|
1
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263.
2024.PubMed/NCBI
|
|
2
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Hanahan D: Hallmarks of Cancer: New
Dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Liang X, Sun S, Zhang X, Wu H, Tao W, Liu
T, Wei W, Geng J and Pang D: Expression of ribosome-binding protein
1 correlates with shorter survival in Her-2 positive breast cancer.
Cancer Sci. 106:740–746. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Pan Y, Cao F, Guo A, Chang W, Chen X, Ma
W, Gao X, Guo S, Fu C and Zhu J: Endoplasmic reticulum
ribosome-binding protein 1, RRBP1, promotes progression of
colorectal cancer and predicts an unfavourable prognosis. Br J
Cancer. 113:763–772. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lv SW, Shi ZG, Wang XH, Zheng PY, Li HB,
Han QJ and Li ZJ: Ribosome binding Protein 1 correlates with
prognosis and cell proliferation in bladder cancer. Onco Targets
Ther. 13:6699–6707. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Wang M, Liu S, Zhou B, Wang J, Ping H and
Xing N: RRBP1 is highly expressed in bladder cancer and is
associated with migration and invasion. Oncol Lett.
20:2032020.PubMed/NCBI
|
|
8
|
Luo HL, Liu HY, Chang YL, Sung MT, Chen
PY, Su YL, Huang CC and Peng JM: Hypomethylated RRBP1 potentiates
tumor malignancy and chemoresistance in upper tract urothelial
carcinoma. Int J Mol Sci. 22:87612021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Li T, Wang Q, Hong X, Li H, Yang K, Li J
and Lei B: RRBP1 is highly expressed in prostate cancer and
correlates with prognosis. Cancer Manag Res. 11:3021–3027. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wang L, Wang M, Zhang M, Li X, Zhu Z and
Wang H: Expression and significance of RRBP1 in esophageal
carcinoma. Cancer Manag Res. 10:1243–1249. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Savitz AJ and Meyer DI: 180-kD ribosome
receptor is essential for both ribosome binding and protein
translocation. J Cell Biol. 120:853–863. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wanker EE, Sun Y, Savitz AJ and Meyer DI:
Functional characterization of the 180-kD ribosome receptor in
vivo. J Cell Biol. 130:29–39. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Telikicherla D, Marimuthu A, Kashyap MK,
Ramachandra YL, Mohan S, Roa JC, Maharudraiah J and Pandey A:
Overexpression of ribosome binding protein 1 (RRBP1) in breast
cancer. Clin Proteomics. 9:72012. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hung V, Lam SS, Udeshi ND, Svinkina T,
Guzman G, Mootha VK, Carr SA and Ting AY: Proteomic mapping of
cytosol-facing outer mitochondrial and ER membranes in living human
cells by proximity biotinylation. Elife. 6:e244632017. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Bhadra P, Schorr S, Lerner M, Nguyen D,
Dudek J, Förster F, Helms V, Lang S and Zimmermann R: Quantitative
proteomics and differential protein abundance analysis after
depletion of putative mRNA receptors in the ER membrane of human
cells identifies novel aspects of mRNA targeting to the ER.
Molecules. 26:35912021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Cui XA, Zhang H and Palazzo AF: p180
promotes the ribosome-independent localization of a subset of mRNA
to the endoplasmic reticulum. PLoS Biol. 10:e10013362012.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Ueno T, Kaneko K, Sata T, Hattori S and
Ogawa-Goto K: Regulation of polysome assembly on the endoplasmic
reticulum by a coiled-coil protein, p180. Nucleic Acids Res.
40:3006–3017. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Cui XA, Zhang H, Ilan L, Liu AX, Kharchuk
I and Palazzo AF: mRNA encoding Sec61β, a tail-anchored protein, is
localized on the endoplasmic reticulum. J Cell Sci. 128:3398–3410.
2015.PubMed/NCBI
|
|
19
|
Diefenbach RJ, Diefenbach E, Douglas MW
and Cunningham AL: The ribosome receptor, p180, interacts with
kinesin heavy chain, KIF5B. Biochem Biophys Res Commun.
319:987–992. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Cardoso CM, Groth-Pedersen L, Høyer-Hansen
M, Kirkegaard T, Corcelle E, Andersen JS, Jäättelä M and Nylandsted
J: Depletion of kinesin 5B affects lysosomal distribution and
stability and induces Peri-nuclear accumulation of autophagosomes
in cancer cells. PLoS One. 4:e44242009. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Cardoen B, Vandevoorde KR, Gao G,
Ortiz-Silva M, Alan P, Liu W, Tiliakou E, Vogl AW, Hamarneh G and
Nabi IR: Membrane contact site detection (MCS-DETECT) reveals dual
control of rough mitochondria-ER contacts. J Cell Biol.
223:e2022061092024. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ilamathi HS, Benhammouda S, Lounas A,
Al-Naemi K, Desrochers-Goyette J, Lines MA, Richard FJ, Vogel J and
Germain M: Contact sites between endoplasmic reticulum sheets and
mitochondria regulate mitochondrial DNA replication and
segregation. iScience. 26:1071802023. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Killackey SA, Bi Y, Soares F, Hammi I,
Winsor NJ, Abdul-Sater AA, Philpott DJ, Arnoult D and Girardin SE:
Mitochondrial protein import stress regulates the LC3 lipidation
step of mitophagy through NLRX1 and RRBP1. Mol Cell.
82:2815–2831.e5. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Killackey SA, Bi Y, Philpott DJ, Arnoult D
and Girardin SE: Mitochondria-ER cooperation: NLRX1 detects
mitochondrial protein import stress and promotes mitophagy through
the ER protein RRBP1. Autophagy. 19:1601–1603. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Ge P, Dawson VL and Dawson TM: PINK1 and
Parkin mitochondrial quality control: A source of regional
vulnerability in Parkinson's disease. Mol Neurodegener. 15:202020.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Liu J, Liu W, Li R and Yang H: Mitophagy
in Parkinson's disease: From pathogenesis to treatment. Cells.
8:7122019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Rüb C, Wilkening A and Voos W:
Mitochondrial quality control by the Pink1/Parkin system. Cell
Tissue Res. 367:111–123. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Sierksma A, Lu A, Mancuso R, Fattorelli N,
Thrupp N, Salta E, Zoco J, Blum D, Buée L, De Strooper B and Fiers
M: Novel Alzheimer risk genes determine the microglia response to
amyloid-β but not to TAU pathology. EMBO Mol Med. 12:e106062020.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Koppers M, Özkan N, Nguyen HH, Jurriens D,
McCaughey J, Nguyen DTM, Li CH, Stucchi R, Altelaar M, MacGillavry
HD, et al: Axonal endoplasmic reticulum tubules control local
translation via P180/RRBP1-mediated ribosome interactions. Dev
Cell. 59:2053–2068.e9. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Nazarian J, Bouri K and Hoffman EP:
Intracellular expression profiling by laser capture
microdissection: Three novel components of the neuromuscular
junction. Physiol Genomics. 21:70–80. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ramdas S, Judd J, Graham SE, Kanoni S,
Wang Y, Surakka I, Wenz B, Clarke SL, Chesi A, Wells A, et al: A
multi-layer functional genomic analysis to understand noncoding
genetic variation in lipids. Am J Hum Genet. 109:1366–1387. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Tao T, Xu Y, Zhang CH, Zhang X, Chen J and
Liu J: Single-cell transcriptomic analysis and luteolin treatment
reveal three adipogenic genes, including Aspn, Htra1 and Efemp1.
Biochim Biophys Acta Mol Cell Biol Lipids. 1870:1595852025.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ilacqua N, Anastasia I, Aloshyn D,
Ghandehari-Alavijeh R, Peluso EA, Brearley-Sholto MC, Pellegrini
LV, Raimondi A, de Aguiar Vallim TQ and Pellegrini L: Expression of
Synj2bp in mouse liver regulates the extent of wrappER-mitochondria
contact to maintain hepatic lipid homeostasis. Biol Direct.
17:372022. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Anastasia I, Ilacqua N, Raimondi A,
Lemieux P, Ghandehari-Alavijeh R, Faure G, Mekhedov SL, Williams
KJ, Caicci F, Valle G, et al: Mitochondria-rough-ER contacts in the
liver regulate systemic lipid homeostasis. Cell Rep. 34:1088732021.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Ma J, Ren S, Ding J, Liu S, Zhu J, Ma R
and Meng F: Expression of RRBP1 in epithelial ovarian cancer and
its clinical significance. Biosci Rep. 39:BSR201906562019.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Tsai HY, Yang YF, Wu AT, Yang CJ, Liu YP,
Jan YH, Lee CH, Hsiao YW, Yeh CT, Shen CN, et al: Endoplasmic
reticulum ribosome-binding protein 1 (RRBP1) overexpression is
frequently found in lung cancer patients and alleviates
intracellular stress-induced apoptosis through the enhancement of
GRP78. Oncogene. 32:4921–4931. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Liu S, Lin M, Ji H, Ding J, Zhu J, Ma R
and Meng F: RRBP1 overexpression is associated with progression and
prognosis in endometrial endometrioid adenocarcinoma. Diagn Pathol.
14:72019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Fu F, Tao X, Jiang Z, Gao Z, Zhao Y, Li Y,
Hu H, Shen L, Sun Y and Zhang Y: Identification of germline
mutations in East-Asian young never-smokers with lung
adenocarcinoma by Whole-exome sequencing. Phenomics. 3:182–189.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wang M and Kaufman RJ: Protein misfolding
in the endoplasmic reticulum as a conduit to human disease. Nature.
529:326–335. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Hetz C, Zhang K and Kaufman RJ:
Mechanisms, regulation and functions of the unfolded protein
response. Nat Rev Mol Cell Biol. 21:421–438. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wang W, Wang M, Xiao Y, Wang Y, Ma L, Guo
L, Wu X, Lin X and Zhang P: USP35 mitigates endoplasmic reticulum
stress-induced apoptosis by stabilizing RRBP1 in non-small cell
lung cancer. Mol Oncol. 16:1572–1590. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
He Y, Huang S, Cheng T, Wang Y, Zhou SJ,
Zhang YM and Yu P: High glucose may promote the proliferation and
metastasis of hepatocellular carcinoma via E2F1/RRBP1 pathway. Life
Sci. 252:1176562020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Gao W, Li Q, Zhu R and Jin J: La
autoantigen induces ribosome binding protein 1 (RRBP1) expression
through internal ribosome entry site (IRES)-Mediated translation
during cellular stress condition. Int J Mol Sci. 17:11742016.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Godet AC, David F, Hantelys F, Tatin F,
Lacazette E, Garmy-Susini B and Prats AC: IRES Trans-acting
factors, key actors of the stress response. Int J Mol Sci.
20:9242019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Marques R, Lacerda R and Romão L: Internal
ribosome entry site (IRES)-Mediated translation and its potential
for Novel mRNA-based therapy development. Biomedicines.
10:18652022. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Hui B, Zhou C, Xu Y, Wang R, Dong Y, Zhou
Y, Ding J, Zhang X, Xu J and Gu Y: Exosomes secreted by
Fusobacterium nucleatum-infected colon cancer cells transmit
resistance to oxaliplatin and 5-FU by delivering hsa_circ_0004085.
J Nanobiotechnology. 22:622024. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Huang Y, Hong W and Wei X: The molecular
mechanisms and therapeutic strategies of EMT in tumor progression
and metastasis. J Hematol Oncol. 15:1292022. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Kuzuluk DG, Secinti IE, Erturk T, Hakverdi
S, Gorur S and Ozatlan D: Ribosome-binding protein-1 (RRBP1)
expression in prostate carcinomas and its relationship with
clinicopathological prognostic factors. Scott Med J. 69:83–87.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Feng Y, Li Z, Zhu J, Zou C, Tian Y, Xiong
J, He Q, Li W, Xu H, Zou C, et al: Stabilization of RRBP1 mRNA via
an m6A-dependent manner in prostate cancer constitutes a
therapeutic vulnerability amenable to small-peptide inhibition of
METTL3. Cell Mol Life Sci. 81:4142024. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang
L, Jia G, Yu M, Lu Z, Deng X, et al: A METTL3-METTL14 complex
mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem
Biol. 10:93–95. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han
D, Fu Y, Parisien M, Dai Q, Jia G, et al:
N6-methyladenosine-dependent regulation of messenger RNA stability.
Nature. 505:117–120. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Xiao W, Adhikari S, Dahal U, Chen YS, Hao
YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, et al: Nuclear m(6)A
Reader YTHDC1 Regulates mRNA Splicing. Mol Cell. 61:507–519. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wang X, Zhao BS, Roundtree IA, Lu Z, Han
D, Ma H, Weng X, Chen K, Shi H and He C: N(6)-methyladenosine
modulates messenger RNA translation efficiency. Cell.
161:1388–1399. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
He L, Li H, Wu A, Peng Y, Shu G and Yin G:
Functions of N6-methyladenosine and its role in cancer. Mol Cancer.
18:1762019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Yu L, Liu J, Lao IW, Luo Z and Wang J:
Epithelioid inflammatory myofibroblastic sarcoma: A
clinicopathological, immunohistochemical and molecular cytogenetic
analysis of five additional cases and review of the literature.
Diagn Pathol. 11:672016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lee JC, Li CF, Huang HY, Zhu MJ,
Mariño-Enríquez A, Lee CT, Ou WB, Hornick JL and Fletcher JA: ALK
oncoproteins in atypical inflammatory myofibroblastic tumours:
Novel RRBP1-ALK fusions in epithelioid inflammatory myofibroblastic
sarcoma. J Pathol. 241:316–323. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Cheng N and Xue L: A case report of
RRBP1-ALK fusion gene-positive epithelioid inflammatory
myofibroblastic sarcoma with collagenous stroma and good prognosis.
Asian J Surg. 47:617–619. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Xu X, Li L, Zhang Y, Meng F, Xie H and
Duan R: A recurrent inflammatory myofibroblastic tumor patient with
two novel ALK fusions: A case report. Transl Cancer Res.
11:3379–3384. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Vernemmen AIP, Samarska IV, Speel EM,
Riedl RG, Goudkade D, de Bruïne AP, Wouda S, van Marion AM,
Verlinden IV, van Lijnschoten I, et al: Abdominal inflammatory
myofibroblastic tumour: Clinicopathological and molecular analysis
of 20 cases, highlighting potential therapeutic targets.
Histopathology. 84:794–809. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Arcovito G, Crucitta S, Del Re M,
Caporalini C, Palomba A, Nozzoli F and Franchi A: Recurrent USP6
rearrangement in a subset of atypical myofibroblastic tumours of
the soft tissues: Low-grade myofibroblastic sarcoma or
atypical/malignant nodular fasciitis? Histopathology. 85:244–253.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Uhrig S, Ellermann J, Walther T, Burkhardt
P, Fröhlich M, Hutter B, Toprak UH, Neumann O, Stenzinger A, Scholl
C, et al: Accurate and efficient detection of gene fusions from RNA
sequencing data. Genome Res. 31:448–460. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Shriwas O, Arya R, Mohanty S, Mohapatra P,
Kumar S, Rath R, Kaushik SR, Pahwa F, Murmu KC, Majumdar SKD, et
al: RRBP1 rewires cisplatin resistance in oral squamous cell
carcinoma by regulating Hippo pathway. Br J Cancer. 124:2004–2016.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhang W, Chen S, Du Q, Bian P, Chen Y, Liu
Z, Zheng J, Sai K, Mou Y, Chen Z, et al: CircVPS13C promotes
pituitary adenoma growth by decreasing the stability of IFITM1 mRNA
via interacting with RRBP1. Oncogene. 41:1550–1562. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zhu J, Zhao R, Xu W, Ma J, Ning X, Ma R
and Meng F: Correlation between reticulum ribosome-binding protein
1 (RRBP1) overexpression and prognosis in cervical squamous cell
carcinoma. Biosci Trends. 14:279–284. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Barrera-Ramirez J, Lavoie JR, Maganti HB,
Stanford WL, Ito C, Sabloff M, Brand M, Rosu-Myles M, Le Y and
Allan DS: Micro-RNA profiling of exosomes from Marrow-derived
mesenchymal stromal cells in patients with acute myeloid leukemia:
Implications in leukemogenesis. Stem Cell Rev Rep. 13:817–825.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Chen R, Wang Y, Xu Y, He Y, Li Q, Xia C
and Zhang B: RRBP1 depletion of bone metastatic cancer cells
contributes to enhanced expression of the osteoblastic phenotype.
Front Oncol. 12:10051522022. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hetz C, Axten JM and Patterson JB:
Pharmacological targeting of the unfolded protein response for
disease intervention. Nat Chem Biol. 15:764–775. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Li Z, Feng Y, Han H, Jiang X, Chen W, Ma
X, Mei Y, Yuan D, Zhang D and Shi J: A stapled peptide inhibitor
targeting the binding Interface of N6-Adenosine-Methyltransferase
subunits METTL3 and METTL14 for cancer therapy. Angew Chem Int Ed
Engl. 63:e2024026112024. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Yu H, Liu J, Bu X, Ma Z, Yao Y, Li J,
Zhang T, Song W, Xiao X, Sun Y, et al: Targeting METTL3 reprograms
the tumor microenvironment to improve cancer immunotherapy. Cell
Chem Biol. 31:776–791.e7. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Gao H, Xi Z, Dai J, Xue J, Guan X, Zhao L,
Chen Z and Xing F: Drug resistance mechanisms and treatment
strategies mediated by Ubiquitin-specific proteases (USPs) in
cancers: New directions and therapeutic options. Mol Cancer.
23:882024. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Fu M, Hu Y, Lan T, Guan KL, Luo T and Luo
M: The Hippo signalling pathway and its implications in human
health and diseases. Signal Transduct Target Ther. 7:3762022.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
He Y, Sun MM, Zhang GG, Yang J, Chen KS,
Xu WW and Li B: Targeting PI3K/Akt signal transduction for cancer
therapy. Signal Transduct Target Ther. 6:4252021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Bahar ME, Kim HJ and Kim DR: Targeting the
RAS/RAF/MAPK pathway for cancer therapy: From mechanism to clinical
studies. Signal Transduct Target Ther. 8:4552023. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Liu S, Ren J and Ten Dijke P: Targeting
TGFβ signal transduction for cancer therapy. Signal Transduct
Target Ther. 6:82021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Shi Q, Xue C, Zeng Y, Yuan X, Chu Q, Jiang
S, Wang J, Zhang Y, Zhu D and Li L: Notch signaling pathway in
cancer: From mechanistic insights to targeted therapies. Signal
Transduct Target Ther. 9:1282024. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Shreenivas A, Janku F, Gouda MA, Chen HZ,
George B, Kato S and Kurzrock R: ALK fusions in the pan-cancer
setting: Another tumor-agnostic target? NPJ Precis Oncol.
7:1012023. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zhang H, Qin C, An C, Zheng X, Wen S, Chen
W, Liu X, Lv Z, Yang P, Xu W, et al: Application of the
CRISPR/Cas9-based gene editing technique in basic research,
diagnosis, and therapy of cancer. Mol Cancer. 20:1262021.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Frangoul H, Locatelli F, Sharma A, Bhatia
M, Mapara M, Molinari L, Wall D, Liem RI, Telfer P, Shah AJ, et al:
Exagamglogene autotemcel for severe sickle cell disease. N Engl J
Med. 390:1649–1662. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Macarrón Palacios A, Korus P, Wilkens BGC,
Heshmatpour N and Patnaik SR: Revolutionizing in vivo therapy with
CRISPR/Cas genome editing: Breakthroughs, opportunities and
challenges. Front Genome Ed. 6:13421932024. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Xu W, Zhang S, Qin H and Yao K: From bench
to bedside: Cutting-edge applications of base editing and prime
editing in precision medicine. J Transl Med. 22:11332024.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Healey N: Next-generation CRISPR-based
gene-editing therapies tested in clinical trials. Nat Med.
30:2380–2381. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Kim EE, Park CK, Kang KM, Kwak Y, Park SH
and Won JK: Primary epithelioid inflammatory myofibroblastic
sarcoma of the brain with EML4::ALK fusion mimicking intra-axial
glioma: A case report and brief literature review. J Pathol Transl
Med. 58:141–145. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Çakan E, Lara OD, Szymanowska A, Bayraktar
E, Chavez-Reyes A, Lopez-Berestein G, Amero P and Rodriguez-Aguayo
C: Therapeutic antisense oligonucleotides in oncology: From bench
to bedside. Cancers (Basel). 16:29402024. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Fry CS, Kirby TJ, Kosmac K, McCarthy JJ
and Peterson CA: Myogenic progenitor cells control extracellular
matrix production by fibroblasts during skeletal muscle
hypertrophy. Cell Stem Cell. 20:56–69. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zheng Y, Li X, Huang Y, Jia L and Li W:
Time series clustering of mRNA and lncRNA expression during
osteogenic differentiation of periodontal ligament stem cells.
PeerJ. 6:e52142018. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Zhang X, Wang Y, Zheng M, Wei Q, Zhang R,
Zhu K, Zhai Q and Xu Y: IMPC-based screening revealed that ROBO1
can regulate osteoporosis by inhibiting osteogenic differentiation.
Front Cell Dev Biol. 12:14502152024. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Parlakgül G, Pang S, Artico LL, Min N,
Cagampan E, Villa R, Goncalves RLS, Lee GY, Xu CS, Hotamışlıgil GS
and Arruda AP: Spatial mapping of hepatic ER and mitochondria
architecture reveals zonated remodeling in fasting and obesity. Nat
Commun. 15:39822024. View Article : Google Scholar : PubMed/NCBI
|