Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
December-2025 Volume 30 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2025 Volume 30 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Abnormal metabolic networks participate in invasion and migration of tumors of the digestive system (Review)

  • Authors:
    • Jianxin Li
    • Weidong Zhang
  • View Affiliations / Copyright

    Affiliations: Department of Orthopaedic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 4.0].
  • Article Number: 578
    |
    Published online on: October 8, 2025
       https://doi.org/10.3892/ol.2025.15324
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Digestive system neoplasms are the most common malignant tumor worldwide. Tumor metastasis is also an important factor in tumor‑related mortality. Deregulation of cellular metabolism is as a major indicator of cancer, and reprogramming of metabolism is thought to be necessary to meet the increased energy demands of tumors. Reprogramming of the metabolism is crucial for the spread of tumors. The present review summarizes the role of enzymes and molecules involved in abnormal metabolism in digestive system neoplasms and their crosstalk with oncogenic signaling pathways in tumor metastasis. Elucidation of the network regulating metabolic reprogramming of cancer may identify novel cancer therapies, which may improve the poor prognosis of patients with cancer.
View Figures

Figure 1

Process of cancer metastasis. EMT,
epithelial-mesenchymal transition; MET, mesenchymal-epithelial
transition.

Figure 2

Key regulatory roles of ncRNAs in
energy metabolism of tumor cells. Several ncRNAs, such as lncRNA
PVT1, lncRNA FEZF1-AS1 and lncRNA SLC2A1-AS1, enhance glycolytic
activity by regulating key proteins involved in glycolysis. miR-613
and NeuroD1 upregulate G6PD to promote the PPP. miR-603 inhibits
fatty acid transport through downregulation of FABP1. lncRNA MALAT1
enhances lipogenesis by regulating SCD. Additionally, FSCN1
facilitates lipid synthesis by promoting the expression of fatty
acid synthase FASN. ncRNA, non-coding RNA; lncRNA, long ncRNA; miR,
microRNA; PPP, pentose phosphate pathway; FEZF1-AS1, FEZF1
antisense RNA 1; SLC2A1-AS1, solute carrier family 2 member 1
antisense RNA 1; NeuroD1, neuronal differentiation 1; G6PD,
glucose-6-phosphate dehydrogenase; FABP1, fatty acid binding
protein 1; MALAT1, metastasis associated lung adenocarcinoma
transcript 1; SCD, stearoyl-CoA desaturase; FSCN1, fascin
actin-bundling protein 1; FASN, fatty acid synthase; G6P,
glucose-6-phosphate; 6PG, 6-phosphogluconate; R5P,
ribose-5-phosphate; F-6-P, fructose-6-phosphate; F-1, 6-BP,
fructose-1,6-bisphosphate; G-3-P, glyceraldehyde-3-phosphate; 3-PG,
3-phosphoglycerate; PEP, phosphoenolpyruvate.

Figure 3

Oxidative phosphorylation and fatty
acid β-oxidation in mitochondria. Long-chain fatty acids are
transported into mitochondria via CPT1, where they undergo FAO to
generate acetyl-CoA and a small amount of ROS. The acetyl-CoA then
enters the TCA cycle for complete oxidation, producing NADH and
FADH2. These reducing equivalents are transferred to the
ETC, driving proton pumping to establish a transmembrane proton
gradient. This gradient ultimately powers ATP synthesis through
oxidative phosphorylation, facilitating cellular energy conversion.
CPT1, carnitine palmitoyltransferase 1; FAO, fatty acid oxidation;
ROS, reactive oxygen species; TCA, tricarboxylic acid; ETC,
electron transport chain.
View References

1 

Siegel RL, Miller KD, Wagle NS and Jemal A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023.PubMed/NCBI

2 

Cao M, Li H, Sun D and Chen W: Cancer burden of major cancers in China: A need for sustainable actions. Cancer Commun (Lond). 40:205–210. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Chaffer CL and Weinberg RA: A perspective on cancer cell metastasis. Science. 331:1559–1564. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Clark AG and Vignjevic DM: Modes of cancer cell invasion and the role of the microenvironment. Curr Opin Cell Biol. 36:13–22. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Xu D, Shao F, Bian X, Meng Y, Liang T and Lu Z: The evolving landscape of noncanonical functions of metabolic enzymes in cancer and other pathologies. Cell Metab. 33:33–50. 2021. View Article : Google Scholar : PubMed/NCBI

6 

Pan C, Li B and Simon MC: Moonlighting functions of metabolic enzymes and metabolites in cancer. Mol Cell. 81:3760–3774. 2021. View Article : Google Scholar : PubMed/NCBI

7 

Lv L and Lei Q: Proteins moonlighting in tumor metabolism and epigenetics. Front Med. 15:383–403. 2021. View Article : Google Scholar : PubMed/NCBI

8 

Martínez-Reyes I and Chandel NS: Cancer metabolism: Looking forward. Nat Rev Cancer. 21:669–680. 2021. View Article : Google Scholar : PubMed/NCBI

9 

Lin YH, Wu MH, Huang YH, Yeh CT, Cheng ML, Chi HC, Tsai CY, Chung IH, Chen CY and Lin KH: Taurine up-regulated gene 1 functions as a master regulator to coordinate glycolysis and metastasis in hepatocellular carcinoma. Hepatology. 67:188–203. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Warburg O: On the origin of cancer cells. Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI

11 

He J, Li F, Zhou Y, Hou X, Liu S, Li X, Zhang Y, Jing X and Yang L: LncRNA XLOC_006390 promotes pancreatic carcinogenesis and glutamate metabolism by stabilizing c-Myc. Cancer Lett. 469:419–428. 2020. View Article : Google Scholar : PubMed/NCBI

12 

Robey RB and Hay N: Is Akt the ‘Warburg kinase’?-Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol. 19:25–31. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Xu F, Yan JJ, Gan Y, Chang Y, Wang HL, He XX and Zhao Q: miR-885-5p negatively regulates warburg effect by silencing hexokinase 2 in liver cancer. Mol Ther Nucleic Acids. 18:308–319. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Yin D, Hua L, Wang J, Liu Y and Li X: Long Non-Coding RNA DUXAP8 facilitates cell viability, migration, and glycolysis in non-small-cell lung cancer via regulating HK2 and LDHA by Inhibition of miR-409-3p. Onco Targets Ther. 13:7111–7123. 2020. View Article : Google Scholar : PubMed/NCBI

15 

Guo T, Peng S, Liu D and Li Y: Long Non-coding RNA LOXL1-AS1 facilitates colorectal cancer progression via regulating miR-1224-5p/miR-761/HK2 axis. Biochem Genet. 60:2416–2433. 2022. View Article : Google Scholar : PubMed/NCBI

16 

Yu T, Li G, Wang C, Gong G, Wang L, Li C, Chen Y and Wang X: MIR210HG regulates glycolysis, cell proliferation, and metastasis of pancreatic cancer cells through miR-125b-5p/HK2/PKM2 axis. RNA Biol. 18:2513–2530. 2021. View Article : Google Scholar : PubMed/NCBI

17 

Chen X, She P, Wang C, Shi L, Zhang T, Wang Y, Li H, Qian L and Li M: Hsa_circ_0001806 promotes glycolysis and cell progression in hepatocellular carcinoma through miR-125b/HK2. J Clin Lab Anal. 35:e239912021. View Article : Google Scholar : PubMed/NCBI

18 

Ding Z, Guo L, Deng Z and Li P: Circ-PRMT5 enhances the proliferation, migration and glycolysis of hepatoma cells by targeting miR-188-5p/HK2 axis. Ann Hepatol. 19:269–279. 2020. View Article : Google Scholar : PubMed/NCBI

19 

Hong F, Deng Z, Tie R and Yang S: Hsa_circ_0045932 regulates the progression of colorectal cancer by regulating HK2 through sponging miR-873-5p. J Clin Lab Anal. 36:e246412022. View Article : Google Scholar : PubMed/NCBI

20 

Zheng X, Shao J, Qian J and Liu S: circRPS19 affects HK2-mediated aerobic glycolysis and cell viability via the miR-125a-5p/USP7 pathway in gastric cancer. Int J Oncol. 63:982023. View Article : Google Scholar : PubMed/NCBI

21 

Li S, Zhu K, Liu L, Gu J, Niu H and Guo J: lncARSR sponges miR-34a-5p to promote colorectal cancer invasion and metastasis via hexokinase-1-mediated glycolysis. Cancer Sci. 111:3938–3952. 2020. View Article : Google Scholar : PubMed/NCBI

22 

Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D, Aldape K, Hunter T, Alfred Yung WK and Lu Z: PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell. 150:685–696. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Alquraishi M, Puckett DL, Alani DS, Humidat AS, Frankel VD, Donohoe DR, Whelan J and Bettaieb A: Pyruvate kinase M2: A simple molecule with complex functions. Free Radic Biol Med. 143:176–192. 2019. View Article : Google Scholar : PubMed/NCBI

24 

Wang L, Wang H, Wu B, Zhang C, Yu H, Li X, Wang Q, Shi X, Fan C, Wang D, et al: Long Noncoding RNA LINC00551 suppresses glycolysis and tumor progression by regulating c-Myc-mediated PKM2 expression in lung adenocarcinoma. Onco Targets Ther. 13:11459–11470. 2020. View Article : Google Scholar : PubMed/NCBI

25 

Liang Y, Zhang D, Zheng T, Yang G, Wang J, Meng F, Liu Y, Zhang G, Zhang L, Han J, et al: lncRNA-SOX2OT promotes hepatocellular carcinoma invasion and metastasis through miR-122-5p-mediated activation of PKM2. Oncogenesis. 9:542020. View Article : Google Scholar : PubMed/NCBI

26 

Ren J, Li W, Pan G, Huang F, Yang J, Zhang H, Zhou R and Xu N: miR-142-3p modulates cell invasion and migration via PKM2-mediated aerobic glycolysis in colorectal cancer. Anal Cell Pathol (Amst). 2021:99277202021.PubMed/NCBI

27 

Bian Z, Zhang J, Li M, Feng Y, Wang X, Zhang J, Yao S, Jin G, Du J, Han W, et al: LncRNA-FEZF1-AS1 promotes tumor proliferation and metastasis in colorectal cancer by regulating PKM2 signaling. Clin Cancer Res. 24:4808–4819. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Li Q, Pan X, Zhu D, Deng Z, Jiang R and Wang X: Circular RNA MAT2B promotes glycolysis and malignancy of hepatocellular carcinoma through the miR-338-3p/PKM2 axis under hypoxic stress. Hepatology. 70:1298–1316. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Gao Y, Yang F, Yang XA, Zhang L, Yu H, Cheng X, Xu S, Pan J, Wang K and Li P: Mitochondrial metabolism is inhibited by the HIF1α-MYC-PGC-1β axis in BRAF V600E thyroid cancer. FEBS J. 286:1420–1436. 2019. View Article : Google Scholar : PubMed/NCBI

30 

Zhou M, He J, Li Y, Jiang L, Ran J, Wang C, Ju C, Du D, Xu X, Wang X, et al: N6-methyladenosine modification of REG1α facilitates colorectal cancer progression via β-catenin/MYC/LDHA axis mediated glycolytic reprogramming. Cell Death Dis. 14:5572023. View Article : Google Scholar : PubMed/NCBI

31 

Chen M, Cen K, Song Y, Zhang X, Liou YC, Liu P, Huang J, Ruan J, He J, Ye W, et al: NUSAP1-LDHA-Glycolysis-Lactate feedforward loop promotes Warburg effect and metastasis in pancreatic ductal adenocarcinoma. Cancer Lett. 567:2162852023. View Article : Google Scholar : PubMed/NCBI

32 

Kotowski K, Rosik J, Machaj F, Supplitt S, Wiczew D, Jabłońska K, Wiechec E, Ghavami S and Dzięgiel P: Role of PFKFB3 and PFKFB4 in cancer: Genetic basis, impact on disease development/progression, and potential as therapeutic targets. Cancers (Basel). 13:9092021. View Article : Google Scholar : PubMed/NCBI

33 

Lai S, Quan Z, Hao Y, Liu J, Wang Z, Dai L, Dai H, He S and Tang B: Long Non-coding RNA LINC01572 promotes hepatocellular carcinoma progression via sponging miR-195-5p to enhance PFKFB4-mediated glycolysis and PI3K/AKT activation. Front Cell Dev Biol. 9:7830882021. View Article : Google Scholar : PubMed/NCBI

34 

Holman GD: Chemical biology probes of mammalian GLUT structure and function. Biochem J. 475:3511–3534. 2018. View Article : Google Scholar : PubMed/NCBI

35 

Wood IS and Trayhurn P: Glucose transporters (GLUT and SGLT): Expanded families of sugar transport proteins. Br J Nutr. 89:3–9. 2003. View Article : Google Scholar : PubMed/NCBI

36 

Yu M, Yongzhi H, Chen S, Luo X, Lin Y, Zhou Y, Jin H, Hou B, Deng Y, Tu L and Jian Z: The prognostic value of GLUT1 in cancers: A systematic review and meta-analysis. Oncotarget. 8:43356–43367. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Macheda ML, Rogers S and Best JD: Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol. 202:654–662. 2005. View Article : Google Scholar : PubMed/NCBI

38 

Shang R, Wang M, Dai B, Du J, Wang J, Liu Z, Qu S, Yang X, Liu J, Xia C, et al: Long noncoding RNA SLC2A1-AS1 regulates aerobic glycolysis and progression in hepatocellular carcinoma via inhibiting the STAT3/FOXM1/GLUT1 pathway. Mol Oncol. 14:1381–1396. 2020. View Article : Google Scholar : PubMed/NCBI

39 

Liu H, Zhang Q, Song Y, Hao Y, Cui Y, Zhang X, Zhang X, Qin Y, Zhu G, Wang F, et al: Long non-coding RNA SLC2A1-AS1 induced by GLI3 promotes aerobic glycolysis and progression in esophageal squamous cell carcinoma by sponging miR-378a-3p to enhance Glut1 expression. J Exp Clin Cancer Res. 40:2872021. View Article : Google Scholar : PubMed/NCBI

40 

Cai K, Chen S, Zhu C, Li L, Yu C, He Z and Sun C: FOXD1 facilitates pancreatic cancer cell proliferation, invasion, and metastasis by regulating GLUT1-mediated aerobic glycolysis. Cell Death Dis. 13:7652022. View Article : Google Scholar : PubMed/NCBI

41 

Song MY, Lee DY, Yun SM and Kim EH: GLUT3 promotes epithelial-mesenchymal transition via TGF-β/JNK/ATF2 signaling pathway in colorectal cancer cells. Biomedicines. 10:18372022. View Article : Google Scholar : PubMed/NCBI

42 

Shi Y, Zhang Y, Ran F, Liu J, Lin J, Hao X, Ding L and Ye Q: Let-7a-5p inhibits triple-negative breast tumor growth and metastasis through GLUT12-mediated warburg effect. Cancer Lett. 495:53–65. 2020. View Article : Google Scholar : PubMed/NCBI

43 

Brahimi-Horn MC, Chiche J and Pouyssegur J: Hypoxia and cancer. J Mol Med (Berl). 85:1301–1307. 2007. View Article : Google Scholar : PubMed/NCBI

44 

Adams JM, Difazio LT, Rolandelli RH, Luján JJ, Haskó G, Csóka B, Selmeczy Z and Németh ZH: HIF-1: A key mediator in hypoxia. Acta Physiol Hung. 96:19–28. 2009. View Article : Google Scholar : PubMed/NCBI

45 

Nepal M, Choi HJ, Choi BY, Kim SL, Ryu JH, Kim DH, Lee YH and Soh Y: Anti-angiogenic and anti-tumor activity of Bavachinin by targeting hypoxia-inducible factor-1α. Eur J Pharmacol. 691:28–37. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Xu L, Huan L, Guo T, Wu Y, Liu Y, Wang Q, Huang S, Xu Y, Liang L and He X: LncRNA SNHG11 facilitates tumor metastasis by interacting with and stabilizing HIF-1α. Oncogene. 39:7005–7018. 2020. View Article : Google Scholar : PubMed/NCBI

47 

Shi Z, Li G, Li Z, Liu J and Tang Y: TMEM161B-AS1 suppresses proliferation, invasion and glycolysis by targeting miR-23a-3p/HIF1AN signal axis in oesophageal squamous cell carcinoma. J Cell Mol Med. 25:6535–6549. 2021. View Article : Google Scholar : PubMed/NCBI

48 

Zhao Q, Zhu Z, Xiao W, Zong G, Wang C, Jiang W, Li K, Shen J, Guo X, Cui J, et al: Hypoxia-induced circRNF13 promotes the progression and glycolysis of pancreatic cancer. Exp Mol Med. 54:1940–1954. 2022. View Article : Google Scholar : PubMed/NCBI

49 

Xia X, Wang S, Ni B, Xing S, Cao H, Zhang Z, Yu F, Zhao E and Zhao G: Hypoxic gastric cancer-derived exosomes promote progression and metastasis via MiR-301a-3p/PHD3/HIF-1α positive feedback loop. Oncogene. 39:6231–6244. 2020. View Article : Google Scholar : PubMed/NCBI

50 

Jin L and Zhou Y: Crucial role of the pentose phosphate pathway in malignant tumors. Oncol Lett. 17:4213–4221. 2019.PubMed/NCBI

51 

Polat IH, Tarrado-Castellarnau M, Bharat R, Perarnau J, Benito A, Cortés R, Sabatier P and Cascante M: Oxidative pentose phosphate pathway enzyme 6-phosphogluconate dehydrogenase plays a key role in breast cancer metabolism. Biology (Basel). 10:852021.PubMed/NCBI

52 

Lu M, Lu L, Dong Q, Yu G, Chen J, Qin L, Wang L, Zhu W and Jia H: Elevated G6PD expression contributes to migration and invasion of hepatocellular carcinoma cells by inducing epithelial-mesenchymal transition. Acta Biochim Biophys Sin (Shanghai). 50:370–380. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Chen B, Cai T, Huang C, Zang X, Sun L, Guo S, Wang Q, Chen Z, Zhao Y, Han Z, et al: G6PD-NF-κB-HGF signal in gastric cancer-associated mesenchymal stem cells promotes the proliferation and metastasis of gastric cancer cells by upregulating the expression of HK2. Front Oncol. 11:6487062021. View Article : Google Scholar : PubMed/NCBI

54 

Chen B, Hong Y, Gui R, Zheng H, Tian S, Zhai X, Xie X, Chen Q, Qian Q, Ren X, et al: N6-methyladenosine modification of circ_0003215 suppresses the pentose phosphate pathway and malignancy of colorectal cancer through the miR-663b/DLG4/G6PD axis. Cell Death Dis. 13:8042022. View Article : Google Scholar : PubMed/NCBI

55 

Yuan M, Zhang X, Yue F, Zhang F, Jiang S, Zhou X, Lv J, Zhang Z, Sun Y, Chen Z, et al: CircNOLC1 promotes colorectal cancer liver metastasis by interacting with AZGP1 and sponging miR-212-5p to regulate reprogramming of the oxidative pentose phosphate pathway. Adv Sci (Weinh). 10:e22052292023. View Article : Google Scholar : PubMed/NCBI

56 

Li Z, He Y, Li Y, Li J, Zhao H, Song G, Miyagishi M, Wu S and Kasim V: NeuroD1 promotes tumor cell proliferation and tumorigenesis by directly activating the pentose phosphate pathway in colorectal carcinoma. Oncogene. 40:6736–6747. 2021. View Article : Google Scholar : PubMed/NCBI

57 

Tseng CW, Kuo WH, Chan SH, Chan HL, Chang KJ and Wang LH: Transketolase regulates the metabolic switch to control breast cancer cell metastasis via the α-ketoglutarate signaling pathway. Cancer Res. 78:2799–2812. 2018. View Article : Google Scholar : PubMed/NCBI

58 

Qin Z, Xiang C, Zhong F, Liu Y, Dong Q, Li K, Shi W, Ding C, Qin L and He F: Transketolase (TKT) activity and nuclear localization promote hepatocellular carcinoma in a metabolic and a non-metabolic manner. J Exp Clin Cancer Res. 38:1542019. View Article : Google Scholar : PubMed/NCBI

59 

Li M, Zhao X, Yong H, Xu J, Qu P, Qiao S, Hou P, Li Z, Chu S, Zheng J and Bai J: Transketolase promotes colorectal cancer metastasis through regulating AKT phosphorylation. Cell Death Dis. 13:992022. View Article : Google Scholar : PubMed/NCBI

60 

Zhang J, Li Z, Liu L, Wang Q, Li S, Chen D, Hu Z, Yu T, Ding J, Li J, et al: Long noncoding RNA TSLNC8 is a tumor suppressor that inactivates the interleukin-6/STAT3 signaling pathway. Hepatology. 67:171–187. 2018. View Article : Google Scholar : PubMed/NCBI

61 

Zeng X, Guo H, Liu Z, Qin Z, Cong Y, Ren N, Zhang Y and Zhang N: S100A11 activates the pentose phosphate pathway to induce malignant biological behaviour of pancreatic ductal adenocarcinoma. Cell Death Dis. 13:5682022. View Article : Google Scholar : PubMed/NCBI

62 

Anderson NM, Mucka P, Kern JG and Feng H: The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell. 9:216–237. 2018. View Article : Google Scholar : PubMed/NCBI

63 

Woolbright BL, Rajendran G, Harris RA and Taylor JA III: Metabolic flexibility in cancer: Targeting the pyruvate dehydrogenase kinase: Pyruvate dehydrogenase axis. Mol Cancer Ther. 18:1673–1681. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Wang G, Liu X, Xie J, Meng J and Ni X: PDK-1 mediated Hippo-YAP-IRS2 signaling pathway and involved in the apoptosis of non-small cell lung cancer cells. Biosci Rep. 39:BSR201820992019. View Article : Google Scholar : PubMed/NCBI

65 

Sun J, Feng M, Zou H, Mao Y and Yu W: Circ_0000284 facilitates the growth, metastasis and glycolysis of intrahepatic cholangiocarcinoma through miR-152-3p-mediated PDK1 expression. Histol histopathol. 38:1129–1143. 2022.PubMed/NCBI

66 

Wu K, Wang Z, Huang Y, Yao L, Kang N, Ge W, Zhang R and He W: LncRNA PTPRG-AS1 facilitates glycolysis and stemness properties of esophageal squamous cell carcinoma cells through miR-599/PDK1 axis. J Gastroenterol Hepatol. 37:507–517. 2022. View Article : Google Scholar : PubMed/NCBI

67 

He Z, Li Z, Zhang X, Yin K, Wang W, Xu Z, Li B, Zhang L, Xu J, Sun G, et al: MiR-422a regulates cellular metabolism and malignancy by targeting pyruvate dehydrogenase kinase 2 in gastric cancer. Cell Death Dis. 9:5052018. View Article : Google Scholar : PubMed/NCBI

68 

Martin-Perez M, Urdiroz-Urricelqui U, Bigas C and Benitah SA: The role of lipids in cancer progression and metastasis. Cell Metab. 34:1675–1699. 2022. View Article : Google Scholar : PubMed/NCBI

69 

Bian X, Liu R, Meng Y, Xing D, Xu D and Lu Z: Lipid metabolism and cancer. J Exp Med. 218:e202016062021. View Article : Google Scholar : PubMed/NCBI

70 

Cheng C, Geng F, Cheng X and Guo D: Lipid metabolism reprogramming and its potential targets in cancer. Cancer Commun (Lond). 38:272018.PubMed/NCBI

71 

Carbonetti G, Wilpshaar T, Kroonen J, Studholme K, Converso C, d'Oelsnitz S and Kaczocha M: FABP5 coordinates lipid signaling that promotes prostate cancer metastasis. Sci Rep. 9:189442019. View Article : Google Scholar : PubMed/NCBI

72 

Yu CW, Liang X, Lipsky S, Karaaslan C, Kozakewich H, Hotamisligil GS, Bischoff J and Cataltepe S: Dual role of fatty acid-binding protein 5 on endothelial cell fate: A potential link between lipid metabolism and angiogenic responses. Angiogenesis. 19:95–106. 2016. View Article : Google Scholar : PubMed/NCBI

73 

Ohata T, Yokoo H, Kamiyama T, Fukai M, Aiyama T, Hatanaka Y, Hatanaka K, Wakayama K, Orimo T, Kakisaka T, et al: Fatty acid-binding protein 5 function in hepatocellular carcinoma through induction of epithelial-mesenchymal transition. Cancer Med. 6:1049–1061. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Wang G, Bonkovsky HL, de Lemos A and Burczynski FJ: Recent insights into the biological functions of liver fatty acid binding protein 1. J Lipid Res. 56:2238–2247. 2015. View Article : Google Scholar : PubMed/NCBI

75 

Lin YX, Wu XB, Zheng CW, Zhang QL, Zhang GQ, Chen K, Zhan Q and An FM: Mechanistic investigation on the regulation of FABP1 by the IL-6/miR-603 signaling in the pathogenesis of hepatocellular carcinoma. Biomed Res Int. 2021:85796582021. View Article : Google Scholar : PubMed/NCBI

76 

Wang H, Chen Y, Liu Y, Li Q, Luo J, Wang L, Chen Y, Sang C, Zhang W, Ge X, et al: The lncRNA ZFAS1 regulates lipogenesis in colorectal cancer by binding polyadenylate-binding protein 2 to stabilize SREBP1 mRNA. Mol Ther Nucleic Acids. 27:363–374. 2022. View Article : Google Scholar : PubMed/NCBI

77 

Yu Y, Dong JT, He B, Zou YF, Li XS, Xi CH and Yu Y: LncRNA SNHG16 induces the SREBP2 to promote lipogenesis and enhance the progression of pancreatic cancer. Future Oncol. 15:3831–3844. 2019. View Article : Google Scholar : PubMed/NCBI

78 

Wang H, Zhang Y, Guan X, Li X, Zhao Z, Gao Y, Zhang X and Chen R: An integrated transcriptomics and proteomics analysis implicates lncRNA MALAT1 in the regulation of lipid metabolism. Mol Cell Proteomics. 20:1001412021. View Article : Google Scholar : PubMed/NCBI

79 

Corn KC, Windham MA and Rafat M: Lipids in the tumor microenvironment: From cancer progression to treatment. Prog Lipid Res. 80:1010552020. View Article : Google Scholar : PubMed/NCBI

80 

Che G, Wang W, Wang J, He C, Yin J, Chen Z, He C, Wang X, Yang Y and Liu J: Sulfotransferase SULT2B1 facilitates colon cancer metastasis by promoting SCD1-mediated lipid metabolism. Clin Transl Med. 14:e15872024. View Article : Google Scholar : PubMed/NCBI

81 

Li H, Chen Z, Zhang Y, Yuan P, Liu J, Ding L and Ye Q: MiR-4310 regulates hepatocellular carcinoma growth and metastasis through lipid synthesis. Cancer Lett. 519:161–171. 2021. View Article : Google Scholar : PubMed/NCBI

82 

Wu Y, Zhou Y, Gao H, Wang Y, Cheng Q, Jian S, Ding Q, Gu W, Yao Y, Ma J, et al: LYAR promotes colorectal cancer progression by upregulating FSCN1 expression and fatty acid metabolism. Oxid Med Cell Longev. 2021:99797072021. View Article : Google Scholar : PubMed/NCBI

83 

Li X, Luo J, Mou K, Peng L, Zhou H, Lei Y, Wang H, Zhao Z, Wang J, Wu J, et al: SDPR inhibits TGF-β induced cancer metastasis through fatty acid oxidation regulation in gastric cancer. Int J Biol Sci. 19:2999–3014. 2023. View Article : Google Scholar : PubMed/NCBI

84 

Zhao P, Yuan F, Xu L, Jin Z, Liu Y, Su J, Yuan L, Peng L, Wang C and Zhang G: HKDC1 reprograms lipid metabolism to enhance gastric cancer metastasis and cisplatin resistance via forming a ribonucleoprotein complex. Cancer Lett. 569:2163052023. View Article : Google Scholar : PubMed/NCBI

85 

Choi YK and Park KG: Targeting glutamine metabolism for cancer treatment. Biomol Ther (Seoul). 26:19–28. 2018. View Article : Google Scholar : PubMed/NCBI

86 

De Vitto H, Perez-Valencia J and Radosevich JA: Glutamine at focus: Versatile roles in cancer. Tumour Biol. 37:1541–1558. 2016. View Article : Google Scholar : PubMed/NCBI

87 

Wu B, Chen Y, Chen Y, Xie X, Liang H, Peng F and Che W: Circ_0001273 downregulation inhibits the growth, migration and glutamine metabolism of esophageal cancer cells via targeting the miR-622/SLC1A5 signaling axis. Thorac Cancer. 13:1795–1805. 2022. View Article : Google Scholar : PubMed/NCBI

88 

Qian CJ, Tong YY, Wang YC, Teng XS and Yao J: Circ_0001093 promotes glutamine metabolism and cancer progression of esophageal squamous cell carcinoma by targeting miR-579-3p/glutaminase axis. J Bioenerg Biomembr. 54:119–134. 2022. View Article : Google Scholar : PubMed/NCBI

89 

Coloff JL, Murphy JP, Braun CR, Harris IS, Shelton LM, Kami K, Gygi SP, Selfors LM and Brugge JS: Differential glutamate metabolism in proliferating and quiescent mammary epithelial cells. Cell metabolism. 23:867–880. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Zhou X, Liu K, Cui J, Xiong J, Wu H, Peng T and Guo Y: Circ-MBOAT2 knockdown represses tumor progression and glutamine catabolism by miR-433-3p/GOT1 axis in pancreatic cancer. J Exp Clin Cancer Res. 40:1242021. View Article : Google Scholar : PubMed/NCBI

91 

Li W, Chen C, Zhao X, Ye H, Zhao Y, Fu Z, Pan W, Zheng S, Wei L, Nong T, et al: HIF-2α regulates non-canonical glutamine metabolism via activation of PI3K/mTORC2 pathway in human pancreatic ductal adenocarcinoma. J Cell Mol Med. 21:2896–2908. 2017. View Article : Google Scholar : PubMed/NCBI

92 

Li Y, Li B, Xu Y, Qian L, Xu T, Meng G, Li H, Wang Y, Zhang L, Jiang X, et al: GOT2 silencing promotes reprogramming of glutamine metabolism and sensitizes hepatocellular carcinoma to glutaminase inhibitors. Cancer Res. 82:3223–3235. 2022. View Article : Google Scholar : PubMed/NCBI

93 

Ghosh P, Vidal C, Dey S and Zhang L: Mitochondria Targeting as an Effective Strategy for Cancer Therapy. Int J Mol Sci. 21:33632020. View Article : Google Scholar : PubMed/NCBI

94 

Fu H, Zhang J, Chen H, Hou H, Chen H, Xie R, Chen Y, Zhang J, Liu D, Yan L, et al: NPR1 promotes lipid droplet lipolysis to enhance mitochondrial oxidative phosphorylation and fuel gastric cancer metastasis. Adv Sci (Weinh). 37:e032332025. View Article : Google Scholar : PubMed/NCBI

95 

Yang T, Liang N, Zhang J, Bai Y, Li Y, Zhao Z, Chen L, Yang M, Huang Q, Hu P, et al: OCTN2 enhances PGC-1α-mediated fatty acid oxidation and OXPHOS to support stemness in hepatocellular carcinoma. Metabolism. 147:1556282023. View Article : Google Scholar : PubMed/NCBI

96 

Mookerjee SA, Gerencser AA, Nicholls DG and Brand MD: Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements. J Biol Chem. 293:12649–12652. 2018. View Article : Google Scholar : PubMed/NCBI

97 

Lissanu Deribe Y, Sun Y, Terranova C, Khan F, Martinez-Ledesma J, Gay J, Gao G, Mullinax RA, Khor T, Feng N, et al: Mutations in the SWI/SNF complex induce a targetable dependence on oxidative phosphorylation in lung cancer. Nat Med. 24:1047–1057. 2018. View Article : Google Scholar : PubMed/NCBI

98 

Wang T, Sun F, Li C, Nan P, Song Y, Wan X, Mo H, Wang J, Zhou Y, Guo Y, et al: MTA1, a novel ATP synthase complex modulator, enhances colon cancer liver metastasis by driving mitochondrial metabolism reprogramming. Adv Sci (Weinh). 10:e23007562023. View Article : Google Scholar : PubMed/NCBI

99 

Liu Y, Tian W, Ge C, Zhang C, Huang Z, Zhang C, Yang Y and Tian H: SNX17 mediates STAT3 activation to promote hepatocellular carcinoma progression via a retromer dependent mechanism. Int J Biol Sci. 21:2762–2779. 2025. View Article : Google Scholar : PubMed/NCBI

100 

Wang YN, Zeng ZL, Lu J, Wang Y, Liu ZX, He MM, Zhao Q, Wang ZX, Li T, Lu YX, et al: CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis. Oncogene. 37:6025–6040. 2018. View Article : Google Scholar : PubMed/NCBI

101 

Xu R, Liu Y, Ma L, Sun Y, Liu H, Yang Y, Jin T and Yang D: NQO1/CPT1A promotes the progression of pancreatic adenocarcinoma via fatty acid oxidation. Acta Biochim Biophys Sin (Shanghai). 55:758–768. 2023. View Article : Google Scholar : PubMed/NCBI

102 

Sun M, Yue Y, Wang X, Feng H, Qin Y, Chen M, Wang Y and Yan S: ALKBH5-mediated upregulation of CPT1A promotes macrophage fatty acid metabolism and M2 macrophage polarization, facilitating malignant progression of colorectal cancer. Exp Cell Res. 437:1139942024. View Article : Google Scholar : PubMed/NCBI

103 

Hayes JD, Dinkova-Kostova AT and Tew KD: Oxidative stress in cancer. Cancer Cell. 38:167–197. 2020. View Article : Google Scholar : PubMed/NCBI

104 

Zeng Q, Lv C, Qi L, Wang Y, Hao S, Li G, Sun H, Du L, Li J, Wang C, et al: Sodium selenite inhibits cervical cancer progression via ROS-mediated suppression of glucose metabolic reprogramming. Life Sci. 357:1231092024. View Article : Google Scholar : PubMed/NCBI

105 

Castelli S, De Falco P, Ciccarone F, Desideri E and Ciriolo MR: Lipid Catabolism and ROS in Cancer: A Bidirectional Liaison. Cancers (Basel). 13:54842021. View Article : Google Scholar : PubMed/NCBI

106 

Tiwari R, Mondal Y, Bharadwaj K, Mahajan M, Mondal S and Sarkar A: Reactive Oxygen Species (ROS) and their profound influence on regulating diverse aspects of cancer: A concise review. Drug Dev Res. 86:e701072025. View Article : Google Scholar : PubMed/NCBI

107 

Li D, Wang Y, Dong C, Chen T, Dong A, Ren J, Li W, Shu G, Yang J, Shen W, et al: CST1 inhibits ferroptosis and promotes gastric cancer metastasis by regulating GPX4 protein stability via OTUB1. Oncogene. 42:83–98. 2023. View Article : Google Scholar : PubMed/NCBI

108 

Di Gregorio J, Petricca S, Iorio R, Toniato E and Flati V: Mitochondrial and metabolic alterations in cancer cells. Eur J Cell Biol. 101:1512252022. View Article : Google Scholar : PubMed/NCBI

109 

Vasan K, Werner M and Chandel NS: Mitochondrial metabolism as a target for cancer therapy. Cell Metab. 32:341–352. 2020. View Article : Google Scholar : PubMed/NCBI

110 

Pajak B, Siwiak E, Sołtyka M, Priebe A, Zieliński R, Fokt I, Ziemniak M, Jaśkiewicz A, Borowski R, Domoradzki T and Priebe W: 2-Deoxy-d-Glucose and its analogs: From diagnostic to therapeutic agents. Int J Mol Sci. 21:2342019. View Article : Google Scholar : PubMed/NCBI

111 

Luo W, Guo S, Zhou Y, Zhu J, Zhao J, Wang M, Sang L, Wang B and Chang B: Hepatocellular carcinoma: Novel understandings and therapeutic strategies based on bile acids (Review). Int J Oncol. 61:1172022. View Article : Google Scholar : PubMed/NCBI

112 

Gagnière J, Raisch J, Veziant J, Barnich N, Bonnet R, Buc E, Bringer MA, Pezet D and Bonnet M: Gut microbiota imbalance and colorectal cancer. World J Gastroenterol. 22:501–518. 2016. View Article : Google Scholar : PubMed/NCBI

113 

Behnam B and Taghizadeh-Hesary F: Mitochondrial metabolism: A new dimension of personalized oncology. Cancers (Basel). 15:40582023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li J and Zhang W: Abnormal metabolic networks participate in invasion and migration of tumors of the digestive system (Review). Oncol Lett 30: 578, 2025.
APA
Li, J., & Zhang, W. (2025). Abnormal metabolic networks participate in invasion and migration of tumors of the digestive system (Review). Oncology Letters, 30, 578. https://doi.org/10.3892/ol.2025.15324
MLA
Li, J., Zhang, W."Abnormal metabolic networks participate in invasion and migration of tumors of the digestive system (Review)". Oncology Letters 30.6 (2025): 578.
Chicago
Li, J., Zhang, W."Abnormal metabolic networks participate in invasion and migration of tumors of the digestive system (Review)". Oncology Letters 30, no. 6 (2025): 578. https://doi.org/10.3892/ol.2025.15324
Copy and paste a formatted citation
x
Spandidos Publications style
Li J and Zhang W: Abnormal metabolic networks participate in invasion and migration of tumors of the digestive system (Review). Oncol Lett 30: 578, 2025.
APA
Li, J., & Zhang, W. (2025). Abnormal metabolic networks participate in invasion and migration of tumors of the digestive system (Review). Oncology Letters, 30, 578. https://doi.org/10.3892/ol.2025.15324
MLA
Li, J., Zhang, W."Abnormal metabolic networks participate in invasion and migration of tumors of the digestive system (Review)". Oncology Letters 30.6 (2025): 578.
Chicago
Li, J., Zhang, W."Abnormal metabolic networks participate in invasion and migration of tumors of the digestive system (Review)". Oncology Letters 30, no. 6 (2025): 578. https://doi.org/10.3892/ol.2025.15324
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team