UBE2S facilitates glioblastoma progression through activation of the NF-κB pathway via attenuating K11-linked ubiquitination of AKIP1. Int J Biol Macromol. 278:1344262024. View Article : Google Scholar : PubMed/NCBI |