|
1
|
Rumgay H, Arnold M, Ferlay J, Lesi O,
Cabasag CJ, Vignat J, Laversanne M, McGlynn KA and Soerjomataram I:
Global burden of primary liver cancer in 2020 and predictions to
2040. J Hepatol. 77:1598–1606. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Yang Y, Chen D, Zhao B, Ren L, Huang R,
Feng B and Chen H: The predictive value of PD-L1 expression in
patients with advanced hepatocellular carcinoma treated with
PD-1/PD-L1 inhibitors: A systematic review and meta-analysis.
Cancer Med. 12:9282–9292. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Yau T, Park JW, Finn RS, Cheng AL,
Mathurin P, Edeline J, Kudo M, Harding JJ, Merle P, Rosmorduc O, et
al: Nivolumab versus sorafenib in advanced hepatocellular carcinoma
(CheckMate 459): A randomised, multicentre, open-label, phase 3
trial. Lancet Oncol. 23:77–90. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Cheung CCL, Seah YHJ, Fang J, Orpilla N,
Lee JNLW, Toh HC, Choo SP, Lim KH, Tai WMD, Yeong J, et al: 89 The
immune marker LAG-3 increases the predictive value of CD38+ immune
cells for survival outcome in immunotherapy-treated hepatocellular
carcinoma. J Immunother Cancer. 9 (Suppl 2):A1–A1054. 2021.
|
|
5
|
Sun TW, Gao Q, Qiu SJ, Zhou J, Wang XY, Yi
Y, Shi JY, Xu YF, Shi YH, Song K, et al: B7-H3 is expressed in
human hepatocellular carcinoma and is associated with tumor
aggressiveness and postoperative recurrence. Cancer Immunol
Immunother. 61:2171–2182. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Kang FB, Wang L, Sun DX, Li HJ, Li D, Wang
Y and Kang JW: B7-H4 overexpression is essential for early
hepatocellular carcinoma progression and recurrence. Oncotarget.
8:80878–80888. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Dawidowicz M, Kot A, Mielcarska S, Psykała
K, Kula A, Waniczek D and Świętochowska E: B7H4 role in solid
cancers: A review of the literature. Cancers (Basel). 16:25192024.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Zhao Q, Huang ZL, He M, Gao Z and Kuang
DM: BTLA identifies dysfunctional PD-1-expressing CD4(+) T cells in
human hepatocellular carcinoma. Oncoimmunology. 5:e12548552016.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Chen J, Zheng DX, Yu XJ, Sun HW, Xu YT,
Zhang YJ and Xu J: Macrophages induce CD47 upregulation via IL-6
and correlate with poor survival in hepatocellular carcinoma
patients. Oncoimmunology. 8:e16525402019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Koumprentziotis IA, Theocharopoulos C,
Foteinou D, Angeli E, Anastasopoulou A, Gogas H and Ziogas DC: New
emerging targets in cancer immunotherapy: The role of B7-H3.
Vaccines (Basel). 12:542024. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Li Z, Li Y, Gao J, Fu Y, Hua P, Jing Y,
Cai M, Wang H and Tong T: The role of CD47-SIRPα immune checkpoint
in tumor immune evasion and innate immunotherapy. Life Sci.
273:1191502021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Yum JI and Hong YK: Terminating cancer by
blocking VISTA as a novel immunotherapy: Hasta la vista, baby.
Front Oncol. 11:6584882021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ge Z, Peppelenbosch MP, Sprengers D and
Kwekkeboom J: TIGIT, the next step towards successful combination
immune checkpoint therapy in cancer. Front Immunol. 12:6998952021.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Seyhan D, Allaire M, Fu Y, Conti F, Wang
XW, Gao B and Lafdil F: Immune microenvironment in hepatocellular
carcinoma: From pathogenesis to immunotherapy. Cell Mol Immunol.
January 11–2025.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zhang XS, Zhou HC, Wei P, Chen L, Ma WH,
Ding L, Liang SC and Chen BD: Combined TIM-3 and PD-1 blockade
restrains hepatocellular carcinoma development by facilitating CD4+
and CD8+ T cell-mediated antitumor immune responses. World J
Gastrointest Oncol. 15:2138–2149. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Li XS, Li JW, Li H and Jiang T: Prognostic
value of programmed cell death ligand 1 (PD-L1) for hepatocellular
carcinoma: A meta-analysis. Biosci Rep. 40:BSR202004592020.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Janakiram M, Abadi YM, Sparano JA and Zang
X: T cell coinhibition and immunotherapy in human breast cancer.
Discov Med. 14:229–236. 2012.PubMed/NCBI
|
|
18
|
Zhang CY, Liu S and Yang M: Regulatory T
cells and their associated factors in hepatocellular carcinoma
development and therapy. World J Gastroenterol. 28:3346–3358. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Duffy A, Kerkar S, Kleiner D, Ulahannan S,
Kurtoğlu M, Rusher O, Fioravanti S, Walker M, Figg WD, Compton K,
et al: Paired tumor biopsy analysis and safety data from a pilot
study evaluating Tremelimumab-a monoclonal antibody against CTLA-4
- in combination with ablative therapy in patients with
hepatocellular carcinoma (HCC). J Immunother Cancer. 2 (Suppl
3):P982014. View Article : Google Scholar
|
|
20
|
Sanseviero E, O'Brien EM, Karras JR,
Shabaneh TB, Aksoy BA, Xu W, Zheng C, Yin X, Xu X, Karakousis GC,
et al: Anti-CTLA-4 activates intratumoral NK cells and combined
with IL15/IL15Rα complexes enhances tumor control. Cancer Immunol
Res. 7:1371–1380. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ochoa MC, Sanchez-Gregorio S, de Andrea
CE, Garasa S, Alvarez M, Olivera I, Glez-Vaz J, Luri-Rey C,
Etxeberria I, Cirella A, et al: Synergistic effects of combined
immunotherapy strategies in a model of multifocal hepatocellular
carcinoma. Cell Rep Med. 4:1010092023. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Cheung CCL, Seah YHJ, Fang J, Orpilla NHC,
Lau MC, Lim CJ, Lim X, Lee JNLW, Lim JCT, Lim S, et al:
Immunohistochemical scoring of LAG-3 in conjunction with CD8 in the
tumor microenvironment predicts response to immunotherapy in
hepatocellular carcinoma. Front Immunol. 14:11509852023. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Cherkassky L, Oshi M, Abdelfatah E, Wu R,
Takabe Y, Yan L, Endo I and Takabe K: An immune-inflamed tumor
microenvironment as defined by CD8 score is associated with
favorable oncologic outcomes in hepatocellular carcinoma
independent of measures of tumor mutational burden. Am J Cancer
Res. 12:3099–3110. 2022.PubMed/NCBI
|
|
24
|
Kared H, Martelli S, Tan SW, Simoni Y,
Chong ML, Yap SH, Newell EW, Pender SLF, Kamarulzaman A, Rajasuriar
R and Larbi A: Adaptive NKG2C+CD57+ natural killer cell and tim-3
expression during viral infections. Front Immunol. 9:6862018.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yang R, Sun LL, Li CF, Wang YH, Yao J, Li
H, Yan M, Chang WC, Hsu JM, Cha JH, et al: Galectin-9 interacts
with PD-1 and TIM-3 to regulate T cell death and is a target for
cancer immunotherapy. Nat Commun. 12:8322021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Tian T and Li Z: Targeting tim-3 in cancer
with resistance to PD-1/PD-L1 blockade. Front Oncol. 11:7311752021.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Yu L, Liu X, Wang X, Yan F, Wang P, Jiang
Y, Du J and Yang Z: TIGIT(+) TIM-3(+) NK cells are correlated with
NK cell exhaustion and disease progression in patients with
hepatitis B virus-related hepatocellular carcinoma. Oncoimmunology.
10:19426732021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Acharya N, Sabatos-Peyton C and Anderson
AC: Tim-3 finds its place in the cancer immunotherapy landscape. J
Immunother Cancer. 8:e0009112020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Arruga F, Iannello A, Ioannou N, Todesco
AM, Coscia M, Moia R, Gaidano G, Allan JN, Furman R, Vaisitti T, et
al: The Tigit/CD226/CD155 Immunomodulatory Axis Is Deregulated in
CLL and Contributes to B-Cell Anergy. Blood. 138 (Supplement
1):S37182021. View Article : Google Scholar
|
|
30
|
Yin X, Liu T, Wang Z, Ma M, Lei J, Zhang
Z, Fu S, Fu Y, Hu Q, Ding H, et al: Expression of the inhibitory
receptor TIGIT is up-regulated specifically on NK cells with CD226
activating receptor from HIV-infected individuals. Front Immunol.
9:23412018. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Demerlé C, Gorvel L and Olive D: BTLA-HVEM
couple in health and diseases: Insights for immunotherapy in lung
cancer. Front Oncol. 11:6820072021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Du K, Li Y, Liu J, Chen W, Wei Z, Luo Y,
Liu H, Qi Y, Wang F and Sui J: A bispecific antibody targeting GPC3
and CD47 induced enhanced antitumor efficacy against dual
antigen-expressing HCC. Mol Ther. 29:1572–1584. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Liu J, Li J, He M, Zhang GL and Zhao Q:
Distinct changes of BTLA and HVEM expressions in circulating CD4+
and CD8+ T cells in hepatocellular carcinoma patients. J Immunol
Res. 2018:45615712018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Yuan L, Tatineni J, Mahoney KM and Freeman
GJ: VISTA: A mediator of quiescence and a promising target in
cancer immunotherapy. Trends Immunol. 42:209–227. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Vaeteewoottacharn K, Waraasawapati S,
Pothipan P, Kariya R, Saisomboon S, Bunthot S, Pairojkul C,
Sawanyawisuth K, Kuwahara K, Wongkham S and Okada S: Facilitating
cholangiocarcinoma inhibition by targeting CD47. Exp Mol Pathol.
140:1049352024. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Chen C, Wang Z, Ding Y and Qin Y: Tumor
microenvironment-mediated immune evasion in hepatocellular
carcinoma. Front Immunol. 14:11333082023. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Xiang X, Wang J, Lu D and Xu X: Targeting
tumor-associated macrophages to synergize tumor immunotherapy.
Signal Transduct Target Ther. 6:752021. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Li H, Wu K, Tao K, Chen L, Zheng Q, Lu X,
Liu J, Shi L, Liu C, Wang G and Zou W: Tim-3/galectin-9 signaling
pathway mediates T-cell dysfunction and predicts poor prognosis in
patients with hepatitis B virus-associated hepatocellular
carcinoma. Hepatology. 56:1342–1351. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Liu N, Chang CW, Steer CJ, Wang XW and
Song G: MicroRNA-15a/16-1 prevents hepatocellular carcinoma by
disrupting the communication between kupffer cells and regulatory T
cells. Gastroenterology. 162:575–589. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Du L, Ji Y, Xin B, Zhang J, Lu LC, Glass
CK and Feng GS: Shp2 deficiency in kupffer cells and hepatocytes
aggravates hepatocarcinogenesis by recruiting non-kupffer
macrophages. Cell Mol Gastroenterol Hepatol. 15:1351–1369. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Paijens ST, Vledder A, de Bruyn M and
Nijman HW: Tumor-infiltrating lymphocytes in the immunotherapy era.
Cell Mol Immunol. 18:842–859. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Han HS, Jeong S, Kim H, Kim HD, Kim AR,
Kwon M, Park SH, Woo CG, Kim HK, Lee KH, et al: TOX-expressing
terminally exhausted tumor-infiltrating CD8+ T cells are
reinvigorated by co-blockade of PD-1 and TIGIT in bladder cancer.
Cancer Lett. 499:137–147. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhou X, Cao J, Topatana W, Xie T, Chen T,
Hu J, Li S, Juengpanic S, Lu Z, Zhang B, et al: Evaluation of PD-L1
as a biomarker for immunotherapy for hepatocellular carcinoma:
Systematic review and meta-analysis. Immunotherapy. 15:353–365.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Shrestha R, Prithviraj P, Anaka M, Bridle
KR, Crawford DHG, Dhungel B, Steel JC and Jayachandran A:
Monitoring immune checkpoint regulators as predictive biomarkers in
hepatocellular carcinoma. Front Oncol. 8:2692018. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhang B, Tang B, Lv J, Gao J and Qin L:
Systematic analyses to explore immune gene sets-based signature in
hepatocellular carcinoma, in which IGF2BP3 contributes to tumor
progression. Clin Immunol. 241:1090732022. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Liu S, Zhang H, Yan J, Zhu J, Bai Z and Li
X: FOXP3 and SQSTM1/P62 correlate with prognosis and immune
infiltration in hepatocellular carcinoma. Pathol Res Pract.
242:1542922023. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Sangro B, Chan SL, Meyer T, Reig M,
El-Khoueiry A and Galle PR: Diagnosis and management of toxicities
of immune checkpoint inhibitors in hepatocellular carcinoma. J
Hepatol. 72:320–341. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Shomura M, Okabe H, Sakakibara M, Yaguchi
N, Takahira S, Sato E, Shiraishi K, Arase Y, Tsuruya K, Hirose S,
et al: Immune-related adverse event detection in liver cancer
patients treated with immune checkpoint inhibitors: Nationwide
exploratory survey in Japan. Hepatol Res. 55:547–555. 2025.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
De Martin E, Fulgenzi CAM, Celsa C,
Laurent-Bellue A, Torkpour A, Lombardi P, D'Alessio A and Pinato
DJ: Immune checkpoint inhibitors and the liver: Balancing
therapeutic benefit and adverse events. Gut. 74:1165–1177. 2025.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Lee PC, Chao Y, Chen MH, Lan KH, Lee IC,
Hou MC and Huang YH: Risk of HBV reactivation in patients with
immune checkpoint inhibitor-treated unresectable hepatocellular
carcinoma. J Immunother Cancer. 8:e0010722020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Yoo S, Lee D, Shim JH, Kim KM, Lim YS, Lee
HC, Yoo C, Ryoo BY and Choi J: Risk of hepatitis B virus
reactivation in patients treated with immunotherapy for anti-cancer
treatment. Clin Gastroenterol Hepatol. 20:898–907. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Qin S, Chen Z, Fang W, Ren Z, Xu R, Ryoo
BY, Meng Z, Bai Y, Chen X, Liu X, et al: Pembrolizumab versus
placebo as second-line therapy in patients from Asia with advanced
hepatocellular carcinoma: A randomized, double-blind, phase III
trial. J Clin Oncol. 41:1434–1443. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Cheng AL, Qin S, Ikeda M, Galle PR,
Ducreux M, Kim TY, Lim HY, Kudo M, Breder V, Merle P, et al:
Updated efficacy and safety data from IMbrave150: Atezolizumab plus
bevacizumab vs. sorafenib for unresectable hepatocellular
carcinoma. J Hepatol. 76:862–873. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Melero I, Yau T, Kang YK, Kim TY, Santoro
A, Sangro B, Kudo M, Hou MM, Matilla A, Tovoli F, et al: Nivolumab
plus ipilimumab combination therapy in patients with advanced
hepatocellular carcinoma previously treated with sorafenib: 5-year
results from CheckMate 040. Ann Oncol. 35:537–548. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Llovet JM, Kudo M, Merle P, Meyer T, Qin
S, Ikeda M, Xu R, Edeline J, Ryoo BY, Ren Z, et al: Lenvatinib plus
pembrolizumab versus lenvatinib plus placebo for advanced
hepatocellular carcinoma (LEAP-002): A randomised, double-blind,
phase 3 trial. Lancet Oncol. 24:1399–1410. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Patel TH, Brewer JR, Fan J, Cheng J, Shen
YL, Xiang Y, Zhao H, Lemery SJ, Pazdur R, Kluetz PG and
Fashoyin-Aje LA: FDA approval summary: Tremelimumab in combination
with durvalumab for the treatment of patients with unresectable
hepatocellular carcinoma. Clin Cancer Res. 30:269–273. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Verset G, Borbath I, Karwal M, Verslype C,
Van Vlierberghe H, Kardosh A, Zagonel V, Stal P, Sarker D, Palmer
DH, et al: Pembrolizumab monotherapy for previously untreated
advanced hepatocellular carcinoma: Data from the open-label, phase
II KEYNOTE-224 trial. Clin Cancer Res. 28:2547–2554. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
El-Khoueiry AB, Trojan J, Meyer T, Yau T,
Melero I, Kudo M, Hsu C, Kim TY, Choo SP, Kang YK, et al: Nivolumab
in sorafenib-naive and sorafenib-experienced patients with advanced
hepatocellular carcinoma: 5-year follow-up from CheckMate 040. Ann
Oncol. 35:381–391. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Merle P, Kudo M, Edeline J, Bouattour M,
Cheng AL, Chan SL, Yau T, Garrido M, Knox J, Daniele B, et al:
Pembrolizumab as second-line therapy for advanced hepatocellular
carcinoma: Longer term follow-up from the phase 3 KEYNOTE-240
trial. Liver Cancer. 12:309–320. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Saung MT, Pelosof L, Casak S, Donoghue M,
Lemery S, Yuan M, Rodriguez L, Schotland P, Chuk M, Davis G, et al:
FDA approval summary: Nivolumab plus ipilimumab for the treatment
of patients with hepatocellular carcinoma previously treated with
sorafenib. Oncologist. 26:797–806. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Gavilondo JV, Hernández-Bernal F,
Ayala-Ávila M, de la Torre AV, de la Torre J, Morera-Díaz Y,
Bequet-Romero M, Sánchez J, Valenzuela CM, Martín Y, et al:
Specific active immunotherapy with a VEGF vaccine in patients with
advanced solid tumors. results of the CENTAURO antigen dose
escalation phase I clinical trial. Vaccine. 32:2241–2250. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Xu D, Wang H, Bao Q, Jin K, Liu M, Liu W,
Yan X, Wang L, Zhang Y, Wang G, et al: The anti-PD-L1/CTLA-4
bispecific antibody KN046 plus lenvatinib in advanced unresectable
or metastatic hepatocellular carcinoma: A phase II trial. Nat
Commun. 16:14432025. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
LaPelusa M, Chamseddine S, Tran Cao HS,
Xiao L, Hasanov E, Bhosale P, Amin HM, Mohamed YI, Gok Yavuz B,
Sakr Y, et al: Tissue and imaging biomarkers of response to
neoadjuvant nivolumab or nivolumab plus ipilimumab in patients with
resectable hepatocellular carcinoma. Oncology. 103:490–497. 2025.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kudo M: Adjuvant immunotherapy after
curative treatment for hepatocellular carcinoma. Liver Cancer.
10:399–403. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Cheung TT, Wai-Hung Ho D, Lyu SX, Zhang Q,
Tsui YM, Ching-Yun Yu T, Man-Fong Sze K, Man-Fong Lee J, Lau VW,
Yin-Lun Chu E, et al: Multimodal integrative genomics and pathology
analyses in neoadjuvant nivolumab treatment for intermediate and
locally advanced hepatocellular carcinoma. Liver Cancer. 13:70–88.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Hwang SY, Lee SL, Liu H and Lee SS:
Second-line treatment after failure of immune checkpoint inhibitors
in hepatocellular carcinoma: tyrosine kinase inhibitor, retrial of
immunotherapy, or locoregional therapy? Liver Cancer. 13:246–255.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Kulkarni AV, Tevethia H, Kumar K,
Premkumar M, Muttaiah MD, Hiraoka A, Hatanaka T, Tada T, Kumada T,
Kakizaki S, et al: Effectiveness and safety of
atezolizumab-bevacizumab in patients with unresectable
hepatocellular carcinoma: A systematic review and meta-analysis.
EClinicalMedicine. 63:1021792023. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Yoo HJ, Yoo JJ, Kim SG and Kim YS: Current
perspectives on the pharmacological treatment of advanced
hepatocellular carcinoma: A narrative review. Ewha Med J.
47:e532024. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Huynh JC, Cho M, Monjazeb A, Al-Obeidi E,
Singh A, Tam K, Lara F, Martinez A, Garcia L and Kim EJ: Phase I/II
trial of BMS-986,205 and nivolumab as first line therapy in
hepatocellular carcinoma. Invest New Drugs. 42:35–43. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Antonioli L, Yegutkin GG, Pacher P,
Blandizzi C and Haskó G: Anti-CD73 in cancer immunotherapy:
Awakening new opportunities. Trends Cancer. 2:95–109. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Alsaafeen BH, Ali BR and Elkord E:
Resistance mechanisms to immune checkpoint inhibitors: Updated
insights. Mol Cancer. 24:202025. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Fujiwara Y, Mittra A, Naqash AR and Takebe
N: A review of mechanisms of resistance to immune checkpoint
inhibitors and potential strategies for therapy. Cancer Drug
Resist. 3:252–275. 2020.PubMed/NCBI
|
|
73
|
Giri S, Lamichhane G, Pandey J, Khadayat
R, K C S, Devkota HP and Khadka D: Immune modulation and
immunotherapy in solid tumors: Mechanisms of resistance and
potential therapeutic strategies. Int J Mol Sci. 26:29232025.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Ruiz de Galarreta M, Bresnahan E,
Molina-Sánchez P, Lindblad KE, Maier B, Sia D, Puigvehi M, Miguela
V, Casanova-Acebes M, Dhainaut M, et al: β-catenin activation
promotes immune escape and resistance to anti-PD-1 therapy in
hepatocellular carcinoma. Cancer Discov. 9:1124–1141. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Gabbia D and De Martin S: Tumor mutational
burden for predicting prognosis and therapy outcome of
hepatocellular carcinoma. Int J Mol Sci. 24:34412023. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
He Y, Lu M, Che J, Chu Q, Zhang P and Chen
Y: Biomarkers and future perspectives for hepatocellular carcinoma
immunotherapy. Front Oncol. 11:7168442021. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Giraud J, Chalopin D, Blanc JF and Saleh
M: Hepatocellular carcinoma immune landscape and the potential of
immunotherapies. Front Immunol. 12:6556972021. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Osuch S, Metzner KJ and Caraballo Cortés
K: Reversal of T cell exhaustion in chronic HCV infection. Viruses.
12:7992020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Pfister D, Núñez NG, Pinyol R, Govaere O,
Pinter M, Szydlowska M, Gupta R, Qiu M, Deczkowska A, Weiner A, et
al: NASH limits anti-tumour surveillance in immunotherapy-treated
HCC. Nature. 592:450–456. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Kmieć Z: Cooperation of liver cells in
health and disease. Adv Anat Embryol Cell Biol. 161:III–xIII.
1–151. 2001.PubMed/NCBI
|
|
81
|
Yeung OW, Lo CM, Ling CC, Qi X, Geng W, Li
CX, Ng KT, Forbes SJ, Guan XY, Poon RT, et al: Alternatively
activated (M2) macrophages promote tumour growth and invasiveness
in hepatocellular carcinoma. J Hepatol. 62:607–616. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Fletcher M, Ramirez ME, Sierra RA, Raber
P, Thevenot P, Al-Khami AA, Sanchez-Pino D, Hernandez C,
Wyczechowska DD, Ochoa AC and Rodriguez PC: l-Arginine depletion
blunts antitumor T-cell responses by inducing myeloid-derived
suppressor cells. Cancer Res. 75:275–283. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Han Y, Chen Z, Yang Y, Jiang Z, Gu Y, Liu
Y, Lin C, Pan Z, Yu Y, Jiang M, et al: Human CD14+ CTLA-4+
regulatory dendritic cells suppress T-cell response by cytotoxic
T-lymphocyte antigen-4-dependent IL-10 and
indoleamine-2,3-dioxygenase production in hepatocellular carcinoma.
Hepatology. 59:567–579. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Xu F, Jin T, Zhu Y and Dai C: Immune
checkpoint therapy in liver cancer. J Exp Clin Cancer Res.
37:1102018. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Mortezaee K, Majidpoor J and Najafi S:
VISTA immune regulatory effects in bypassing cancer immunotherapy:
Updated. Life Sci. 310:1210832022. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Roerden M and Spranger S: Cancer immune
evasion, immunoediting and intratumour heterogeneity. Nat Rev
Immunol. 25:353–369. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zaretsky JM, Garcia-Diaz A, Shin DS,
Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, Torrejon DY,
Abril-Rodriguez G, Sandoval S, Barthly L, et al: Mutations
associated with acquired resistance to PD-1 blockade in melanoma. N
Engl J Med. 375:819–829. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Yang H, Lei MML, Xie L, Shou Y and Lee
TKW: Deciphering adenosine signaling in hepatocellular carcinoma:
Pathways, prognostic models, and therapeutic implications. Clin Mol
Hepatol. 31:706–729. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Liang J, Chen D and Liang H: Deciphering
hypoxia's role in hepatocellular carcinoma prognosis with
single-cell approaches. Discov Oncol. 16:14112025. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Wang K, Wu J, Yang Z, Zheng B, Shen S,
Wang RR, Zhang Y, Wang HY, Chen L and Qiu X: Hyperactivation of
β-catenin signal in hepatocellular carcinoma recruits
myeloid-derived suppressor cells through PF4-CXCR3 axis. Cancer
Lett. 586:2166902024. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Ercan C, Renne SL, Di Tommaso L, Ng CKY,
Piscuoglio S and Terracciano L: Hepatocellular carcinoma immune
microenvironment analysis: A comprehensive assessment with
computational and classical pathology. Clin Cancer Res.
30:5105–5015. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Huang Y, Peng M, Yu W and Li H: Activation
of Wnt/β-catenin signaling promotes immune evasion via the
β-catenin/IKZF1/CCL5 axis in hepatocellular carcinoma. Int
Immunopharmacol. 138:1125342024. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Morita M, Nishida N, Aoki T, Chishina H,
Takita M, Ida H, Hagiwara S, Minami Y, Ueshima K and Kudo M: Role
of β-catenin activation in the tumor immune microenvironment and
immunotherapy of hepatocellular carcinoma. Cancers (Basel).
15:23112023. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Osuch S, Laskus T, Perlejewski K, Berak H,
Bukowska-Ośko I, Pollak A, Zielenkiewicz M, Radkowski M and
Caraballo Cortés K: CD8+ T-cell exhaustion phenotype in chronic
hepatitis C virus infection is associated with epitope sequence
variation. Front Immunol. 13:8322062022. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Manfredi GF, Celsa C, John C, Jones C,
Acuti N, Scheiner B, Fulgenzi CAM, Korolewicz J, Pinter M, Gennari
A, et al: Mechanisms of resistance to immunotherapy in
hepatocellular carcinoma. J Hepatocell Carcinoma. 10:1955–1971.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
De Lorenzo S, Tovoli F and Trevisani F:
Mechanisms of primary and acquired resistance to immune checkpoint
inhibitors in patients with hepatocellular carcinoma. Cancers
(Basel). 14:46162022. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Henriques-Pons A, Vacani-Martins N, De
Lima Pereira Dos Santos CLP and Meuser-Batista M: The liver's
dilemma: Sensing real danger in a sea of PAMPs: The (arterial)
sinusoidal segment theory. Front Immunol. 15:15030632025.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Liu F, Li X, Zhang Y, Ge S, Shi Z, Liu Q
and Jiang S: Targeting tumor-associated macrophages to overcome
immune checkpoint inhibitor resistance in hepatocellular carcinoma.
J Exp Clin Cancer Res. 44:2272025. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Tomiyama T, Itoh S, Iseda N, Toshida K,
Morinaga A, Yugawa K, Fujimoto YK, Tomino T, Kurihara T, Nagao Y,
et al: Myeloid-derived suppressor cell infiltration is associated
with a poor prognosis in patients with hepatocellular carcinoma.
Oncol Lett. 23:932022. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Ibrahim A, Mohamady Farouk Abdalsalam N,
Liang Z, Kashaf Tariq H, Li R, O Afolabi L, Rabiu L, Chen X, Xu S,
Xu Z, et al: MDSC checkpoint blockade therapy: A new breakthrough
point overcoming immunosuppression in cancer immunotherapy. Cancer
Gene Ther. 32:371–392. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Guo X, Zhao Z, Zhu L, Liu S, Zhou L, Wu F,
Fang S, Chen M, Zheng L and Ji J: The evolving landscape of
biomarkers for systemic therapy in advanced hepatocellular
carcinoma. Biomark Res. 13:602025. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Xin Y, Peng G, Song W, Zhou X, Huang X and
Cao X: Gut microbiota as a prognostic biomarker for unresectable
hepatocellular carcinoma treated with anti-PD-1 therapy. Front
Genet. 15:13661312024. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Feun LG, Li YY, Wu C, Wangpaichitr M,
Chicco A and Savaraj N: Abstract 2771: Circulating biomarkers to
predict antitumor response to immunotherapy in advanced
unresectable hepatoma. Cancer Res. 82 (12_Supplement):27712022.
View Article : Google Scholar
|
|
104
|
Pugh RN, Murray-Lyon IM, Dawson JL,
Pietroni MC and Williams R: Transection of the oesophagus for
bleeding oesophageal varices. Br J Surg. 60:646–649. 1973.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Celsa C, Cabibbo G, Fulgenzi CAM, Scheiner
B, D'Alessio A, Manfredi GF, Nishida N, Ang C, Marron TU, Saeed A,
et al: Characteristics and outcomes of immunotherapy-related liver
injury in patients with hepatocellular carcinoma versus other
advanced solid tumours. J Hepatol. 80:431–442. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
da Fonseca LG, Piñero F, Anders M,
Bermudez C, Demirdjian E, Varón A, Perez D, Rodriguez J, Beltrán O,
Ridruejo E, et al: Immune-mediated adverse events following
atezolizumab and bevacizumab in a multinational Latin American
cohort of unresectable hepatocellular carcinoma. Oncotarget.
16:348–360. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Kudo M, Matilla A, Santoro A, Melero I,
Gracián AC, Acosta-Rivera M, Choo SP, El-Khoueiry AB, Kuromatsu R,
El-Rayes B, et al: CheckMate 040 cohort 5: A phase I/II study of
nivolumab in patients with advanced hepatocellular carcinoma and
Child-Pugh B cirrhosis. J Hepatol. 75:600–609. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Xie E, Yeo YH, Scheiner B, Zhang Y,
Hiraoka A, Tantai X, Fessas P, de Castro T, D'Alessio A, Fulgenzi
CAM, et al: Immune checkpoint inhibitors for child-pugh class B
advanced hepatocellular carcinoma: A systematic review and
meta-analysis. JAMA Oncol. 9:1423–1431. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Lasagna A and Sacchi P: The ABC of
immune-mediated hepatitis during immunotherapy in patients with
cancer: From pathogenesis to multidisciplinary management. Cancers
(Basel). 16:7952024. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Lau G, Sangro B, Cheng AL, Kudo M, Kelley
RK, Tak WY, Gasbarrini A, Reig M, Lim HY, Tougeron D, et al:
Immune-mediated adverse events and overall survival with
tremelimumab plus durvalumab and durvalumab monotherapy in
unresectable HCC: HIMALAYA phase III randomized clinical trial.
Hepatology. May 16–2025.(Epub ahead of print). View Article : Google Scholar
|
|
111
|
Schneider BJ, Naidoo J, Santomasso BD,
Lacchetti C, Adkins S, Anadkat M, Atkins MB, Brassil KJ, Caterino
JM, Chau I, et al: Management of immune-related adverse events in
patients treated with immune checkpoint inhibitor therapy: ASCO
guideline update. J Clin Oncol. 39:4073–4126. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Chitnis SD and Mortazavi A: Clinical
guideline highlights for the hospitalist: Management of
immune-related adverse events in patients treated with immune
checkpoint inhibitor therapy. J Hosp Med. 18:1013–1016. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Alouani E, Laparra A, Perret A, Sakkal M,
Messayke S, Danlos FX, Ouali K, Hollebecque A, Even C, Ammari S, et
al: Immunosuppressant mycophenolate mofetil for patients with
steroid-refractory immune-related hepatitis induced by checkpoint
inhibitors in oncology. Eur J Cancer. 193:1133132023. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Brahmer JR, Lacchetti C, Schneider BJ,
Atkins MB, Brassil KJ, Caterino JM, Chau I, Ernstoff MS, Gardner
JM, Ginex P, et al: Management of immune-related adverse events in
patients treated with immune checkpoint inhibitor therapy: American
society of clinical oncology clinical practice guideline. J Clin
Oncol. 36:1714–1768. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Hung YP, Lee PC, Chang YH, Yang MH, Chiu
CH, Chen MH, Lan KH, Lee IC, Hou MC, Chao Y and Huang YH: Hepatic
events during immune checkpoint inhibitor treatment between liver
and non-liver malignancies in hepatitis B endemic areas. Aliment
Pharmacol Ther. 61:501–512. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Giannini EG, Pasta A, Plaz Torres MC,
Pieri G, Cabibbo G, Sangiovanni A, Piscaglia F, Campani C, Missale
G, Vidili G, et al: Absence of viral replication is associated with
improved outcome in anti-HCV-positive patients with hepatocellular
carcinoma. Liver Int. 45:e161852025. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Ji F, Li T and Nguyen MH: Improved
survival and high sustained virologic response with DAA therapy in
patients with HCV-related HCC: A call for expanded use. J
Gastroenterol Hepatol. 36:1721–1722. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Yang JD, Hainaut P, Gores GJ, Amadou A,
Plymoth A and Roberts LR: A global view of hepatocellular
carcinoma: Trends, risk, prevention and management. Nat Rev
Gastroenterol Hepatol. 16:589–604. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
France NL and Blair HA: Tremelimumab: A
review in advanced or unresectable hepatocellular carcinoma. Target
Oncol. 19:115–123. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
McGregor BA, Campbell MT, Huang J, Xie W,
Bilen MA, Mortazavi A, Ravi P, Shah A, Einstein D, Sonpavde JP, et
al: 2369P Phase II study of nivolumab (nivo) and ipilimumab (ipi)
for advanced bladder cancer with variant histologies (BCVH). Ann
Oncol. 34:S1205–S1206. 2023. View Article : Google Scholar
|
|
121
|
Duffy AG, Ulahannan SV, Makorova-Rusher O,
Rahma O, Wedemeyer H, Pratt D, Davis JL, Hughes MS, Heller T,
ElGindi M, et al: Tremelimumab in combination with ablation in
patients with advanced hepatocellular carcinoma. J Hepatol.
66:545–551. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Greten TF, Lai CW, Li G and
Staveley-O'Carroll KF: Targeted and immune-based therapies for
hepatocellular carcinoma. Gastroenterology. 156:510–524. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Parveen S, Siddharth S, Cheung L, Murphy
JR, Sharma D and Bishai WR: Transient and selective depletion of
MDSCs and Tregs as an effective immunotherapy against
triple-negative breast cancer. Cancer Res. 80 (16 Suppl):S60502020.
View Article : Google Scholar
|
|
124
|
Yu J, Kong X and Feng Y: Tumor
microenvironment-driven resistance to immunotherapy in non-small
cell lung cancer: Strategies for Cold-to-Hot tumor transformation.
Cancer Drug Resist. 8:212025.PubMed/NCBI
|
|
125
|
Gujarathi R, Franses JW, Pillai A and Liao
CY: Targeted therapies in hepatocellular carcinoma: Past, present,
and future. Front Oncol. 14:14324232024. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Hatfield SM and Sitkovsky M: A2A adenosine
receptor antagonists to weaken the hypoxia-HIF-1α driven
immunosuppression and improve immunotherapies of cancer. Curr Opin
Pharmacol. 29:90–96. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Lu LL, Xiao SX, Lin ZY, Bai JJ, Li W, Song
ZQ, Zhou YH, Lu B and Wu WZ: GPC3-IL7-CCL19-CAR-T primes immune
microenvironment reconstitution for hepatocellular carcinoma
therapy. Cell Biol Toxicol. 39:3101–3119. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Rochigneux P, Chanez B, De Rauglaudre B,
Mitry E, Chabannon C and Gilabert M: Adoptive cell therapy in
hepatocellular carcinoma: Biological rationale and first results in
early phase clinical trials. Cancers (Basel). 13:2712021.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Tawbi HA, Schadendorf D, Lipson EJ,
Ascierto PA, Matamala L, Castillo Gutiérrez E, Rutkowski P, Gogas
HJ, Lao CD, De Menezes JJ, et al: Relatlimab and nivolumab versus
nivolumab in untreated advanced melanoma. N Engl J Med. 386:24–34.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Squibb BM: Clinical trial NCT04567615: A
study of relatlimab in combination with nivolumab in participants
with advanced liver cancer who have never been treated with
immuno-oncology therapy after prior treatment with tyrosine kinase
inhibitors. 2025.https://clinicaltrials.gov/study/NCT04567615April
7–2025
|
|
131
|
Lentz RW, Colton MD, Mitra SS and
Messersmith WA: Innate immune checkpoint inhibitors: The next
breakthrough in medical oncology? Mol Cancer Ther. 20:961–974.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Fu Q, Zheng Y, Fang W, Zhao Q, Zhao P, Liu
L, Zhai Y, Tong Z, Zhang H, Lin M, et al: RUNX-3-expressing CAR T
cells targeting glypican-3 in patients with heavily pretreated
advanced hepatocellular carcinoma: A phase I trial.
EClinicalMedicine. 63:1021752023. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Satapathy BP, Sheoran P, Yadav R, Chettri
D, Sonowal D, Dash CP, Dhaka P, Uttam V, Yadav R, Jain M and Jain
A: The synergistic immunotherapeutic impact of engineered CAR-T
cells with PD-1 blockade in lymphomas and solid tumors: A
systematic review. Front Immunol. 15:13899712024. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Rafiq S, Yeku OO, Jackson HJ, Purdon TJ,
van Leeuwen DG, Drakes DJ, Song M, Miele MM, Li Z, Wang P, et al:
Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances
anti-tumor efficacy in vivo. Nat Biotechnol. 36:847–856. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Repáraz D, Aparicio B, Llopiz D,
Hervás-Stubbs S and Sarobe P: Therapeutic vaccines against
hepatocellular carcinoma in the immune checkpoint inhibitor Era:
Time for neoantigens? Int J Mol Sci. 23:20222022. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Sawada Y, Yoshikawa T, Nobuoka D,
Shirakawa H, Kuronuma T, Motomura Y, Mizuno S, Ishii H, Nakachi K,
Konishi M, et al: Phase I trial of a glypican-3-derived peptide
vaccine for advanced hepatocellular carcinoma: Immunologic evidence
and potential for improving overall survival. Clin Cancer Res.
18:3686–3696. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Charneau J, Suzuki T, Shimomura M,
Fujinami N and Nakatsura T: Peptide-based vaccines for
hepatocellular carcinoma: A review of recent advances. J Hepatocell
Carcinoma. 8:1035–1054. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Merchan JR, Bae WK, Kim C, Oh SY, Lee HJ,
Park K, Mar N, Pachynski RK, Beom SH, Carranza L, et al:
Correlation of distinct circulating cytokine/chemokine profiles
with clinical benefits of Pexa-Vec (thymidine kinase-deactivated
vaccinia virus plus GM-CSF) and cemiplimab (REGN2810; anti-PD-1) in
metastatic or unresectable renal cell carcinoma (mRCC). J Clin
Oncol. 42 (16_suppl):e145392024. View Article : Google Scholar
|
|
139
|
Zhang G: Regulatory T-cells-related
signature for identifying a prognostic subtype of hepatocellular
carcinoma with an exhausted tumor microenvironment. Front Immunol.
13:9757622022. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Chu X, Tian W, Wang Z, Zhang J and Zhou R:
Co-inhibition of TIGIT and PD-1/PD-L1 in cancer immunotherapy:
Mechanisms and clinical trials. Mol Cancer. 22:932023. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Leslie J, Mackey JBG, Jamieson T,
Ramon-Gil E, Drake TM, Fercoq F, Clark W, Gilroy K, Hedley A, Nixon
C, et al: CXCR2 inhibition enables NASH-HCC immunotherapy. Gut.
71:2093–2106. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Pan S and Wang Z: Antiviral therapy can
effectively suppress irAEs in HBV positive hepatocellular carcinoma
treated with ICIs: Validation based on multi machine learning.
Front Immunol. 15:15165242025. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Negussie AH, Mikhail AS, Owen JW, Hong N,
Carlson CJ, Tang Y, Carrow KP, Mauda-Havakuk M, Lewis AL, Karanian
JW, et al: In vitro characterization of immune modulating
drug-eluting immunobeads towards transarterial embolization in
cancer. Sci Rep. 12:218862022. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Leonard EK, Tomala J, Gould JR, Leff MI,
Lin JX, Li P, Porter MJ, Johansen ER, Thompson L, Cao SD, et al:
Engineered cytokine/antibody fusion proteins improve IL-2 delivery
to pro-inflammatory cells and promote antitumor activity. JCI
Insight. 9:e1734692024. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Ha J, Grippin AJ, Kim BYS and Jiang W:
Striking the balance with a PD-L1×4-1BB bispecific antibody. Cancer
Res. 84:1546–1547. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Chiarion-Sileni V, Pigozzo J, Ascierto PA,
Simeone E, Maio M, Calabrò L, Marchetti P, De Galitiis F, Testori
A, Ferrucci PF, et al: Ipilimumab retreatment in patients with
pretreated advanced melanoma: The expanded access programme in
Italy. Br J Cancer. 110:1721–1726. 2014. View Article : Google Scholar : PubMed/NCBI
|