You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
|
Li Y, Wu X, Yang P, Jiang G and Luo Y: Machine learning for lung cancer diagnosis, treatment, and prognosis. Genomics Proteomics Bioinformatics. 20:850–866. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Bade BC and Dela Cruz CS: Lung cancer 2020: Epidemiology, etiology, and prevention. Clin Chest Med. 41:1–24. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Harðardottir H, Jonsson S, Gunnarsson O, Hilmarsdottir B, Asmundsson J, Gudmundsdottir I, Saevarsdottir VY, Hansdottir S, Hannesson P and Gudbjartsson T: Advances in lung cancer diagnosis and treatment-a review. Laeknabladid. 108:17–29. 2020.(In Icelandic). View Article : Google Scholar | |
|
Abu Rous F, Singhi EK, Sridhar A, Faisal MS and Desai A: Lung cancer treatment advances in 2022. Cancer Invest. 41:12–24. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wu F, Wang L and Zhou C: Lung cancer in China: Current and prospect. Curr Opin Oncol. 33:40–46. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Rodriguez-Canales J, Parra-Cuentas E and Wistuba II: Diagnosis and molecular classification of lung cancer. Cancer Treat Res. 170:25–46. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
de Sousa VML and Carvalho L: Heterogeneity in lung cancer. Pathobiology. 85:96–107. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Abolfathi H, Arabi M and Sheikhpour M: A literature review of microRNA and gene signaling pathways involved in the apoptosis pathway of lung cancer. Respir Res. 24:552023. View Article : Google Scholar : PubMed/NCBI | |
|
Niu Z, Jin R, Zhang Y and Li H: Signaling pathways and targeted therapies in lung squamous cell carcinoma: Mechanisms and clinical trials. Signal Transduct Target Ther. 7:3532022. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan M, Zhao Y, Arkenau HT, Lao T, Chu L and Xu Q: Signal pathways and precision therapy of small-cell lung cancer. Signal Transduct Target Ther. 7:1872022. View Article : Google Scholar : PubMed/NCBI | |
|
Masciale V, Banchelli F, Grisendi G, Samarelli AV, Raineri G, Rossi T, Zanoni M, Cortesi M, Bandini S, Ulivi P, et al: The molecular features of lung cancer stem cells in dedifferentiation process-driven epigenetic alterations. J Biol Chem. 300:1079942024. View Article : Google Scholar : PubMed/NCBI | |
|
Hoque MO, Brait M, Rosenbaum E, Poeta ML, Pal P, Begum S, Dasgupta S, Carvalho AL, Ahrendt SA, Westra WH and Sidransky D: Genetic and epigenetic analysis of erbB signaling pathway genes in lung cancer. J Thorac Oncol. 5:1887–1893. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
He H, He MM, Wang H, Qiu W, Liu L, Long L, Shen Q, Zhang S, Qin S, Lu Z, et al: In utero and childhood/adolescence exposure to tobacco smoke, genetic risk, and lung cancer incidence and mortality in adulthood. Am J Respir Crit Care Med. 207:173–182. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen CY, Huang KY, Chen CC, Chang YH, Li HJ, Wang TH and Yang PC: The role of PM2.5 exposure in lung cancer: Mechanisms, genetic factors, and clinical implications. EMBO Mol Med. 17:31–40. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Nagano T, Tachihara M and Nishimura Y: Molecular mechanisms and targeted therapies including immunotherapy for non-small cell lung cancer. Curr Cancer Drug Targets. 19:595–630. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Samarelli AV, Masciale V, Aramini B, Coló GP, Tonelli R, Marchioni A, Bruzzi G, Gozzi F, Andrisani D, Castaniere I, et al: Molecular mechanisms and cellular contribution from lung fibrosis to lung cancer development. Int J Mol Sci. 22:121792021. View Article : Google Scholar : PubMed/NCBI | |
|
Ohmori T, Yamaoka T, Ando K, Kusumoto S, Kishino Y, Manabe R and Sagara H: Molecular and clinical features of EGFR-TKI-associated lung injury. Int J Mol Sci. 22:7922021. View Article : Google Scholar : PubMed/NCBI | |
|
Schneider JL, Lin JJ and Shaw AT: ALK-positive lung cancer: A moving target. Nat Cancer. 4:330–343. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Reck M, Carbone DP, Garassino M and Barlesi F: Targeting KRAS in non-small-cell lung cancer: Recent progress and new approaches. Ann Oncol. 32:1101–1110. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yoda S, Dagogo-Jack I and Hata AN: Targeting oncogenic drivers in lung cancer: Recent progress, current challenges and future opportunities. Pharmacol Ther. 193:20–30. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Herrera-Juárez M, Serrano-Gómez C, Bote-de-Cabo H and Paz-Ares L: Targeted therapy for lung cancer: Beyond EGFR and ALK. Cancer. 129:1803–1820. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yoneda K, Imanishi N, Ichiki Y and Tanaka F: Treatment of non-small cell lung cancer with EGFR-mutations. J UOEH. 41:153–163. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hosomi Y, Morita S, Sugawara S, Kato T, Fukuhara T, Gemma A, Takahashi K, Fujita Y, Harada T, Minato K, et al: Gefitinib alone versus gefitinib plus chemotherapy for non-small-cell lung cancer with mutated epidermal growth factor receptor: NEJ009 study. J Clin Oncol. 38:115–123. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Greenhalgh J, Bagust A, Boland A, Dwan K, Beale S, Hockenhull J, Proudlove C, Dundar Y, Richardson M, Dickson R, et al: Erlotinib and gefitinib for treating non-small cell lung cancer that has progressed following prior chemotherapy (review of NICE technology appraisals 162 and 175): A systematic review and economic evaluation. Health Technol Assess. 19:1–134. 2015. View Article : Google Scholar | |
|
Remon J, Besse B, Aix SP, Callejo A, Al-Rabi K, Bernabe R, Greillier L, Majem M, Reguart N, Monnet I, et al: Osimertinib treatment based on plasma T790M monitoring in patients with EGFR-mutant non-small-cell lung cancer (NSCLC): EORTC lung cancer group 1613 APPLE phase II randomized clinical trial. Ann Oncol. 34:468–476. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Abdelgalil AA and Alkahtani HM: Crizotinib: A comprehensive profile. Profiles Drug Subst Excip Relat Methodol. 48:39–69. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Peters S, Camidge DR, Shaw AT, Gadgeel S, Ahn JS, Kim DW, Ou SI, Pérol M, Dziadziuszko R, Rosell R, et al: Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med. 377:829–838. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Solomon BJ, Liu G, Felip E, Mok TSK, Soo RA, Mazieres J, Shaw AT, de Marinis F, Goto Y, Wu YL, et al: Lorlatinib versus crizotinib in patients with advanced ALK-positive non-small cell lung cancer: 5-Year outcomes from the phase III CROWN study. J Clin Oncol. 42:3400–3409. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Luo J, Ostrem J, Pellini B, Imbody D, Stern Y, Solanki HS, Haura EB and Villaruz LC: Overcoming KRAS-mutant lung cancer. Am Soc Clin Oncol Educ Book. 42:1–11. 2022.PubMed/NCBI | |
|
Jänne PA, Riely GJ, Gadgeel SM, Heist RS, Ou SI, Pacheco JM, Johnson ML, Sabari JK, Leventakos K, Yau E, et al: Adagrasib in non-small-cell lung cancer harboring a KRASG12C mutation. N Engl J Med. 387:120–131. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Skoulidis F, Li BT, Dy GK, Price TJ, Falchook GS, Wolf J, Italiano A, Schuler M, Borghaei H, Barlesi F, et al: Sotorasib for lung cancers with KRAS p.G12C mutation. N Engl J Med. 384:2371–2381. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Olivier T and Prasad V: Sotorasib in KRAS(G12C) mutated lung cancer. Lancet. 403:1452024. View Article : Google Scholar : PubMed/NCBI | |
|
Sanaei MJ, Razi S, Pourbagheri-Sigaroodi A and Bashash D: The PI3K/Akt/mTOR pathway in lung cancer; oncogenic alterations, therapeutic opportunities, challenges, and a glance at the application of nanoparticles. Transl Oncol. 18:1013642022. View Article : Google Scholar : PubMed/NCBI | |
|
Iksen, Pothongsrisit S and Pongrakhananon V: Targeting the PI3K/AKT/mTOR signaling pathway in lung cancer: An update regarding potential drugs and natural products. Molecules. 26:41002021. View Article : Google Scholar : PubMed/NCBI | |
|
Ghareghomi S, Atabaki V, Abdollahzadeh N, Ahmadian S and Hafez Ghoran S: Bioactive PI3-kinase/Akt/mTOR inhibitors in targeted lung cancer therapy. Adv Pharm Bull. 13:24–35. 2023.PubMed/NCBI | |
|
Tan AC: Targeting the PI3K/Akt/mTOR pathway in non-small cell lung cancer (NSCLC). Thorac Cancer. 11:511–518. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen B, Song Y, Zhan Y, Zhou S, Ke J, Ao W, Zhang Y, Liang Q, He M, Li S, et al: Fangchinoline inhibits non-small cell lung cancer metastasis by reversing epithelial-mesenchymal transition and suppressing the cytosolic ROS-related Akt-mTOR signaling pathway. Cancer Lett. 543:2157832022. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Zhang D, Wang S, Yu P, Sun J, Zhang Y, Meng X, Li J and Xiang L: Baicalein induces apoptosis by inhibiting the glutamine-mTOR metabolic pathway in lung cancer. J Adv Res. 68:341–357. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng W, Kang K, Zhao A and Wu Y: Dual blockade immunotherapy targeting PD-1/PD-L1 and CTLA-4 in lung cancer. J Hematol Oncol. 17:542024. View Article : Google Scholar : PubMed/NCBI | |
|
Shen X, Huang S, Xiao H, Zeng S, Liu J, Ran Z and Xiong B: Efficacy and safety of PD-1/PD-L1 plus CTLA-4 antibodies ± other therapies in lung cancer: A systematic review and meta-analysis. Eur J Hosp Pharm. 30:3–8. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Vergnenegre A and Chouaid C: Economic analyses of immune-checkpoint inhibitors to treat lung cancer. Expert Rev Pharmacoecon Outcomes Res. 21:365–371. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, et al: Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 372:2018–2028. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Cascone T, Awad MM, Spicer JD, He J, Lu S, Sepesi B, Tanaka F, Taube JM, Cornelissen R, Havel L, et al: Perioperative nivolumab in resectable lung cancer. N Engl J Med. 390:1756–1769. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Felip E, Altorki N, Zhou C, Vallières E, Martínez-Martí A, Rittmeyer A, Chella A, Reck M, Goloborodko O, Huang M, et al: Overall survival with adjuvant atezolizumab after chemotherapy in resected stage II–IIIA non-small-cell lung cancer (IMpower010): A randomised, multicentre, open-label, phase III trial. Ann Oncol. 34:907–919. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang T, Li W, Diwu D, Chen L, Chen X and Wang H: Efficacy and safety of first-line immunotherapy plus chemotherapy in treating patients with extensive-stage small cell lung cancer: A Bayesian network meta-analysis. Front Immunol. 14:11970442023. View Article : Google Scholar : PubMed/NCBI | |
|
da Cunha Santos G, Shepherd FA and Tsao MS: EGFR mutations and lung cancer. Annu Rev Pathol. 6:49–69. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, et al: EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science. 304:1497–1500. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Wang P, Zhang C and Ma Z: Epidermal growth factor receptor (EGFR): A rising star in the era of precision medicine of lung cancer. Oncotarget. 8:50209–50220. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Agraso S, Lázaro M, Firvida XL, Santomé L, Fernández N, Azpitarte C, Leon L, Garcia C, Hudobro G, Areses MC, et al: Real-world data with afatinib in Spanish patients with treatment-naïve non-small-cell lung cancer harboring exon 19 deletions in epidermal growth factor receptor (Del19 EGFR): Clinical experience of the Galician lung cancer group. Cancer Treat Res Commun. 33:1006462022.PubMed/NCBI | |
|
Matsui T, Tanizawa Y and Enatsu S: Exon 19 deletion and exon 21 L858R point mutation in EGFR Mutation-positive non-small cell lung cancer. Gan To Kagaku Ryoho. 48:673–676. 2021.(In Japanese). PubMed/NCBI | |
|
Yu J, Zhang L, Peng J, Ward R, Hao P, Wang J, Zhang N, Yang Y, Guo X, Xiang C, et al: Dictamnine, a novel c-Met inhibitor, suppresses the proliferation of lung cancer cells by downregulating the PI3K/AKT/mTOR and MAPK signaling pathways. Biochem Pharmacol. 195:1148642022. View Article : Google Scholar : PubMed/NCBI | |
|
Wen Z, Jiang R, Huang Y, Wen Z, Rui D, Liao X and Ling Z: Inhibition of lung cancer cells and Ras/Raf/MEK/ERK signal transduction by ectonucleoside triphosphate phosphohydrolase-7 (ENTPD7). Respir Res. 20:1942019. View Article : Google Scholar : PubMed/NCBI | |
|
Qin BM, Chen X, Zhu JD and Pei DQ: Identification of EGFR kinase domain mutations among lung cancer patients in China: Implication for targeted cancer therapy. Cell Res. 15:212–217. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Q, Dai HH, Dong HY, Sun CT, Yang Z and Han JQ: EGFR mutations and clinical outcomes of chemotherapy for advanced non-small cell lung cancer: A meta-analysis. Lung Cancer. 85:339–345. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wang C, Zhao K, Hu S, Dong W, Gong Y and Xie C: Clinical outcomes of afatinib versus osimertinib in patients with non-small cell lung cancer with uncommon EGFR mutations: A pooled analysis. Oncologist. 28:e397–e405. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Sun H and Wu YL: Dacomitinib in non-small-cell lung cancer: A comprehensive review for clinical application. Future Oncol. 15:2769–2777. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Leonetti A, Sharma S, Minari R, Perego P, Giovannetti E and Tiseo M: Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br J Cancer. 121:725–737. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Skoulidis F and Papadimitrakopoulou VA: Targeting the gatekeeper: Osimertinib in EGFR T790M mutation-positive non-small cell lung cancer. Clin Cancer Res. 23:618–622. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Spagnolo CC, Ciappina G, Giovannetti E, Squeri A, Granata B, Lazzari C, Pretelli G, Pasello G and Santarpia M: Targeting MET in non-small cell lung cancer (NSCLC): A new old story? Int J Mol Sci. 24:101192023. View Article : Google Scholar : PubMed/NCBI | |
|
Oh DY and Bang YJ: HER2-targeted therapies-a role beyond breast cancer. Nat Rev Clin Oncol. 17:33–48. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yin X, Li Y, Wang H, Jia T, Wang E, Luo Y, Wei Y, Qin Z and Ma X: Small cell lung cancer transformation: From pathogenesis to treatment. Semin Cancer Biol. 86:595–606. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng WL, Feng PH, Lee KY, Chen KY, Sun WL, Van Hiep N, Luo CS and Wu SM: The role of EREG/EGFR pathway in tumor progression. Int J Mol Sci. 22:128282021. View Article : Google Scholar : PubMed/NCBI | |
|
Iqbal MA, Arora S, Prakasam G, Calin GA and Syed MA: MicroRNA in lung cancer: Role, mechanisms, pathways and therapeutic relevance. Mol Aspects Med. 70:3–20. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lin L, Lu Q, Cao R, Ou Q, Ma Y, Bao H, Wu X, Shao Y, Wang Z and Shen B: Acquired rare recurrent EGFR mutations as mechanisms of resistance to osimertinib in lung cancer and in silico structural modelling. Am J Cancer Res. 10:4005–4015. 2020.PubMed/NCBI | |
|
Mansour MA, AboulMagd AM, Abbas SH, Abdel-Rahman HM and Abdel-Aziz M: Insights into fourth generation selective inhibitors of (C797S) EGFR mutation combating non-small cell lung cancer resistance: A critical review. RSC Adv. 13:18825–18853. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Singh D: Revolutionizing lung cancer treatment: Innovative CRISPR-Cas9 delivery strategies. AAPS PharmSciTech. 25:1292024. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Jiang H, Zeng B, Wang X, Bao Y, Chen C, Ma L and Yuan J: Liquid biopsy in lung cancer. Clin Chim Acta. 554:1177572024. View Article : Google Scholar : PubMed/NCBI | |
|
Hsu PC, Jablons DM, Yang CT and You L: Epidermal growth factor receptor (EGFR) pathway, yes-associated protein (YAP) and the regulation of programmed death-ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC). Int J Mol Sci. 20:38212019. View Article : Google Scholar : PubMed/NCBI | |
|
Elshatlawy M, Sampson J, Clarke K and Bayliss R: EML4-ALK biology and drug resistance in non-small cell lung cancer: A new phase of discoveries. Mol Oncol. 17:950–963. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Camidge DR, Dziadziuszko R, Peters S, Mok T, Noe J, Nowicka M, Gadgeel SM, Cheema P, Pavlakis N, de Marinis F, et al: Updated efficacy and safety data and impact of the EML4-ALK fusion variant on the efficacy of alectinib in untreated ALK-positive advanced non-small cell lung cancer in the global phase III ALEX study. J Thorac Oncol. 14:1233–1243. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Paliouras AR, Buzzetti M, Shi L, Donaldson IJ, Magee P, Sahoo S, Leong HS, Fassan M, Carter M, Di Leva G, et al: Vulnerability of drug-resistant EML4-ALK rearranged lung cancer to transcriptional inhibition. EMBO Mol Med. 12:e110992020. View Article : Google Scholar : PubMed/NCBI | |
|
Li K, Liu Y, Ding Y, Zhang Z, Feng J, Hu J, Chen J, Lian Z, Chen Y, Hu K, et al: BCL6 is regulated by the MAPK/ELK1 axis and promotes KRAS-driven lung cancer. J Clin Invest. 132:e1613082022. View Article : Google Scholar : PubMed/NCBI | |
|
Gadgeel SM and Wozniak A: Preclinical rationale for PI3K/Akt/mTOR pathway inhibitors as therapy for epidermal growth factor receptor inhibitor-resistant non-small-cell lung cancer. Clin Lung Cancer. 14:322–332. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Shi L, Zhu W, Huang Y, Zhuo L, Wang S, Chen S, Zhang B and Ke B: Cancer-associated fibroblast-derived exosomal microRNA-20a suppresses the PTEN/PI3K-AKT pathway to promote the progression and chemoresistance of non-small cell lung cancer. Clin Transl Med. 12:e9892022. View Article : Google Scholar : PubMed/NCBI | |
|
Tan AC and Tan DSW: Targeted therapies for lung cancer patients with oncogenic driver molecular alterations. J Clin Oncol. 40:611–625. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ahn MJ, Kim HR, Yang JCH, Han JY, Li JYC, Hochmair MJ, Chang GC, Delmonte A, Lee KH, Campelo RG, et al: Efficacy and safety of brigatinib compared with crizotinib in asian vs non-asian patients with locally advanced or metastatic ALK-inhibitor-naive ALK+ non-small cell lung cancer: Final results from the phase III ALTA-1L study. Clin Lung Cancer. 23:720–730. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Mok T, Camidge DR, Gadgeel SM, Rosell R, Dziadziuszko R, Kim DW, Pérol M, Ou SHI, Ahn JS, Shaw AT, et al: Updated overall survival and final progression-free survival data for patients with treatment-naive advanced ALK-positive non-small-cell lung cancer in the ALEX study. Ann Oncol. 31:1056–1064. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Baba K and Goto Y: Lorlatinib as a treatment for ALK-positive lung cancer. Future Oncol. 18:2745–2766. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Lin JJ, Zhu VW, Yoda S, Yeap BY, Schrock AB, Dagogo-Jack I, Jessop NA, Jiang GY, Le LP, Gowen K, et al: Impact of EML4-ALK variant on resistance mechanisms and clinical outcomes in ALK-positive lung cancer. J Clin Oncol. 36:1199–1206. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Pinto JA, Raez LE and Domingo G: Clinical consequences of resistance to ALK inhibitors in non-small cell lung cancer. Expert Rev Respir Med. 14:385–390. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Shaw AT, Solomon BJ, Besse B, Bauer TM, Lin CC, Soo RA, Riely GJ, Ou SHI, Clancy JS, Li S, et al: ALK resistance mutations and efficacy of lorlatinib in advanced anaplastic lymphoma kinase-positive non-small-cell lung cancer. J Clin Oncol. 37:1370–1379. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Desai A and Lovly CM: Strategies to overcome resistance to ALK inhibitors in non-small cell lung cancer: A narrative review. Transl Lung Cancer Res. 12:615–628. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Balasundaram A and Doss GPC: A computational examination of the therapeutic advantages of fourth-generation ALK inhibitors TPX-0131 and repotrectinib over third-generation lorlatinib for NSCLC with ALK F1174C/L/V mutations. Front Mol Biosci. 10:13060462024. View Article : Google Scholar : PubMed/NCBI | |
|
Golding B, Luu A, Jones R and Viloria-Petit AM: The function and therapeutic targeting of anaplastic lymphoma kinase (ALK) in non-small cell lung cancer (NSCLC). Mol Cancer. 17:522018. View Article : Google Scholar : PubMed/NCBI | |
|
Torres-Jiménez J, Espinar JB, de Cabo HB, Berjaga MZ, Esteban-Villarrubia J, Fraile JZ and Paz-Ares L: Targeting KRAS(G12C) in non-small-cell lung cancer: Current standards and developments. Drugs. 84:527–548. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Chang YS, Tu SJ, Chen YC, Liu TY, Lee YT, Yen JC, Fang HY and Chang JG: Mutation profile of non-small cell lung cancer revealed by next generation sequencing. Respir Res. 22:32021. View Article : Google Scholar : PubMed/NCBI | |
|
Mugarza E, van Maldegem F, Boumelha J, Moore C, Rana S, Llorian Sopena M, East P, Ambler R, Anastasiou P, Romero-Clavijo P, et al: Therapeutic KRASG12C inhibition drives effective interferon-mediated antitumor immunity in immunogenic lung cancers. Sci Adv. 8:eabm87802022. View Article : Google Scholar : PubMed/NCBI | |
|
Ceddia S, Landi L and Cappuzzo F: KRAS-mutant non-small-cell lung cancer: From past efforts to future challenges. Int J Mol Sci. 23:93912022. View Article : Google Scholar : PubMed/NCBI | |
|
Bironzo P, Cani M, Jacobs F, Napoli VM, Listì A, Passiglia F, Righi L, Di Maio M, Novello S and Scagliotti GV: Real-world retrospective study of KRAS mutations in advanced non-small cell lung cancer in the era of immunotherapy. Cancer. 129:1662–1671. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ferrer I, Zugazagoitia J, Herbertz S, John W, Paz-Ares L and Schmid-Bindert G: KRAS-mutant non-small cell lung cancer: From biology to therapy. Lung Cancer. 124:53–64. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Xu K, Park D, Magis AT, Zhang J, Zhou W, Sica GL, Ramalingam SS, Curran WJ and Deng X: Small molecule KRAS agonist for mutant KRAS cancer therapy. Mol Cancer. 18:852019. View Article : Google Scholar : PubMed/NCBI | |
|
Brazel D, Arter Z and Nagasaka M: A long overdue targeted treatment for KRAS mutations in NSCLC: Spotlight on adagrasib. Lung Cancer (Auckl). 13:75–80. 2022.PubMed/NCBI | |
|
Di Federico A, Ricciotti I, Favorito V, Michelina SV, Scaparone P, Metro G, De Giglio A, Pecci F, Lamberti G, Ambrogio C and Ricciuti B: Resistance to KRAS G12C inhibition in non-small cell lung cancer. Curr Oncol Rep. 25:1017–1029. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Canon J, Rex K, Saiki AY, Mohr C, Cooke K, Bagal D, Gaida K, Holt T, Knutson CG, Koppada N, et al: The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 575:217–223. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lee A: Sotorasib: A review in KRAS G12C mutation-positive non-small cell lung cancer. Target Oncol. 17:727–733. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Mausey N and Halford Z: Targeted therapies for previously ‘undruggable’ KRAS-mutated non-small cell lung cancer: A review of sotorasib and adagrasib. Ann Pharmacother. 58:622–635. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Briere DM, Li S, Calinisan A, Sudhakar N, Aranda R, Hargis L, Peng DH, Deng J, Engstrom LD, Hallin J, et al: The KRASG12C inhibitor MRTX849 reconditions the tumor immune microenvironment and sensitizes tumors to checkpoint inhibitor therapy. Mol Cancer Ther. 20:975–985. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Shi Z, Weng J, Niu H, Yang H, Liu R, Weng Y, Zhu Q, Zhang Y, Tao L, Wang Z, et al: D-1553: A novel KRASG12C inhibitor with potent and selective cellular and in vivo antitumor activity. Cancer Sci. 114:2951–2960. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Santarpia M, Ciappina G, Spagnolo CC, Squeri A, Passalacqua MI, Aguilar A, Gonzalez-Cao M, Giovannetti E, Silvestris N and Rosell R: Targeted therapies for KRAS-mutant non-small cell lung cancer: From preclinical studies to clinical development-a narrative review. Transl Lung Cancer Res. 12:346–368. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yun J, Nakagawa R and Tham K: KRAS-targeted therapy in the treatment of non-small cell lung cancer. J Oncol Pharm Pract. 29:422–430. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Corral de la Fuente E, Olmedo Garcia ME, Gomez Rueda A, Lage Y and Garrido P: Targeting KRAS in non-small cell lung cancer. Front Oncol. 11:7926352022. View Article : Google Scholar : PubMed/NCBI | |
|
Tomasini P, Walia P, Labbe C, Jao K and Leighl NB: Targeting the KRAS pathway in non-small cell lung cancer. Oncologist. 21:1450–1460. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Li XQ, Cheng XJ, Wu J, Wu KF and Liu T: Targeted inhibition of the PI3K/AKT/mTOR pathway by (+)-anthrabenzoxocinone induces cell cycle arrest, apoptosis, and autophagy in non-small cell lung cancer. Cell Mol Biol Lett. 29:582024. View Article : Google Scholar : PubMed/NCBI | |
|
Gong G, Ganesan K, Xiong Q and Zheng Y: Antitumor effects of ononin by modulation of apoptosis in non-small-cell lung cancer through inhibiting PI3K/Akt/mTOR pathway. Oxid Med Cell Longev. 2022:51224482022. View Article : Google Scholar : PubMed/NCBI | |
|
Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V, Majumder PK, Baselga J and Rosen N: AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell. 19:58–71. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Bellmunt J, Maroto P, Bonfill T, Vazquez F, Perez-Gracia JL, Juanpere N, Hernandez-Prat A, Hernandez-Llodra S, Rovira A, Juan O and Rodriguez-Vida A: Dual mTOR1/2 inhibitor sapanisertib (FTH-003/TAK-228) in combination with weekly paclitaxel in patients with previously treated metastatic urothelial carcinoma: A phase II open-label study: A phase II open-label study. Clin Genitourin Cancer. 22:1021232024. View Article : Google Scholar : PubMed/NCBI | |
|
Al-Bustany HA, Muhammad HA, Chawsheen MA and Dash PR: Fenretinide induces apoptosis and synergises the apoptosis inducing effect of gemcitabine through inhibition of key signalling molecules involved in A549 cell survival in in silico and in vitro analyses. Cell Signal. 111:1108852023. View Article : Google Scholar : PubMed/NCBI | |
|
Curless BP, Uko NE and Matesic DF: Modulator of the PI3K/Akt oncogenic pathway affects mTOR complex 2 in human adenocarcinoma cells. Invest New Drugs. 37:902–911. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Fang W, Huang Y, Gu W, Gan J, Wang W, Zhang S, Wang K, Zhan J, Yang Y, Huang Y, et al: PI3K-AKT-mTOR pathway alterations in advanced NSCLC patients after progression on EGFR-TKI and clinical response to EGFR-TKI plus everolimus combination therapy. Transl Lung Cancer Res. 9:1258–1267. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Pal I and Mandal M: PI3K and Akt as molecular targets for cancer therapy: Current clinical outcomes. Acta Pharmacol Sin. 33:1441–1458. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Y, Hu Y, Xu T, Yan K, Zhang T, Li Q, Chang F, Guo X, Peng J, Li M, et al: RNF8-mediated regulation of Akt promotes lung cancer cell survival and resistance to DNA damage. Cell Rep. 37:1098542021. View Article : Google Scholar : PubMed/NCBI | |
|
He YM, Zhou XM, Jiang SY, Zhang ZB, Cao BY, Liu JB, Zeng YY, Zhao J and Mao XL: TRIM25 activates AKT/mTOR by inhibiting PTEN via K63-linked polyubiquitination in non-small cell lung cancer. Acta Pharmacol Sin. 43:681–691. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Alharbi KS, Shaikh MAJ, Almalki WH, Kazmi I, Al-Abbasi FA, Alzarea SI, Imam SS, Alshehri S, Ghoneim MM, Singh SK, et al: PI3K/Akt/mTOR pathways inhibitors with potential prospects in non-small-cell lung cancer. J Environ Pathol Toxicol Oncol. 41:85–102. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yan D, Huelse JM, Kireev D, Tan Z, Chen L, Goyal S, Wang X, Frye SV, Behera M, Schneider F, et al: MERTK activation drives osimertinib resistance in EGFR-mutant non-small cell lung cancer. J Clin Invest. 132:e1505172022. View Article : Google Scholar : PubMed/NCBI | |
|
Coco S, Truini A, Alama A, Dal Bello MG, Venè R, Garuti A, Carminati E, Rijavec E, Genova C, Barletta G, et al: Afatinib resistance in non-small cell lung cancer involves the PI3K/AKT and MAPK/ERK signalling pathways and epithelial-to-mesenchymal transition. Target Oncol. 10:393–404. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Adachi Y, Watanabe K, Kita K, Kitai H, Kotani H, Sato Y, Inase N, Yano S and Ebi H: Resistance mediated by alternative receptor tyrosine kinases in FGFR1-amplified lung cancer. Carcinogenesis. 38:1063–1072. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Y, Shang Y, Shi S, He Y, Shi W, Wang M, Wang Q, Xu D, Shi C and Chen H: Combination of arsenic trioxide and apatinib synergistically inhibits small cell lung cancer by down-regulating VEGFR2/mTOR and Akt/c-Myc signaling pathway via GRB10. Hereditas. 161:292024. View Article : Google Scholar : PubMed/NCBI | |
|
Wu YY, Wu HC, Wu JE, Huang KY, Yang SC, Chen SX, Tsao CJ, Hsu KF, Chen YL and Hong TM: The dual PI3K/mTOR inhibitor BEZ235 restricts the growth of lung cancer tumors regardless of EGFR status, as a potent accompanist in combined therapeutic regimens. J Exp Clin Cancer Res. 38:2822019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Hong Y and Shen J: Combination treatment with perifosine and MEK-162 demonstrates synergism against lung cancer cells in vitro and in vivo. Tumour Biol. 36:5699–5706. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Quan Z, Yang Y, Zheng H, Zhan Y, Luo J, Ning Y and Fan S: Clinical implications of the interaction between PD-1/PD-L1 and PI3K/AKT/mTOR pathway in progression and treatment of non-small cell lung cancer. J Cancer. 13:3434–3443. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wu J, Zhao X, Sun Q, Jiang Y, Zhang W, Luo J and Li Y: Synergic effect of PD-1 blockade and endostar on the PI3K/AKT/mTOR-mediated autophagy and angiogenesis in Lewis lung carcinoma mouse model. Biomed Pharmacother. 125:1097462020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Q, Chen X, Qi M, Li Y, Chen W and Zhang C, Wang J, Han Z and Zhang C: Combined cryoablation and PD-1 inhibitor synergistically enhance antitumor immune responses in Lewis lung adenocarcinoma mice via the PI3K/AKT/mTOR pathway. Biochim Biophys Acta Mol Basis Dis. 1870:1672622024. View Article : Google Scholar : PubMed/NCBI | |
|
Shi Z, Shen Y, Liu X and Zhang S: Sinensetin inhibits the movement ability and tumor immune microenvironment of non-small cell lung cancer through the inactivation of AKT/β-catenin axis. J Biochem Mol Toxicol. 38:e700242024. View Article : Google Scholar : PubMed/NCBI | |
|
Santini FC and Hellmann MD: PD-1/PD-L1 axis in lung cancer. Cancer J. 24:15–19. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Kumar R, Collins D, Dolly S, McDonald F, O'Brien MER and Yap TA: Targeting the PD-1/PD-L1 axis in non-small cell lung cancer. Curr Probl Cancer. 41:111–124. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yadav R, Khatkar R, Yap KCH, Kang CYH, Lyu J, Singh RK, Mandal S, Mohanta A, Lam HY, Okina E, et al: The miRNA and PD-1/PD-L1 signaling axis: An arsenal of immunotherapeutic targets against lung cancer. Cell Death Discov. 10:4142024. View Article : Google Scholar : PubMed/NCBI | |
|
Lu M, Wang K, Ji W, Yu Y, Li Z, Xia W and Lu S: FGFR1 promotes tumor immune evasion via YAP-mediated PD-L1 expression upregulation in lung squamous cell carcinoma. Cell Immunol. 379:1045772022. View Article : Google Scholar : PubMed/NCBI | |
|
Qiao M, Jiang T, Liu X, Mao S, Zhou F, Li X, Zhao C, Chen X, Su C, Ren S and Zhou C: Immune checkpoint inhibitors in EGFR-mutated NSCLC: Dusk or dawn? J Thorac Oncol. 16:1267–1288. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Genova C, Dellepiane C, Carrega P, Sommariva S, Ferlazzo G, Pronzato P, Gangemi R, Filaci G, Coco S and Croce M: Therapeutic implications of tumor microenvironment in lung cancer: Focus on immune checkpoint blockade. Front Immunol. 12:7994552022. View Article : Google Scholar : PubMed/NCBI | |
|
Sholl LM: Biomarkers of response to checkpoint inhibitors beyond PD-L1 in lung cancer. Mod Pathol. 35 (Suppl 1):S66–S74. 2022. View Article : Google Scholar | |
|
Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, Gottfried M, Peled N, Tafreshi A, Cuffe S, et al: Updated analysis of KEYNOTE-024: Pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J Clin Oncol. 37:537–546. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ready NE, Ott PA, Hellmann MD, Zugazagoitia J, Hann CL, de Braud F, Antonia SJ, Ascierto PA, Moreno V, Atmaca A, et al: Nivolumab monotherapy and nivolumab plus ipilimumab in recurrent small cell lung cancer: Results from the checkmate 032 randomized cohort. J Thorac Oncol. 15:426–435. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu SV, Reck M, Mansfield AS, Mok T, Scherpereel A, Reinmuth N, Garassino MC, De Castro Carpeno J, Califano R, Nishio M, et al: Updated overall survival and PD-L1 subgroup analysis of patients with extensive-stage small-cell lung cancer treated with atezolizumab, carboplatin, and etoposide (IMpower133). J Clin Oncol. 39:619–630. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Tang S, Qin C, Hu H, Liu T, He Y, Guo H, Yan H, Zhang J, Tang S and Zhou H: Immune checkpoint inhibitors in non-small cell lung cancer: Progress, challenges, and prospects. Cells. 11:3202022. View Article : Google Scholar : PubMed/NCBI | |
|
Passaro A, Brahmer J, Antonia S, Mok T and Peters S: Managing resistance to immune checkpoint inhibitors in lung cancer: Treatment and novel strategies. J Clin Oncol. 40:598–610. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Kejamurthy P and Devi KTR: Immune checkpoint inhibitors and cancer immunotherapy by aptamers: An overview. Med Oncol. 41:402023. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Jiang M, Aye L, Luo L, Zhang Y, Xu F, Wei Y, Peng D, He X, Gu J, et al: UPP1 promotes lung adenocarcinoma progression through the induction of an immunosuppressive microenvironment. Nat Commun. 15:12002024. View Article : Google Scholar : PubMed/NCBI | |
|
Ghorani E, Swanton C and Quezada SA: Cancer cell-intrinsic mechanisms driving acquired immune tolerance. Immunity. 56:2270–2295. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Giatromanolaki A, Kouroupi M, Pouliliou S, Mitrakas A, Hasan F, Pappa A and Koukourakis MI: Ectonucleotidase CD73 and CD39 expression in non-small cell lung cancer relates to hypoxia and immunosuppressive pathways. Life Sci. 259:1183892020. View Article : Google Scholar : PubMed/NCBI | |
|
Best SA, Gubser PM, Sethumadhavan S, Kersbergen A, Negrón Abril YL, Goldford J, Sellers K, Abeysekera W, Garnham AL, McDonald JA, et al: Glutaminase inhibition impairs CD8 T cell activation in STK11-/Lkb1-deficient lung cancer. Cell Metab. 34:874–887.e6. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu M, Kim J, Deng Q, Ricciuti B, Alessi JV, Eglenen-Polat B, Bender ME, Huang HC, Kowash RR, Cuevas I, et al: Loss of p53 and mutational heterogeneity drives immune resistance in an autochthonous mouse lung cancer model with high tumor mutational burden. Cancer Cell. 41:1731–1748.e8. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu C, Zhuang W, Chen L, Yang W and Ou WB: Frontiers of ctDNA, targeted therapies, and immunotherapy in non-small-cell lung cancer. Transl Lung Cancer Res. 9:111–138. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chu X, Tian W, Wang Z, Zhang J and Zhou R: Co-inhibition of TIGIT and PD-1/PD-L1 in cancer immunotherapy: Mechanisms and clinical trials. Mol Cancer. 22:932023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Chen Z, Chen R, Fang C, Zhang C, Ji M and Yang X: Immunotherapy-based combination strategies for treatment of EGFR-TKI-resistant non-small-cell lung cancer. Future Oncol. 18:1757–1775. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
West HJ, McCleland M, Cappuzzo F, Reck M, Mok TS, Jotte RM, Nishio M, Kim E, Morris S, Zou W, et al: Clinical efficacy of atezolizumab plus bevacizumab and chemotherapy in KRAS-mutated non-small cell lung cancer with STK11, KEAP1, or TP53 comutations: Subgroup results from the phase III IMpower150 trial. J Immunother Cancer. 10:e0030272022. View Article : Google Scholar : PubMed/NCBI | |
|
Judd J and Borghaei H: Combining immunotherapy and chemotherapy for non-small cell lung cancer. Thorac Surg Clin. 30:199–206. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Shang S, Liu J, Verma V, Wu M, Welsh J, Yu J and Chen D: Combined treatment of non-small cell lung cancer using radiotherapy and immunotherapy: Challenges and updates. Cancer Commun (Lond). 41:1086–1099. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chae YK, Arya A, Iams W, Cruz M, Mohindra N, Villaflor V and Giles FJ: Immune checkpoint pathways in non-small cell lung cancer. Ann Transl Med. 6:882018. View Article : Google Scholar : PubMed/NCBI | |
|
Raghav KPS and Moasser MM: Molecular pathways and mechanisms of HER2 in cancer therapy. Clin Cancer Res. 29:2351–2361. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Nützinger J, Bum Lee J, Li Low J, Ling Chia P, Talisa Wijaya S, Chul Cho B, Min Lim S and Soo RA: Management of HER2 alterations in non-small cell lung cancer-the past, present, and future. Lung Cancer. 186:1073852023. View Article : Google Scholar : PubMed/NCBI | |
|
Riudavets M, Sullivan I, Abdayem P and Planchard D: Targeting HER2 in non-small-cell lung cancer (NSCLC): A glimpse of hope? An updated review on therapeutic strategies in NSCLC harbouring HER2 alterations. ESMO Open. 6:1002602021. View Article : Google Scholar : PubMed/NCBI | |
|
Ghezzi C, Chen BY, Damoiseaux R and Clark PM: Pacritinib inhibits glucose consumption in squamous cell lung cancer cells by targeting. FLT3.Sci Rep. 13:14422023. View Article : Google Scholar : PubMed/NCBI | |
|
Kuncman Ł, Orzechowska M, Milecki T, Kucharz J and Fijuth J: High FLT3 expression increases immune-cell infiltration in the tumor microenvironment and correlates with prolonged disease-free survival in patients with non-small cell lung cancer. Mol Oncol. 18:1316–1326. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Dhillon S: Gilteritinib: First global approval. Drugs. 79:331–339. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hu C, Zhang Y, Yang J, Xu Y, Deng T, Li Y, Xu S, Wang S and Wang P: Ningetinib, a novel FLT3 inhibitor, overcomes secondary drug resistance in acute myeloid leukemia. Cell Commun Signal. 22:3552024. View Article : Google Scholar : PubMed/NCBI | |
|
Bruner JK, Ma HS, Li L, Qin ACR, Rudek MA, Jones RJ, Levis MJ, Pratz KW, Pratilas CA and Small D: Adaptation to TKI treatment reactivates ERK signaling in tyrosine kinase-driven leukemias and other malignancies. Cancer Res. 77:5554–5563. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
He L, Wang X, Liu K, Wu X, Yang X, Song G, Zhang B and Zhong L: Integrative PDGF/PDGFR and focal adhesion pathways are downregulated in ERCC1-defective non-small cell lung cancer undergoing sodium glycididazole-sensitized cisplatin treatment. Gene. 691:70–76. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Catena R, Luis-Ravelo D, Antón I, Zandueta C, Salazar-Colocho P, Larzábal L, Calvo A and Lecanda F: PDGFR signaling blockade in marrow stroma impairs lung cancer bone metastasis. Cancer Res. 71:164–174. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Riess JW and Neal JW: Targeting FGFR, ephrins, Mer, MET, and PDGFR-α in non-small cell lung cancer. J Thorac Oncol. 6 (11 Suppl 4):S1797–S1798. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Kranthi Reddy S, Reddy SVG and Hussain Basha S: Discovery of novel PDGFR inhibitors targeting non-small cell lung cancer using a multistep machine learning assisted hybrid virtual screening approach. RSC Adv. 15:851–869. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Xuan H, Jingshu G, Fang Y, Na L, Xiaolin S, Zhaoyang Y, Meng W and Gongyan C: Somatic mutation of KIT is rare in small cell lung cancer patients from Northeast China. Histol Histopathol. 29:273–278. 2014.PubMed/NCBI | |
|
Miettinen M and Lasota J: KIT (CD117): A review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Appl Immunohistochem Mol Morphol. 13:205–220. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Funkhouser AT, Strigenz AM, Blair BB, Miller AP, Shealy JC, Ewing JA, Martin JC, Funk CR, Edenfield WJ and Blenda AV: KIT mutations correlate with higher galectin levels and brain metastasis in breast and non-small cell lung cancer. Cancers (Basel). 14:27812022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang L, Zhou F, Zheng D, Wang D, Li X, Zhao C and Huang X: FGF/FGFR signaling: From lung development to respiratory diseases. Cytokine Growth Factor Rev. 62:94–104. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Pacini L, Jenks AD, Lima NC and Huang PH: Targeting the fibroblast growth factor receptor (FGFR) family in lung cancer. Cells. 10:11542021. View Article : Google Scholar : PubMed/NCBI | |
|
Desai A and Adjei AA: FGFR signaling as a target for lung cancer therapy. J Thorac Oncol. 11:9–20. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Peng M, Deng J and Li X: Clinical advances and challenges in targeting FGF/FGFR signaling in lung cancer. Mol Cancer. 23:2562024. View Article : Google Scholar : PubMed/NCBI | |
|
Biello F, Burrafato G, Rijavec E, Genova C, Barletta G, Truini A, Coco S, Bello MG, Alama A, Boccardo F and Grossi F: Fibroblast growth factor receptor (FGFR): A new target for non-small cell lung cancer therapy. Anticancer Agents Med Chem. 16:1142–1154. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Cervantes-Villagrana RD, Mendoza V, Hinck CS, de la Fuente-León RL, Hinck AP, Reyes-Cruz G, Vázquez-Prado J and López-Casillas F: Betaglycan sustains HGF/Met signaling in lung cancer and endothelial cells promoting cell migration and tumor growth. Heliyon. 10:e305202024. View Article : Google Scholar : PubMed/NCBI | |
|
Huang G, Liu X, Jiang T, Cao Y, Sang M, Song X, Zhou B, Qu H, Cai H, Xing D, et al: Luteolin overcomes acquired resistance to osimertinib in non-small cell lung cancer cells by targeting the HGF-MET-Akt pathway. Am J Cancer Res. 13:4145–4162. 2023.PubMed/NCBI | |
|
Moosavi F, Giovannetti E, Peters GJ and Firuzi O: Combination of HGF/MET-targeting agents and other therapeutic strategies in cancer. Crit Rev Oncol Hematol. 160:1032342021. View Article : Google Scholar : PubMed/NCBI | |
|
Yin J, Hu W, Fu W, Dai L, Jiang Z, Zhong S, Deng B and Zhao J: HGF/MET regulated epithelial-mesenchymal transitions and metastasis by FOSL2 in non-small cell lung cancer. Onco Targets Ther. 12:9227–9237. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Fregni M, Ciribilli Y and Zawacka-Pankau JE: The therapeutic potential of the restoration of the p53 protein family members in the EGFR-mutated lung cancer. Int J Mol Sci. 23:72132022. View Article : Google Scholar : PubMed/NCBI | |
|
Lin CC, Liao WT, Yang TY, Lu HJ, Hsu SL and Wu CC: MicroRNA-10b modulates cisplatin tolerance by targeting p53 directly in lung cancer cells. Oncol Rep. 46:1672021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H, Zhang G, Xiao M, Cui S, Jin C, Yang J, Wu S and Lu X: Two-polarized roles of transcription factor FOSB in lung cancer progression and prognosis: Dependent on p53 status. J Exp Clin Cancer Res. 43:2372024. View Article : Google Scholar : PubMed/NCBI | |
|
Chantarawong W, Kuncharoen N, Tanasupawat S and Chanvorachote P: Lumichrome inhibits human lung cancer cell growth and induces apoptosis via a p53-dependent mechanism. Nutr Cancer. 71:1390–1402. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Li P, Ma X, Zeng S, Peng Y and Zhang G: Therapeutic restoring p53 function with small molecule for oncogene-driven non-small cell lung cancer by targeting serine 392 phosphorylation. Biochem Pharmacol. 203:1151882022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Liu D, Sun Z, Ye T, Li J, Zeng B, Zhao Q and Rosie Xing H: Autophagy augments the self-renewal of lung cancer stem cells by the degradation of ubiquitinated p53. Cell Death Dis. 12:982021. View Article : Google Scholar : PubMed/NCBI | |
|
Tang X, Li Y, Liu L, Guo R, Zhang P, Zhang Y, Zhang Y, Zhao J, Su J, Sun L and Liu Y: Sirtuin 3 induces apoptosis and necroptosis by regulating mutant p53 expression in small-cell lung cancer. Oncol Rep. 43:591–600. 2020.PubMed/NCBI | |
|
Krishnamurthy N and Kurzrock R: Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat Rev. 62:50–60. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
He Y, Jiang X, Duan L, Xiong Q, Yuan Y, Liu P, Jiang L, Shen Q, Zhao S, Yang C and Chen Y: LncRNA PKMYT1AR promotes cancer stem cell maintenance in non-small cell lung cancer via activating Wnt signaling pathway. Mol Cancer. 20:1562021. View Article : Google Scholar : PubMed/NCBI | |
|
Li HJ, Ke FY, Lin CC, Lu MY, Kuo YH, Wang YP, Liang KH, Lin SC, Chang YH, Chen HY, et al: ENO1 promotes lung cancer metastasis via HGFR and WNT signaling-driven epithelial-to-mesenchymal transition. Cancer Res. 81:4094–4109. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Wu S and Liu W: Advances of Wnt/β-catenin signaling pathway in lung cancer: A review. Altern Ther Health Med. 30:238–247. 2024. | |
|
Chen J, Wang D, Chen H, Gu J, Jiang X, Han F, Cao J, Liu W and Liu J: TMEM196 inhibits lung cancer metastasis by regulating the Wnt/β-catenin signaling pathway. J Cancer Res Clin Oncol. 149:653–667. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Shen Y, Yang Y, Zhao Y, Nuerlan S, Zhan Y and Liu C: YY1/circCTNNB1/miR-186-5p/YY1 positive loop aggravates lung cancer progression through the Wnt pathway. Epigenetics. 19:23690062024. View Article : Google Scholar : PubMed/NCBI | |
|
Malyla V, Paudel KR, De Rubis G, Hansbro NG, Hansbro PM and Dua K: Cigarette smoking induces lung cancer tumorigenesis via upregulation of the WNT/β-catenin signaling pathway. Life Sci. 326:1217872023. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J, Chen J, He J, Li J, Shi J, Cho WC and Liu X: Wnt signaling as potential therapeutic target in lung cancer. Expert Opin Ther Targets. 20:999–1015. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y and Wang X: Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol. 13:1652020. View Article : Google Scholar : PubMed/NCBI | |
|
Bugter JM, Fenderico N and Maurice MM: Mutations and mechanisms of WNT pathway tumour suppressors in cancer. Nat Rev Cancer. 21:5–21. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Neiheisel A, Kaur M, Ma N, Havard P and Shenoy AK: Wnt pathway modulators in cancer therapeutics: An update on completed and ongoing clinical trials. Int J Cancer. 150:727–740. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Song P, Gao Z, Bao Y, Chen L, Huang Y, Liu Y, Dong Q and Wei X: Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy. J Hematol Oncol. 17:462024. View Article : Google Scholar : PubMed/NCBI | |
|
Xue C, Yao Q, Gu X, Shi Q, Yuan X, Chu Q, Bao Z, Lu J and Li L: Evolving cognition of the JAK-STAT signaling pathway: Autoimmune disorders and cancer. Signal Transduct Target Ther. 8:2042023. View Article : Google Scholar : PubMed/NCBI | |
|
Hu X, Li J, Fu M, Zhao X and Wang W: The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct Target Ther. 6:4022021. View Article : Google Scholar : PubMed/NCBI | |
|
Erdogan F, Radu TB, Orlova A, Qadree AK, de Araujo ED, Israelian J, Valent P, Mustjoki SM, Herling M, Moriggl R and Gunning PT: JAK-STAT core cancer pathway: An integrative cancer interactome analysis. J Cell Mol Med. 26:2049–2062. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Shen M, Xu Z, Xu W, Jiang K, Zhang F, Ding Q, Xu Z and Chen Y: Inhibition of ATM reverses EMT and decreases metastatic potential of cisplatin-resistant lung cancer cells through JAK/STAT3/PD-L1 pathway. J Exp Clin Cancer Res. 38:1492019. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Q, Wu W, Fu B, Shi L, Wang X and Kuca K: JNK signaling in cancer cell survival. Med Res Rev. 39:2082–2104. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Patel MR, Dash A, Jacobson BA, Ji Y, Baumann D, Ismail K and Kratzke RA: JAK/STAT inhibition with ruxolitinib enhances oncolytic virotherapy in non-small cell lung cancer models. Cancer Gene Ther. 26:411–418. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ding Y, Yuan X, Wang Y and Yan J: CASQ2 alleviates lung cancer by inhibiting M2 tumor-associated macrophage polarization and JAK/STAT pathway. J Biochem Mol Toxicol. 38:e238012024. View Article : Google Scholar : PubMed/NCBI | |
|
Saito A, Horie M and Nagase T: TGF-β signaling in lung health and disease. Int J Mol Sci. 19:24602018. View Article : Google Scholar : PubMed/NCBI | |
|
Kim BN, Ahn DH, Kang N, Yeo CD, Kim YK, Lee KY, Kim TJ, Lee SH, Park MS, Yim HW, et al: TGF-β induced EMT and stemness characteristics are associated with epigenetic regulation in lung cancer. Sci Rep. 10:105972020. View Article : Google Scholar : PubMed/NCBI | |
|
Huang Y, Chen Z, Lu T, Bi G, Li M, Liang J, Hu Z, Zheng Y, Yin J, Xi J, et al: HIF-1α switches the functionality of TGF-β signaling via changing the partners of smads to drive glucose metabolic reprogramming in non-small cell lung cancer. J Exp Clin Cancer Res. 40:3982021. View Article : Google Scholar : PubMed/NCBI | |
|
Deng X, Ma N, He J, Xu F and Zou G: The role of TGFBR3 in the development of lung cancer. Protein Pept Lett. 31:491–503. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Shen C, Wang X, Lai Y, Zhou K, Li P, Liu L and Che G: Prognostic value of TGF-beta in lung cancer: Systematic review and meta-analysis. BMC Cancer. 19:6912019. View Article : Google Scholar : PubMed/NCBI | |
|
Lai XN, Li J, Tang LB, Chen WT, Zhang L and Xiong LX: MiRNAs and LncRNAs: Dual roles in TGF-β signaling-regulated metastasis in lung cancer. Int J Mol Sci. 21:11932020. View Article : Google Scholar : PubMed/NCBI | |
|
Cui Z, Ruan Z, Li M, Ren R, Ma Y, Zeng J, Sun J, Ye W, Xu W, Guo X, et al: Obstructive sleep apnea promotes the progression of lung cancer by modulating cancer cell invasion and cancer-associated fibroblast activation via TGFβ signaling. Redox Rep. 28:22798132023. View Article : Google Scholar : PubMed/NCBI | |
|
Hedrick E, Mohankumar K and Safe S: TGFβ-induced lung cancer cell migration is NR4A1-dependent. Mol Cancer Res. 16:1991–2002. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Saito A, Horie M, Micke P and Nagase T: The role of TGF-β signaling in lung cancer associated with idiopathic pulmonary fibrosis. Int J Mol Sci. 19:36112018. View Article : Google Scholar : PubMed/NCBI | |
|
Yin Y, Dai H, Sun X, Xi Z, Zhang J, Pan Y, Huang Y, Ma X, Xia Q and He K: HRG inhibits liver cancer lung metastasis by suppressing neutrophil extracellular trap formation. Clin Transl Med. 13:e12832023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu W, Wang H, Bai F, Ding L, Huang Y, Lu C, Chen S, Li C, Yue X, Liang X, et al: IL-6 promotes metastasis of non-small-cell lung cancer by up-regulating TIM-4 via NF-κB. Cell Prolif. 53:e127762020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Liu F, Chen L, Fang C, Li S, Yuan S, Qian X, Yin Y, Yu B, Fu B, et al: Neutrophil extracellular traps (NETs) promote non-small cell lung cancer metastasis by suppressing lncRNA MIR503HG to activate the NF-κB/NLRP3 inflammasome pathway. Front Immunol. 13:8675162022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Zhao K, Zhou W, Kang R, Wei S, Shu Y, Yu C, Ku Y, Mao Y, Luo H, et al: Tet methylcytosine dioxygenase 2 (TET2) deficiency elicits EGFR-TKI (tyrosine kinase inhibitors) resistance in non-small cell lung cancer. Signal Transduct Target Ther. 9:652024. View Article : Google Scholar : PubMed/NCBI | |
|
Rasmi RR, Sakthivel KM and Guruvayoorappan C: NF-κB inhibitors in treatment and prevention of lung cancer. Biomed Pharmacother. 130:1105692020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Liu X, Zhuo C, Shen J, Lu K, Sha M, Ye J, Huang J, Han H and Yu H: NAT10 promotes malignant progression of lung cancer via the NF-κB signaling pathway. Discov Med. 35:936–945. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wei X, Liu Z, Shen Y, Dong H, Chen K, Shi X, Chen Y, Wang B and Dong S: Semaphorin4A promotes lung cancer by activation of NF-κB pathway mediated by PlexinB1. PeerJ. 11:e162922023. View Article : Google Scholar : PubMed/NCBI | |
|
Dimitrakopoulos FD, Kottorou AE, Kalofonou M and Kalofonos HP: The fire within: NF-κB involvement in non-small cell lung cancer. Cancer Res. 80:4025–4036. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Zu L, Wu H, Zhang F, Fan Y, Pan H, Du X, Guo F and Zhou Q: MiR-192/NKRF axis confers lung cancer cell chemoresistance to cisplatin via the NF-κB pathway. Thorac Cancer. 13:430–441. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Jin Y, Zhang Y, Huang A, Chen Y, Wang J, Liu N, Wang X, Gong Y, Wang W and Pan J: Overexpression of SERPINA3 suppresses tumor progression by modulating SPOP/NF-κB in lung cancer. Int J Oncol. 63:962023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Zhang J, Li YJ, Yu NN, Liu WT, Liang JZ, Xu WW, Sun ZH, Li B and He QY: MEST promotes lung cancer invasion and metastasis by interacting with VCP to activate NF-κB signaling. J Exp Clin Cancer Res. 40:3012021. View Article : Google Scholar : PubMed/NCBI | |
|
Xu X, Qiu Y, Chen S, Wang S, Yang R, Liu B, Li Y, Deng J, Su Y, Lin Z, et al: Different roles of the insulin-like growth factor (IGF) axis in non-small cell lung cancer. Curr Pharm Des. 28:2052–2064. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Remsing Rix LL, Sumi NJ, Hu Q, Desai B, Bryant AT, Li X, Welsh EA, Fang B, Kinose F, Kuenzi BM, et al: IGF-binding proteins secreted by cancer-associated fibroblasts induce context-dependent drug sensitization of lung cancer cells. Sci Signal. 15:eabj58792022. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang S, Xu Z, Shi Y, Liang S, Jiang X, Xiao M, Wang K and Ding L: Circulating insulin-like growth factor-1 and risk of lung diseases: A Mendelian randomization analysis. Front Endocrinol (Lausanne). 14:11263972023. View Article : Google Scholar : PubMed/NCBI | |
|
Xu J, Bie F, Wang Y, Chen X, Yan T and Du J: Prognostic value of IGF-1R in lung cancer: A PRISMA-compliant meta-analysis. Medicine (Baltimore). 98:e154672019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Li W, Guo Q, Wang Y, Ma L and Zhang X: Insulin-like growth factor-1 signaling in lung development and inflammatory lung diseases. Biomed Res Int. 2018:60575892018.PubMed/NCBI | |
|
Peng Y and Tan J: The relationship between IGF pathway and acquired resistance to tyrosine kinase inhibitors in cancer therapy. Front Biosci (Landmark Ed). 28:1632023. View Article : Google Scholar : PubMed/NCBI | |
|
Pal S, Yadav P, Sainis KB and Shankar BS: TNF-α and IGF-1 differentially modulate ionizing radiation responses of lung cancer cell lines. Cytokine. 101:89–98. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sun L, Yuan W, Wen G, Yu B, Xu F, Gan X, Tang J, Zeng Q, Zhu L, Chen C and Zhang W: Parthenolide inhibits human lung cancer cell growth by modulating the IGF-1R/PI3K/Akt signaling pathway. Oncol Rep. 44:1184–1193. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Das D, Xie L and Hong J: Next-generation EGFR tyrosine kinase inhibitors to overcome C797S mutation in non-small cell lung cancer (2019–2024). RSC Med Chem. 15:3371–3394. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Das D, Wang J and Hong J: Next-generation kinase inhibitors targeting specific biomarkers in non-small cell lung cancer (NSCLC): A recent overview. ChemMedChem. 16:2459–2479. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang N, Zhang Y, Mi Y, Deng H, Chen G, Tang Z, Mao J, Cui S, Zhang Y and Wang L: Osimertinib for EGFR-mutant lung cancer with central nervous system metastases: A meta-analysis and systematic review. Ann Palliat Med. 9:3038–3047. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Solomon BJ, Besse B, Bauer TM, Felip E, Soo RA, Camidge DR, Chiari R, Bearz A, Lin CC, Gadgeel SM, et al: Lorlatinib in patients with ALK-positive non-small-cell lung cancer: Results from a global phase 2 study. Lancet Oncol. 19:1654–1667. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Soejima K, Yasuda H and Hirano T: Osimertinib for EGFR T790M mutation-positive non-small cell lung cancer. Expert Rev Clin Pharmacol. 10:31–38. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yang JCH, Ahn MJ, Kim DW, Ramalingam SS, Sequist LV, Su WC, Kim SW, Kim JH, Planchard D, Felip E, et al: Osimertinib in pretreated T790M-positive advanced non-small-cell lung cancer: AURA study phase II extension component. J Clin Oncol. 35:1288–1296. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ramalingam SS, Yang JCH, Lee CK, Kurata T, Kim DW, John T, Nogami N, Ohe Y, Mann H, Rukazenkov Y, et al: Osimertinib as first-line treatment of EGFR mutation-positive advanced non-small-cell lung cancer. J Clin Oncol. 36:841–849. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Araki T, Kanda S, Horinouchi H and Ohe Y: Current treatment strategies for EGFR-mutated non-small cell lung cancer: From first line to beyond osimertinib resistance. Jpn J Clin Oncol. 53:547–561. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Jänne PA, Planchard D, Kobayashi K, Cheng Y, Lee CK, Valdiviezo N, Laktionov K, Yang TY, Yu Y, Kato T, et al: CNS efficacy of osimertinib with or without chemotherapy in epidermal growth factor receptor-mutated advanced non-small-cell lung cancer. J Clin Oncol. 42:808–820. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ye Z and Guo J: Acquired ALK G1202R-, ALK I1171N-, or EML4-ALK-mediated resistance to ensartinib in lung adenocarcinoma but responded to lorlatinib: A case report. Front Oncol. 13:10821152023. View Article : Google Scholar : PubMed/NCBI | |
|
Solomon BJ, Bauer TM, Mok TSK, Liu G, Mazieres J, de Marinis F, Goto Y, Kim DW, Wu YL, Jassem J, et al: Efficacy and safety of first-line lorlatinib versus crizotinib in patients with advanced, ALK-positive non-small-cell lung cancer: Updated analysis of data from the phase 3, randomised, open-label CROWN study. Lancet Respir Med. 11:354–366. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Bauer TM, Shaw AT, Johnson ML, Navarro A, Gainor JF, Thurm H, Pithavala YK, Abbattista A, Peltz G and Felip E: Brain penetration of lorlatinib: cumulative incidences of CNS and non-CNS progression with lorlatinib in patients with previously treated ALK-positive non-small-cell lung cancer. Target Oncol. 15:55–65. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Rybarczyk-Kasiuchnicz A, Ramlau R and Stencel K: Treatment of brain metastases of non-small cell lung carcinoma. Int J Mol Sci. 22:5932021. View Article : Google Scholar : PubMed/NCBI | |
|
Ernani V and Stinchcombe TE: Management of brain metastases in non-small-cell lung cancer. J Oncol Pract. 15:563–570. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lin JJ, Choudhury NJ, Yoda S, Zhu VW, Johnson TW, Sakhtemani R, Dagogo-Jack I, Digumarthy SR, Lee C, Do A, et al: Spectrum of mechanisms of resistance to crizotinib and lorlatinib in ROS1 fusion-positive lung cancer. Clin Cancer Res. 27:2899–2909. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Corvaja C, Passaro A, Attili I, Aliaga PT, Spitaleri G, Signore ED and de Marinis F: Advancements in fourth-generation EGFR TKIs in EGFR-mutant NSCLC: Bridging biological insights and therapeutic development. Cancer Treat Rev. 130:1028242024. View Article : Google Scholar : PubMed/NCBI | |
|
Desai A and Peters S: Immunotherapy-based combinations in metastatic NSCLC. Cancer Treat Rev. 116:1025452023. View Article : Google Scholar : PubMed/NCBI | |
|
Passaro A, Jänne PA and Peters S: Antibody-drug conjugates in lung cancer: Recent advances and implementing strategies. J Clin Oncol. 41:3747–3761. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Desai A, Abdayem P, Adjei AA and Planchard D: Antibody-drug conjugates: A promising novel therapeutic approach in lung cancer. Lung Cancer. 163:96–106. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Merle G, Friedlaender A, Desai A and Addeo A: Antibody drug conjugates in lung cancer. Cancer J. 28:429–435. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Rosner S, Valdivia A, Hoe HJ, Murray JC, Levy B, Felip E and Solomon BJ: Antibody-drug conjugates for lung cancer: Payloads and progress. Am Soc Clin Oncol Educ Book. 43:e3899682023. View Article : Google Scholar : PubMed/NCBI | |
|
Marks S and Naidoo J: Antibody drug conjugates in non-small cell lung cancer: An emerging therapeutic approach. Lung Cancer. 163:59–68. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Tarantino P, Carmagnani Pestana R, Corti C, Modi S, Bardia A, Tolaney SM, Cortes J, Soria JC and Curigliano G: Antibody-drug conjugates: Smart chemotherapy delivery across tumor histologies. CA Cancer J Clin. 72:165–182. 2022.PubMed/NCBI | |
|
Weng W, Meng T, Zhao Q, Shen Y, Fu G, Shi J, Zhang Y, Wang Z, Wang M, Pan R, et al: Antibody-exatecan conjugates with a novel self-immolative moiety overcome resistance in colon and lung cancer. Cancer Discov. 13:950–973. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Verma S, Breadner D and Raphael J: ‘Targeting’ improved outcomes with antibody-drug conjugates in non-small cell lung cancer-an updated review. Curr Oncol. 30:4329–4350. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Parisi C, Mahjoubi L, Gazzah A and Barlesi F: TROP-2 directed antibody-drug conjugates (ADCs): The revolution of smart drug delivery in advanced non-small cell lung cancer (NSCLC). Cancer Treat Rev. 118:1025722023. View Article : Google Scholar : PubMed/NCBI | |
|
Peters S, Loi S, André F, Chandarlapaty S, Felip E, Finn SP, Jänne PA, Kerr KM, Munzone E, Passaro A, et al: Antibody-drug conjugates in lung and breast cancer: Current evidence and future directions-a position statement from the ETOP IBCSG partners foundation. Ann Oncol. 35:607–629. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ricciuti B, Lamberti G, Andrini E, Genova C, De Giglio A, Bianconi V, Sahebkar A, Chiari R and Pirro M: Antibody-drug conjugates for lung cancer in the era of personalized oncology. Semin Cancer Biol. 69:268–278. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Pourjamal N, Yazdi N, Halme A, Joncour VL, Laakkonen P, Saharinen P, Joensuu H and Barok M: Comparison of trastuzumab emtansine, trastuzumab deruxtecan, and disitamab vedotin in a multiresistant HER2-positive breast cancer lung metastasis model. Clin Exp Metastasis. 41:91–102. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Fu Z, Gao C, Xie J, Zhang C, Li S, Gu M and Shi C: Incidence and risk of fatal adverse events in cancer patients treated with HER2-targeted antibody-drug conjugates: A systematic review and meta-analysis of randomized controlled trials. BMC Cancer. 23:9602023. View Article : Google Scholar : PubMed/NCBI | |
|
Larsen ME, Lyu H and Liu B: HER3-targeted therapeutic antibodies and antibody-drug conjugates in non-small cell lung cancer refractory to EGFR-tyrosine kinase inhibitors. Chin Med J Pulm Crit Care Med. 1:11–17. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Q, Jia G, Zhang X and Ma W: Targeting HER3 to overcome EGFR TKI resistance in NSCLC. Front Immunol. 14:13320572024. View Article : Google Scholar : PubMed/NCBI | |
|
Belluomini L, Avancini A, Sposito M, Milella M, Rossi A and Pilotto S: Antibody-drug conjugates (ADCs) targeting TROP-2 in lung cancer. Expert Opin Biol Ther. 23:1077–1087. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Paz-Ares LG, Juan-Vidal O, Mountzios GS, Felip E, Reinmuth N, de Marinis F, Girard N, Patel VM, Takahama T, Owen SP, et al: Sacituzumab govitecan versus docetaxel for previously treated advanced or metastatic non-small cell lung cancer: The randomized, open-label phase III EVOKE-01 study. J Clin Oncol. 42:2860–2872. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Kim YJ, Li W, Zhelev DV, Mellors JW, Dimitrov DS and Baek DS: Chimeric antigen receptor-T cells are effective against CEACAM5 expressing non-small cell lung cancer cells resistant to antibody-drug conjugates. Front Oncol. 13:11240392023. View Article : Google Scholar : PubMed/NCBI | |
|
Zanchetta C, De Marchi L, Macerelli M, Pelizzari G, Costa J, Aprile G and Cortiula F: Antibody-drug conjugates in non-small cell lung cancer: state of the art and future perspectives. Int J Mol Sci. 26:2212024. View Article : Google Scholar : PubMed/NCBI | |
|
Belluomini L, Sposito M, Avancini A, Insolda J, Milella M, Rossi A and Pilotto S: Unlocking new horizons in small-cell lung cancer treatment: The onset of antibody-drug conjugates. Cancers (Basel). 15:53682023. View Article : Google Scholar : PubMed/NCBI | |
|
Blackhall F, Jao K, Greillier L, Cho BC, Penkov K, Reguart N, Majem M, Nackaerts K, Syrigos K, Hansen K, et al: Efficacy and safety of rovalpituzumab tesirine compared with topotecan as second-line therapy in DLL3-high SCLC: Results from the phase 3 TAHOE study. J Thorac Oncol. 16:1547–1558. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Owen DH, Giffin MJ, Bailis JM, Smit MAD, Carbone DP and He K: DLL3: An emerging target in small cell lung cancer. J Hematol Oncol. 12:612019. View Article : Google Scholar : PubMed/NCBI | |
|
Morgensztern D, Besse B, Greillier L, Santana-Davila R, Ready N, Hann CL, Glisson BS, Farago AF, Dowlati A, Rudin CM, et al: Efficacy and safety of rovalpituzumab tesirine in third-line and beyond patients with DLL3-expressing, relapsed/refractory small-cell lung cancer: Results from the phase II TRINITY study. Clin Cancer Res. 25:6958–6966. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lashari BH, Vallatharasu Y, Kolandra L, Hamid M and Uprety D: Rovalpituzumab tesirine: A novel DLL3-targeting antibody-drug conjugate. Drugs R D. 18:255–258. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao C, Zhang R, Yang H, Gao Y, Zou Y and Zhang X: Antibody-drug conjugates for non-small cell lung cancer: Advantages and challenges in clinical translation. Biochem Pharmacol. 226:1163782024. View Article : Google Scholar : PubMed/NCBI | |
|
Neupane N, Thapa S, Bhattarai A, Ahuja K, Schlam I, Mittal A, Tolaney SM and Tarantino P: Opportunities and challenges for a histology-agnostic utilization of trastuzumab deruxtecan. Curr Oncol Rep. 25:1467–1482. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Desai A, Subbiah V, Roy-Chowdhuri S, Sheshadri A, Deshmukh S and Peters S: Association of antibody-drug conjugate (ADC) target expression and interstitial lung disease (ILD) in non-small-cell lung cancer (NSCLC): Association or causation or neither? Cancers (Basel). 16:37532024. View Article : Google Scholar : PubMed/NCBI | |
|
Attili I, Passaro A, Pavan A, Conte P, De Marinis F and Bonanno L: Combination immunotherapy strategies in advanced non-small cell lung cancer (NSCLC): Does biological rationale meet clinical needs? Crit Rev Oncol Hematol. 119:30–39. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Tagliamento M, Genova C, Rossi G, Coco S, Rijavec E, Dal Bello MG, Boccardo S, Grossi F and Alama A: Microtubule-targeting agents in the treatment of non-small cell lung cancer: Insights on new combination strategies and investigational compounds. Expert Opin Investig Drugs. 28:513–523. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Girard N: New strategies and novel combinations in EGFR TKI-resistant non-small cell lung cancer. Curr Treat Options Oncol. 23:1626–1644. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wu YL, Guarneri V, Voon PJ, Lim BK, Yang JJ, Wislez M, Huang C, Liam CK, Mazieres J, Tho LM, et al: Tepotinib plus osimertinib in patients with EGFR-mutated non-small-cell lung cancer with MET amplification following progression on first-line osimertinib (INSIGHT 2): A multicentre, open-label, phase 2 trial. Lancet Oncol. 25:989–1002. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshida R, Saigi M, Tani T, Springer BF, Shibata H, Kitajima S, Mahadevan NR, Campisi M, Kim W, Kobayashi Y, et al: MET-induced CD73 restrains STING-mediated immunogenicity of EGFR-mutant lung cancer. Cancer Res. 82:4079–4092. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao S, Ma Y, Liu L, Fang J, Ma H, Feng G, Xie B, Zeng S, Chang J, Ren J, et al: Ningetinib plus gefitinib in EGFR-mutant non-small-cell lung cancer with MET and AXL dysregulations: A phase 1b clinical trial and biomarker analysis. Lung Cancer. 188:1074682024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Liu C, Yang C, Jin Y, Cui Q, Wang D, Ge T, He G, Li W, Zhang G, et al: PI3K/AKT/mTOR and PD-1/CTLA-4/CD28 pathways as key targets of cancer immunotherapy (review). Oncol Lett. 28:5672024. View Article : Google Scholar : PubMed/NCBI | |
|
Fu ZY, Huang Y, Lian LS, Huang HT, Zhan SF, Cai Y, Li JX and Liu XH: Potential of semen coicis in enhancing the anti-tumor effects of PD-1 inhibitor on A549 cell lines by blocking the PI3K-AKT-mTOR pathway. Clin Transl Oncol. 26:2250–2261. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Tian C, Liu Y, Liang J, Zeng Y, Yang Q, Liu Y, Wu D, Wu J, Wang J, et al: Comprehensive profiling reveals distinct microenvironment and metabolism characterization of lung adenocarcinoma. Front Genet. 12:6198212021. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Tuerxun H and Zhao Y, Liu X, Li X, Wen S and Zhao Y: The new era of lung cancer therapy: Combining immunotherapy with ferroptosis. Crit Rev Oncol Hematol. 198:1043592024. View Article : Google Scholar : PubMed/NCBI | |
|
Nair NU, Greninger P, Zhang X, Friedman AA, Amzallag A, Cortez E, Sahu AD, Lee JS, Dastur A, Egan RK, et al: A landscape of response to drug combinations in non-small cell lung cancer. Nat Commun. 14:38302023. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng H, Zeltsman M, Zauderer MG, Eguchi T, Vaghjiani RG and Adusumilli PS: Chemotherapy-induced immunomodulation in non-small-cell lung cancer: A rationale for combination chemoimmunotherapy. Immunotherapy. 9:913–927. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Corke L and Sacher A: New strategies and combinations to improve outcomes in immunotherapy in metastatic non-small-cell lung cancer. Curr Oncol. 29:38–55. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Casagrande GMS, Silva MO, Reis RM and Leal LF: Liquid biopsy for lung cancer: Up-to-date and perspectives for screening programs. Int J Mol Sci. 24:25052023. View Article : Google Scholar : PubMed/NCBI | |
|
Pellini B and Chaudhuri AA: ctDNA monitoring for small cell lung cancer: Ready for prime time? Clin Cancer Res. 29:2176–2178. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Pan Y, Zhang JT, Gao X, Chen ZY, Yan B, Tan PX, Yang XR, Gao W, Gong Y, Tian Z, et al: Dynamic circulating tumor DNA during chemoradiotherapy predicts clinical outcomes for locally advanced non-small cell lung cancer patients. Cancer Cell. 41:1763–1773 .e4. 2023. | |
|
Sun X, Abrahamson P, Ballew N, Kalilani L, Phiri K, Bell KF, Slowley A, Zajac M, Hofstatter E, Stojadinovic A, et al: The utility of ctDNA in lung cancer clinical research and practice: A systematic review and meta-analysis of clinical studies. Cancer Invest. 41:571–592. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ren F, Fei Q, Qiu K, Zhang Y, Zhang H and Sun L: Liquid biopsy techniques and lung cancer: Diagnosis, monitoring and evaluation. J Exp Clin Cancer Res. 43:962024. View Article : Google Scholar : PubMed/NCBI | |
|
Sands J, Li Q and Hornberger J: Urine circulating-tumor DNA (ctDNA) detection of acquired EGFR T790M mutation in non-small-cell lung cancer: An outcomes and total cost-of-care analysis. Lung Cancer. 110:19–25. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen K, Yang F, Shen H, Wang C, Li X, Chervova O, Wu S, Qiu F, Peng D, Zhu X, et al: Individualized tumor-informed circulating tumor DNA analysis for postoperative monitoring of non-small cell lung cancer. Cancer Cell. 41:1749–1762.e6. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yan X and Liu C: Clinical application and prospect of MRD evaluation in lung cancer based on ctDNA level: A review. Tumori. 109:356–362. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chae YK and Oh MS: Detection of minimal residual disease using ctDNA in lung cancer: Current evidence and future directions. J Thorac Oncol. 14:16–24. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Reina C, Šabanović B, Lazzari C, Gregorc V and Heeschen C: Unlocking the future of cancer diagnosis-promises and challenges of ctDNA-based liquid biopsies in non-small cell lung cancer. Transl Res. 272:41–53. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Medford AJ, Moy B, Spring LM, Hurvitz SA, Turner NC and Bardia A: Molecular residual disease in breast cancer: Detection and therapeutic interception. Clin Cancer Res. 29:4540–4548. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Lavacchi D, Gelmini S, Calabri A, Rossi G, Simi L, Caliman E, Mancini I, Salvianti F, Petroni G, Guidolin A, et al: Early changes in circulating tumor DNA (ctDNA) predict treatment response in metastatic KRAS-mutated colorectal cancer (mCRC) patients. Heliyon. 9:e218532023. View Article : Google Scholar : PubMed/NCBI | |
|
Pellini B and Chaudhuri AA: Circulating tumor DNA minimal residual disease detection of non-small-cell lung cancer treated with curative intent. J Clin Oncol. 40:567–575. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Dong S, Wang Z, Zhang JT, Yan B, Zhang C, Gao X, Sun H, Li YS, Yan HH, Tu HY, et al: Circulating tumor DNA-guided de-escalation targeted therapy for advanced non-small cell lung cancer: A nonrandomized controlled trial. JAMA Oncol. 10:932–940. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Yao H, Wen L, Li Z and Xia C: Analysis of diagnostic value of CTC and CTDNA in early lung cancer. Cell Mol Biol (Noisy-le-grand). 69:57–62. 2023. View Article : Google Scholar | |
|
Xie J, Hu B, Gong Y, He S, Lin J, Huang Q and Cheng J: A comparative study on ctDNA and tumor DNA mutations in lung cancer and benign cases with a high number of CTCs and CTECs. J Transl Med. 21:8732023. View Article : Google Scholar : PubMed/NCBI | |
|
Xiang Y, Liu X, Wang Y, Zheng D, Meng Q, Jiang L, Yang S, Zhang S, Zhang X, Liu Y and Wang B: Mechanisms of resistance to targeted therapy and immunotherapy in non-small cell lung cancer: Promising strategies to overcoming challenges. Front Immunol. 15:13662602024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang KR, Zhang YF, Lei HM, Tang YB, Ma CS, Lv QM, Wang SY, Lu LM, Shen Y, Chen HZ and Zhu L: Targeting AKR1B1 inhibits glutathione de novo synthesis to overcome acquired resistance to EGFR-targeted therapy in lung cancer. Sci Transl Med. 13:eabg64282021. View Article : Google Scholar : PubMed/NCBI | |
|
Roys A, Chang X, Liu Y, Xu X, Wu Y and Zuo D: Resistance mechanisms and potent-targeted therapies of ROS1-positive lung cancer. Cancer Chemother Pharmacol. 84:679–688. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu WJ, Du Y, Wen R, Yang M and Xu J: Drug resistance to targeted therapeutic strategies in non-small cell lung cancer. Pharmacol Ther. 206:1074382020. View Article : Google Scholar : PubMed/NCBI | |
|
Lim ZF and Ma PC: Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J Hematol Oncol. 12:1342019. View Article : Google Scholar : PubMed/NCBI | |
|
Meyer ML, Fitzgerald BG, Paz-Ares L, Cappuzzo F, Jänne PA, Peters S and Hirsch FR: New promises and challenges in the treatment of advanced non-small-cell lung cancer. Lancet. 404:803–822. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Koga T, Suda K and Mitsudomi T: Utility of the Ba/F3 cell system for exploring on-target mechanisms of resistance to targeted therapies for lung cancer. Cancer Sci. 113:815–827. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Makarem M and Jänne PA: Top advances of the year: Targeted therapy for lung cancer. Cancer. 130:3239–3250. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Wang A, Wu Y, He S, Shuai W, Zhao M, Zhu Y, Hu X, Luo Y and Wang G: Targeted therapy for non-small-cell lung cancer: New insights into regulated cell death combined with immunotherapy. Immunol Rev. 321:300–334. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zullo L, Dall'Olio FG, Rossi G, Dellepiane C, Barletta G, Bennicelli E, Ingaliso M, Tagliamento M and Genova C: Molecular and genetic advances in small cell lung cancer landscape: From homogeneity to diversity. Int J Mol Sci. 25:2242023. View Article : Google Scholar : PubMed/NCBI |