You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
|
Menon U, Griffin M and Gentry-Maharaj A: Ovarian cancer screening-current status, future directions. Gynecol Oncol. 132:490–495. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Gupta KK, Gupta VK and Naumann RW: Ovarian cancer: Screening and future directions. Int J Gynecol Cancer. 29:195–200. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang MH, Zhang HH, Du XH, Gao J, Li C, Shi HR and Li SZ: UCHL3 promotes ovarian cancer progression by stabilizing TRAF2 to activate the NF-κB pathway. Oncogene. 39:322–333. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hubackova M, Vaclavikova R, Ehrlichova M, Mrhalova M, Kodet R, Kubackova K, Vrána D, Gut I and Soucek P: Association of superoxide dismutases and NAD(P)H quinone oxidoreductases with prognosis of patients with breast carcinomas. Int J Cancer. 130:338–348. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ke Y, Chen X, Su Y, Chen C, Lei S, Xia L, Wei D, Zhang H, Dong C, Liu X and Yin F: Low expression of SLC7A11 confers drug resistance and worse survival in ovarian cancer via inhibition of cell autophagy as a competing endogenous RNA. Front Oncol. 11:7449402021. View Article : Google Scholar : PubMed/NCBI | |
|
Li D, Hong X, Zhao F, Ci X and Zhang S: Targeting Nrf2 may reverse the drug resistance in ovarian cancer. Cancer Cell Int. 21:1162021. View Article : Google Scholar : PubMed/NCBI | |
|
Gao Y, Liu X, Li T, Wei L, Yang A, Lu Y, Zhang J, Li L, Wang S and Yin F: Cross-validation of genes potentially associated with overall survival and drug resistance in ovarian cancer. Oncol Rep. 37:3084–3092. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Hydbring P, Castell A and Larsson LG: MYC modulation around the CDK2/p27/SKP2 axis. Genes (Basel). 8:1742017. View Article : Google Scholar : PubMed/NCBI | |
|
Ammirante M, Kuraishy AI, Shalapour S, Strasner A, Ramirez-Sanchez C, Zhang W, Shabaik A and Karin M: An IKKα-E2F1-BMI1 cascade activated by infiltrating B cells controls prostate regeneration and tumor recurrence. Genes Dev. 27:1435–1440. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Park JY, Wang PY, Matsumoto T, Sung HJ, Ma W, Choi JW, Anderson SA, Leary SC, Balaban RS, Kang JG and Hwang PM: p53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content. Circ Res. 105:705–712. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Ho SR, Mahanic CS, Lee YJ and Lin WC: RNF144A, an E3 ubiquitin ligase for DNA-PKcs, promotes apoptosis during DNA damage. Proc Natl Acad Sci USA. 111:E2646–E2655. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Bakhanashvili M, Grinberg S, Bonda E, Simon AJ, Moshitch-Moshkovitz S and Rahav G: p53 in mitochondria enhances the accuracy of DNA synthesis. Cell Death Differ. 15:1865–1874. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Nithipongvanitch R, Ittarat W, Velez JM, Zhao R, St Clair DK and Oberley TD: Evidence for p53 as guardian of the cardiomyocyte mitochondrial genome following acute adriamycin treatment. J Histochem Cytochem. 55:629–639. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Nie M, Moser BA, Nakamura TM and Boddy MN: SUMO-targeted ubiquitin ligase activity can either suppress or promote genome instability, depending on the nature of the DNA lesion. PLoS Genet. 13:e10067762017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou ZD, Chan CH, Xiao ZC and Tan EK: Ring finger protein 146/Iduna is a poly(ADP-ribose) polymer binding and PARsylation dependent E3 ubiquitin ligase. Cell Adh Migr. 5:463–471. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Freed-Pastor WA and Prives C: Mutant p53: One name, many proteins. Genes Dev. 26:1268–2686. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Kang HC, Lee YI, Shin JH, Andrabi SA, Chi Z, Gagné JP, Lee Y, Ko HS, Lee BD, Poirier GG, et al: Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage. Proc Natl Acad Sci USA. 108:14103–14108. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hu L, Zhang H, Bergholz J, Sun S and Xiao ZX: MDM2/MDMX: Master negative regulators for p53 and RB. Mol Cell Oncol. 3:e11066352016. View Article : Google Scholar : PubMed/NCBI | |
|
Tuna M, Ju Z, Yoshihara K, Amos CI, Tanyi JL and Mills GB: Clinical relevance of TP53 hotspot mutations in high-grade serous ovarian cancers. Br J Cancer. 122:405–412. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Afzal A, Sarfraz M, Li GL, Ji SP, Duan SF, Khan NH, Wu DD and Ji XY: Taking a holistic view of PEST-containing nuclear protein (PCNP) in cancer biology. Cancer Med. 8:6335–6343. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Rogers S, Wells R and Rechsteiner M: Amino acid sequences common to rapidly degraded proteins: The PEST hypothesis. Science. 234:364–368. 1986. View Article : Google Scholar : PubMed/NCBI | |
|
Roth AF, Sullivan DM and Davis NG: A large PEST-like sequence directs the ubiquitination, endocytosis, and vacuolar degradation of the yeast a-factor receptor. J Cell Biol. 142:949–961. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Zhuang X, Northup JK and Ray K: Large putative PEST-like sequence motif at the carboxyl tail of human calcium receptor directs lysosomal degradation and regulates cell surface receptor level. J Biol Chem. 287:4165–4176. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Sekhar KR and Freeman ML: PEST sequences in proteins involved in cyclic nucleotide signalling pathways. J Recept Signal Transduct Res. 18:113–132. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Bellini E, Pavesi G, Barbiero I, Bergo A, Chandola C, Nawaz MS, Rusconi L, Stefanelli G, Strollo M, Valente MM, et al: MeCP2 post-translational modifications: A mechanism to control its involvement in synaptic plasticity and homeostasis? Front Cell Neurosci. 8:2362014. View Article : Google Scholar : PubMed/NCBI | |
|
Bereshchenko OR, Gu W and Dalla-Favera R: Acetylation inactivates the transcriptional repressor BCL6. Nat Genet. 32:606–613. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao JF, Shyue SK and Lee TS: Excess nitric oxide activates TRPV1-Ca(2+)-calpain signaling and promotes PEST-dependent degradation of liver X receptor α. Int J Biol Sci. 12:18–29. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, Shi J, Zhao S, Liu W, Wang X, et al: Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med. 23:859–868. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Pan S and Chen R: Pathological implication of protein post-translational modifications in cancer. Mol Aspects Med. 86:1010972022. View Article : Google Scholar : PubMed/NCBI | |
|
Afzal A, Sarfraz M, Wu Z, Wang G and Sun J: Integrated scientific data bases review on asulacrine and associated toxicity. Crit Rev Oncol Hematol. 104:78–86. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lang V, Aillet F, Da Silva-Ferrada E, Xolalpa W, Zabaleta L, Rivas C and Rodriguez MS: Analysis of PTEN ubiquitylation and SUMOylation using molecular traps. Methods. 77–78. 112–118. 2015. | |
|
Li N, Zhang Y, Han X, Liang K, Wang J, Feng L, Wang W, Songyang Z, Lin C, Yang L, et al: Poly-ADP ribosylation of PTEN by tankyrases promotes PTEN degradation and tumor growth. Genes Dev. 29:157–170. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Shumway SD, Maki M and Miyamoto S: The PEST domain of IkappaBalpha is necessary and sufficient for in vitro degradation by mu-calpain. J Biol Chem. 274:30874–30881. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Sarfraz M, Afzal A, Khattak S, Saddozai UAK, Li HM, Zhang QQ, Madni A, Haleem KS, Duan SF, Wu DD, et al: Multifaceted behavior of PEST sequence enriched nuclear proteins in cancer biology and role in gene therapy. J Cell Physiol. 236:1658–1676. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD and Green DR: PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science. 309:1732–1735. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Lisachev PD, Pustylnyak VO and Shtark MB: Mdm2-dependent regulation of p53 expression during long-term potentiation. Bull Exp Biol Med. 158:333–335. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Geyer RK, Yu ZK and Maki CG: The MDM2 RING-finger domain is required to promote p53 nuclear export. Nat Cell Biol. 2:569–573. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Lu W, Pochampally R, Chen L, Traidej M, Wang Y and Chen J: Nuclear exclusion of p53 in a subset of tumors requires MDM2 function. Oncogene. 19:232–240. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Wang DY, Hong Y, Chen YG, Dong PZ, Liu SY, Gao YR, Lu D, Li HM, Li T, Guo JC, et al: PEST-containing nuclear protein regulates cell proliferation, migration, and invasion in lung adenocarcinoma. Oncogenesis. 8:222019. View Article : Google Scholar : PubMed/NCBI | |
|
Ye J, Zhong L, Xiong L, Li J, Yu L, Dan W, Yuan Z, Yao J, Zhong P, Liu J, et al: Nuclear import of NLS-RARα is mediated by importin α/β. Cell Signal. 69:1095672020. View Article : Google Scholar : PubMed/NCBI | |
|
Panagiotopoulos AA, Polioudaki C, Ntallis SG, Dellis D, Notas G, Panagiotidis CA, Theodoropoulos PA, Castanas E and Kampa M: The sequence [EKRKI(E/R)(K/L/R/S/T)] is a nuclear localization signal for importin 7 binding (NLS7). Biochim Biophys Acta Gen Subj. 1865:1298512021. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng Y, Yu K, Lin JF, Liang Z, Zhang Q, Li J, Wu QN, He CY, Lin M, Zhao Q, et al: Deep learning prioritizes cancer mutations that alter protein nucleocytoplasmic shuttling to drive tumorigenesis. Nat Commun. 16:25112025. View Article : Google Scholar : PubMed/NCBI | |
|
Lang YD and Jou YS: PSPC1 is a new contextual determinant of aberrant subcellular translocation of oncogenes in tumor progression. J Biomed Sci. 28:572021. View Article : Google Scholar : PubMed/NCBI | |
|
Rubbi CP and Milner J: Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J. 22:6068–6077. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Blaskovich MA, Forinash KD and Sebti SM: Withacnistin inhibits recruitment of STAT3 and STAT5 to growth factor and cytokine receptors and induces regression of breast tumours. Br J Cancer. 111:894–902. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Baugh EH, Ke H, Levine AJ, Bonneau RA and Chan CS: Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ. 25:154–160. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Kastan MB and Berkovich E: p53: A two-faced cancer gene. Nat Cell Biol. 9:489–491. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Levine AJ and Oren M: The first 30 years of p53: Growing ever more complex. Nat Rev Cancer. 9:749–758. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Wojnarowicz PM, Oros KK, Quinn MC, Arcand SL, Gambaro K, Madore J, Birch AH, de Ladurantaye M, Rahimi K, Provencher DM, et al: The genomic landscape of TP53 and p53 annotated high grade ovarian serous carcinomas from a defined founder population associated with patient outcome. PLoS One. 7:e454842012. View Article : Google Scholar : PubMed/NCBI | |
|
Jayson GC, Kohn EC, Kitchener HC and Ledermann JA: Ovarian cancer. Lancet. 384:1376–1388. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J and Karlan BY: Ovarian cancer. Nat Rev Dis Primers. 2:160612016. View Article : Google Scholar : PubMed/NCBI | |
|
Joerger AC and Fersht AR: The tumor suppressor p53: From structures to drug discovery. Cold Spring Harb Perspect Biol. 2:a0009192010. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu G, Pan C, Bei JX, Li B, Liang C, Xu Y and Fu X: Mutant p53 in cancer progression and targeted therapies. Front Oncol. 10:5951872020. View Article : Google Scholar : PubMed/NCBI | |
|
Cole AJ, Dwight T, Gill AJ, Dickson KA, Zhu Y, Clarkson A, Gard GB, Maidens J, Valmadre S, Clifton-Bligh R and Marsh DJ: Assessing mutant p53 in primary high-grade serous ovarian cancer using immunohistochemistry and massively parallel sequencing. Sci Rep. 6:261912016. View Article : Google Scholar : PubMed/NCBI | |
|
Flemming A: Cancer: Mutant p53 rescued by aggregation inhibitor. Nat Rev Drug Discov. 15:852016. View Article : Google Scholar : PubMed/NCBI | |
|
Duffy MJ, Synnott NC, O'Grady S and Crown J: Targeting p53 for the treatment of cancer. Semin Cancer Biol. 79:58–67. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Okal A, Cornillie S, Matissek SJ, Matissek KJ, Cheatham TE III and Lim CS: Re-engineered p53 chimera with enhanced homo-oligomerization that maintains tumor suppressor activity. Mol Pharm. 11:2442–2452. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Okal A, Matissek KJ, Matissek SJ, Price R, Salama ME, Janát-Amsbury MM and Lim CS: Re-engineered p53 activates apoptosis in vivo and causes primary tumor regression in a dominant negative breast cancer xenograft model. Gene Ther. 21:903–912. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Brady CA and Attardi LD: p53 at a glance. J Cell Sci. 123:2527–2532. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Wei H, Qu L, Dai S, Li Y, Wang H, Feng Y, Chen X, Jiang L, Guo M, Li J, et al: Structural insight into the molecular mechanism of p53-mediated mitochondrial apoptosis. Nat Commun. 12:22802021. View Article : Google Scholar : PubMed/NCBI | |
|
Leu JI, Dumont P, Hafey M, Murphy ME and George DL: Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol. 6:443–450. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Heyne K, Schmitt K, Mueller D, Armbruester V, Mestres P and Roemer K: Resistance of mitochondrial p53 to dominant inhibition. Mol Cancer. 7:542008. View Article : Google Scholar : PubMed/NCBI | |
|
Chen S, Cavazza E, Barlier C, Salleron J, Filhine-Tresarrieu P, Gavoilles C, Merlin JL and Harlé A: Beside P53 and PTEN: Identification of molecular alterations of the RAS/MAPK and PI3K/AKT signaling pathways in high-grade serous ovarian carcinomas to determine potential novel therapeutic targets. Oncol Lett. 12:3264–3272. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Toledo F and Wahl GM: MDM2 and MDM4: p53 regulators as targets in anticancer therapy. Int J Biochem Cell Biol. 39:1476–1482. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Astanehe A, Arenillas D, Wasserman WW, Leung PC, Dunn SE, Davies BR, Mills GB and Auersperg N: Mechanisms underlying p53 regulation of PIK3CA transcription in ovarian surface epithelium and in ovarian cancer. J Cell Sci. 121:664–674. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Hu L, Zaloudek C, Mills GB, Gray J and Jaffe RB: In vivo and in vitro ovarian carcinoma growth inhibition by a phosphatidylinositol 3-kinase inhibitor (LY294002). Clin Cancer Res. 6:880–886. 2000.PubMed/NCBI | |
|
Raab M, Kostova I, Peña-Llopis S, Fietz D, Kressin M, Aberoumandi SM, Ullrich E, Becker S, Sanhaji M and Strebhardt K: Rescue of p53 functions by in vitro-transcribed mRNA impedes the growth of high-grade serous ovarian cancer. Cancer Commun (Lond). 44:101–126. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Faramarzi L, Dadashpour M, Sadeghzadeh H, Mahdavi M and Zarghami N: Enhanced anti-proliferative and pro-apoptotic effects of metformin encapsulated PLGA-PEG nanoparticles on SKOV3 human ovarian carcinoma cells. Artif Cells Nanomed Biotechnol. 47:737–746. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Guo X, Fang Z, Zhang M, Yang D, Wang S and Liu K: A Co-delivery system of curcumin and p53 for enhancing the sensitivity of drug-resistant ovarian cancer cells to cisplatin. Molecules. 25:26212020. View Article : Google Scholar : PubMed/NCBI | |
|
Huang X, Cao Z, Qian J, Ding T, Wu Y, Zhang H, Zhong S, Wang X, Ren X, Zhang W, et al: Nanoreceptors promote mutant p53 protein degradation by mimicking selective autophagy receptors. Nat Nanotechnol. 19:545–553. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang XF and Gurunathan S: Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: An effective anticancer therapy. Int J Nanomedicine. 11:3655–3675. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Qu C, Shao X, Song G, Sun J, Shi D, Jia R, An H and Wang H: Carrier-free nanoprodrug for p53-mutated tumor therapy via concurrent delivery of zinc-manganese dual ions and ROS. Bioact Mater. 20:404–417. 2022.PubMed/NCBI | |
|
Lee JM and Johnson JA: An important role of Nrf2-ARE pathway in the cellular defense mechanism. J Biochem Mol Biol. 37:139–143. 2004.PubMed/NCBI | |
|
Castrogiovanni C, Waterschoot B, De Backer O and Dumont P: Serine 392 phosphorylation modulates p53 mitochondrial translocation and transcription-independent apoptosis. Cell Death Differ. 25:190–203. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ai G, Dachineni R, Kumar DR, Marimuthu S, Alfonso LF and Bhat GJ: Aspirin acetylates wild type and mutant p53 in colon cancer cells: Identification of aspirin acetylated sites on recombinant p53. Tumour Biol. 37:6007–6016. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Oreskes N: Beyond the ivory tower. The scientific consensus on climate change. Science. 306:16862004. View Article : Google Scholar : PubMed/NCBI | |
|
Haddadi N, Lin Y, Travis G, Simpson AM, Nassif NT and McGowan EM: PTEN/PTENP1: ‘Regulating the regulator of RTK-dependent PI3K/Akt signalling’, new targets for cancer therapy. Mol Cancer. 17:372018. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang C, Song Y, Rorive S, Allard J, Tika E, Zahedi Z, Dubois C, Salmon I, Sifrim A and Blanpain C: Innate immunity and the NF-κB pathway control prostate stem cell plasticity, reprogramming and tumor initiation. Nat Cancer. 6:1537–1558. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Ren G, Chen J, Pu Y, Yang EJ, Tao S, Mou PK, Chen LJ, Zhu W, Chan KL, Luo G, et al: BET inhibition induces synthetic lethality in PTEN deficient colorectal cancers via dual action on p21CIP1/WAF1. Int J Biol Sci. 20:1978–1991. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Georgescu MM, Kirsch KH, Akagi T, Shishido T and Hanafusa H: The tumor-suppressor activity of PTEN is regulated by its carboxyl-terminal region. Proc Natl Acad Sci USA. 96:10182–10187. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Meyer RD, Srinivasan S, Singh AJ, Mahoney JE, Gharahassanlou KR and Rahimi N: PEST motif serine and tyrosine phosphorylation controls vascular endothelial growth factor receptor 2 stability and downregulation. Mol Cell Biol. 31:2010–2025. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Trotman LC, Wang X, Alimonti A, Chen Z, Teruya-Feldstein J, Yang H, Pavletich NP, Carver BS, Cordon-Cardo C, Erdjument-Bromage H, et al: Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell. 128:141–156. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Hu X, Xu X, Zeng X, Jin R, Wang S, Jiang H, Tang Y, Chen G, Wei J, Chen T and Chen Q: Gut microbiota dysbiosis promotes the development of epithelial ovarian cancer via regulating Hedgehog signaling pathway. Gut Microbes. 15:22210932023. View Article : Google Scholar : PubMed/NCBI | |
|
Willner J, Wurz K, Allison KH, Galic V, Garcia RL, Goff BA and Swisher EM: Alternate molecular genetic pathways in ovarian carcinomas of common histological types. Hum Pathol. 38:607–613. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Karlsson T, Krakstad C, Tangen IL, Hoivik EA, Pollock PM, Salvesen HB and Lewis AE: Endometrial cancer cells exhibit high expression of p110β and its selective inhibition induces variable responses on PI3K signaling, cell survival and proliferation. Oncotarget. 8:3881–3894. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Singer G, Oldt R III, Cohen Y, Wang BG, Sidransky D, Kurman RJ and Shih IeM: Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J Natl Cancer Inst. 95:484–486. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Dinulescu DM, Ince TA, Quade BJ, Shafer SA, Crowley D and Jacks T: Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat Med. 11:63–70. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao X, Lai H, Li G, Qin Y, Chen R, Labrie M, Stommel JM, Mills GB, Ma D, Gao Q and Fang Y: Rictor orchestrates β-catenin/FOXO balance by maintaining redox homeostasis during development of ovarian cancer. Oncogene. 44:1820–1832. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Tamura T, Nagai S, Masuda K, Imaeda K, Sugihara E, Yamasaki J, Kawaida M, Otsuki Y, Suina K, Nobusue H, et al: mTOR-mediated p62/SQSTM1 stabilization confers a robust survival mechanism for ovarian cancer. Cancer Lett. 616:2175652025. View Article : Google Scholar : PubMed/NCBI | |
|
Trillsch F, Czogalla B, Mahner S, Loidl V, Reuss A, du Bois A, Sehouli J, Raspagliesi F, Meier W, Cibula D, et al: Risk factors for anastomotic leakage and its impact on survival outcomes in radical multivisceral surgery for advanced ovarian cancer: An AGO-OVAR.OP3/LION exploratory analysis. Int J Surg. 111:2914–2922. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Russo A, Czarnecki AA, Dean M, Modi DA, Lantvit DD, Hardy L, Baligod S, Davis DA, Wei JJ and Burdette JE: PTEN loss in the fallopian tube induces hyperplasia and ovarian tumor formation. Oncogene. 37:1976–1990. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Coscia F, Watters KM, Curtis M, Eckert MA, Chiang CY, Tyanova S, Montag A, Lastra RR, Lengyel E and Mann M: Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status. Nat Commun. 7:126452016. View Article : Google Scholar : PubMed/NCBI | |
|
Labidi-Galy SI, Papp E, Hallberg D, Niknafs N, Adleff V, Noe M, Bhattacharya R, Novak M, Jones S, Phallen J, et al: High grade serous ovarian carcinomas originate in the fallopian tube. Nat Commun. 8:10932017. View Article : Google Scholar : PubMed/NCBI | |
|
Roh MH, Yassin Y, Miron A, Mehra KK, Mehrad M, Monte NM, Mutter GL, Nucci MR, Ning G, Mckeon FD, et al: High-grade fimbrial-ovarian carcinomas are unified by altered p53, PTEN and PAX2 expression. Mod Pathol. 23:1316–1324. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Dean M, Jin V, Bergsten TM, Austin JR, Lantvit DD, Russo A and Burdette JE: Loss of PTEN in fallopian tube epithelium results in multicellular tumor spheroid formation and metastasis to the ovary. Cancers (Basel). 11:8842019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Ma T, Brozick J, Babalola K, Budiu R, Tseng G and Vlad AM: Effects of Kras activation and Pten deletion alone or in combination on MUC1 biology and epithelial-to-mesenchymal transition in ovarian cancer. Oncogene. 35:5010–5020. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Alkema MJ, Wiegant J, Raap AK, Berns A and van Lohuizen M: Characterization and chromosomal localization of the human proto-oncogene BMI-1. Hum Mol Genet. 2:1597–1603. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Calao M, Sekyere EO, Cui HJ, Cheung BB, Thomas WD, Keating J, Chen JB, Raif A, Jankowski K, Davies NP, et al: Direct effects of Bmi1 on p53 protein stability inactivates oncoprotein stress responses in embryonal cancer precursor cells at tumor initiation. Oncogene. 32:3616–3626. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Su WJ, Fang JS, Cheng F, Liu C, Zhou F and Zhang J: RNF2/Ring1b negatively regulates p53 expression in selective cancer cell types to promote tumor development. Proc Natl Acad Sci USA. 110:1720–1725. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ginjala V, Nacerddine K, Kulkarni A, Oza J, Hill SJ, Yao M, Citterio E, van Lohuizen M and Ganesan S: BMI1 is recruited to DNA breaks and contributes to DNA damage-induced H2A ubiquitination and repair. Mol Cell Biol. 31:1972–1982. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Itahana K, Zou Y, Itahana Y, Martinez JL, Beausejour C, Jacobs JJ, Van Lohuizen M, Band V, Campisi J and Dimri GP: Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol Cell Biol. 23:389–401. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Yadav AK, Sahasrabuddhe AA, Dimri M, Bommi PV, Sainger R and Dimri GP: Deletion analysis of BMI1 oncoprotein identifies its negative regulatory domain. Mol Cancer. 9:1582010. View Article : Google Scholar : PubMed/NCBI | |
|
Jacobs JJ, Scheijen B, Voncken JW, Kieboom K, Berns A and van Lohuizen M: Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 13:2678–2690. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Song LB, Li J, Liao WT, Feng Y, Yu CP, Hu LJ, Kong QL, Xu LH, Zhang X, Liu WL, et al: The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J Clin Invest. 119:3626–3636. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Bhattacharyya J, Mihara K, Ohtsubo M, Yasunaga S, Takei Y, Yanagihara K, Sakai A, Hoshi M, Takihara Y and Kimura A: Overexpression of BMI-1 correlates with drug resistance in B-cell lymphoma cells through the stabilization of survivin expression. Cancer Sci. 103:34–41. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Fan C, He L, Kapoor A, Gillis A, Rybak AP, Cutz JC and Tang D: Bmi1 promotes prostate tumorigenesis via inhibiting p16(INK4A) and p14(ARF) expression. Biochim Biophys Acta. 1782:642–648. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Vonlanthen S, Heighway J, Altermatt HJ, Gugger M, Kappeler A, Borner MM, van Lohuizen M and Betticher DC: The bmi-1 oncoprotein is differentially expressed in non-small cell lung cancer and correlates with INK4A-ARF locus expression. Br J Cancer. 84:1372–1376. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Song LB, Zeng MS, Liao WT, Zhang L, Mo HY, Liu WL, Shao JY, Wu QL, Li MZ, Xia YF, et al: Bmi-1 is a novel molecular marker of nasopharyngeal carcinoma progression and immortalizes primary human nasopharyngeal epithelial cells. Cancer Res. 66:6225–6232. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Fasano CA, Dimos JT, Ivanova NB, Lowry N, Lemischka IR and Temple S: shRNA knockdown of Bmi-1 reveals a critical role for p21-Rb pathway in NSC self-renewal during development. Cell Stem Cell. 1:87–99. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Mao L, Ding J, Perdue A, Yang L, Zha Y, Ren M, Huang S, Cui H and Ding HF: Cyclin E1 is a common target of BMI1 and MYCN and a prognostic marker for neuroblastoma progression. Oncogene. 31:3785–3795. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Dimri GP, Martinez JL, Jacobs JJ, Keblusek P, Itahana K, Van Lohuizen M, Campisi J, Wazer DE and Band V: The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res. 62:4736–4745. 2002.PubMed/NCBI | |
|
Ismail IH, Gagné JP, Caron MC, McDonald D, Xu Z, Masson JY, Poirier GG and Hendzel MJ: CBX4-mediated SUMO modification regulates BMI1 recruitment at sites of DNA damage. Nucleic Acids Res. 40:5497–5510. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Voncken JW, Niessen H, Neufeld B, Rennefahrt U, Dahlmans V, Kubben N, Holzer B, Ludwig S and Rapp UR: MAPKAP kinase 3pK phosphorylates and regulates chromatin association of the polycomb group protein Bmi1. J Biol Chem. 280:5178–5187. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Bruggeman SW, Hulsman D, Tanger E, Buckle T, Blom M, Zevenhoven J, van Tellingen O and van Lohuizen M: Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. Cancer Cell. 12:328–341. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Xu CR, Lee S, Ho C, Bommi P, Huang SA, Cheung ST, Dimri GP and Chen X: Bmi1 functions as an oncogene independent of Ink4A/Arf repression in hepatic carcinogenesis. Mol Cancer Res. 7:1937–1945. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Liu F, Yu H, Zhao X, Sashida G, Deblasio A, Harr M, She QB, Chen Z, Lin HK, et al: Akt phosphorylates the transcriptional repressor bmi1 to block its effects on the tumor-suppressing ink4a-arf locus. Sci Signal. 5:ra772012. View Article : Google Scholar : PubMed/NCBI | |
|
Cui H, Hu B, Li T, Ma J, Alam G, Gunning WT and Ding HF: Bmi-1 is essential for the tumorigenicity of neuroblastoma cells. Am J Pathol. 170:1370–1378. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Sahasrabuddhe AA, Dimri M, Bommi PV and Dimri GP: βTrCP regulates BMI1 protein turnover via ubiquitination and degradation. Cell Cycle. 10:1322–1330. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
López-Arribillaga E, Rodilla V, Pellegrinet L, Guiu J, Iglesias M, Roman AC, Gutarra S, González S, Muñoz-Cánoves P, Fernández-Salguero P, et al: Bmi1 regulates murine intestinal stem cell proliferation and self-renewal downstream of Notch. Development. 142:41–50. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Goel HL, Chang C, Pursell B, Leav I, Lyle S, Xi HS, Hsieh CC, Adisetiyo H, Roy-Burman P, Coleman IM, et al: VEGF/neuropilin-2 regulation of Bmi-1 and consequent repression of IGF-IR define a novel mechanism of aggressive prostate cancer. Cancer Discov. 2:906–921. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J and Sarge KD: Identification of a polymorphism in the RING finger of human Bmi-1 that causes its degradation by the ubiquitin-proteasome system. FEBS Lett. 583:960–964. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Q, Qian Q, Cao D, Yang J, Gui T and Shen K: Role of BMI1 in epithelial ovarian cancer: Investigated via the CRISPR/Cas9 system and RNA sequencing. J Ovarian Res. 11:312018. View Article : Google Scholar : PubMed/NCBI | |
|
Gui T, Bai H, Zeng J, Zhong Z, Cao D, Cui Q, Chen J, Yang J and Shen K: Tumor heterogeneity in the recurrence of epithelial ovarian cancer demonstrated by polycomb group proteins. Onco Targets Ther. 7:1705–1716. 2014.PubMed/NCBI | |
|
Bhattacharya R, Nicoloso M, Arvizo R, Wang E, Cortez A, Rossi S, Calin GA and Mukherjee P: MiR-15a and MiR-16 control Bmi-1 expression in ovarian cancer. Cancer Res. 69:9090–9095. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Koren A, Rijavec M, Kern I, Sodja E, Korosec P and Cufer T: BMI1, ALDH1A1, and CD133 transcripts connect epithelial-mesenchymal transition to cancer stem cells in lung carcinoma. Stem Cells Int. 2016:97143152016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Liu H, Li X, Zhao J, Zhang H, Mao J, Zou Y, Zhang H, Zhang S, Hou W, et al: Estrogen receptor α-coupled Bmi1 regulation pathway in breast cancer and its clinical implications. BMC Cancer. 14:1222014. View Article : Google Scholar : PubMed/NCBI | |
|
Qiao B, Chen Z, Hu F, Tao Q and Lam AK: BMI-1 activation is crucial in hTERT-induced epithelial-mesenchymal transition of oral epithelial cells. Exp Mol Pathol. 95:57–61. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kim BR, Kwon Y and Rho SB: BMI-1 interacts with sMEK1 and inactivates sMEK1-induced apoptotic cell death. Oncol Rep. 37:579–586. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang E, Bhattacharyya S, Szabolcs A, Rodriguez-Aguayo C, Jennings NB, Lopez-Berestein G, Mukherjee P, Sood AK and Bhattacharya R: Enhancing chemotherapy response with Bmi-1 silencing in ovarian cancer. PLoS One. 6:e179182011. View Article : Google Scholar : PubMed/NCBI | |
|
Chen H, Liu H and Qing G: Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct Target Ther. 3:52018. View Article : Google Scholar : PubMed/NCBI | |
|
Dang CV, O'Donnell KA, Zeller KI, Nguyen T, Osthus RC and Li F: The c-Myc target gene network. Semin Cancer Biol. 16:253–264. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Adhikary S and Eilers M: Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol. 6:635–645. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Alexander WS, Adams JM and Cory S: Oncogene cooperation in lymphocyte transformation: Malignant conversion of E mu-myc transgenic pre-B cells in vitro is enhanced by v-H-ras or v-raf but not v-abl. Mol Cell Biol. 9:67–73. 1989. View Article : Google Scholar : PubMed/NCBI | |
|
Kessler JD, Kahle KT, Sun T, Meerbrey KL, Schlabach MR, Schmitt EM, Skinner SO, Xu Q, Li MZ, Hartman ZC, et al: A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. Science. 335:348–353. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Conacci-Sorrell M, McFerrin L and Eisenman RN: An overview of MYC and its interactome. Cold Spring Harb Perspect Med. 4:a0143572014. View Article : Google Scholar : PubMed/NCBI | |
|
Ward PS and Thompson CB: Signaling in control of cell growth and metabolism. Cold Spring Harb Perspect Biol. 4:a0067832012. View Article : Google Scholar : PubMed/NCBI | |
|
Souza JL, Martins-Cardoso K, Guimarães IS, de Melo AC, Lopes AH, Monteiro RQ and Almeida VH: Interplay between EGFR and the platelet-activating factor/PAF receptor signaling axis mediates aggressive behavior of cervical cancer. Front Oncol. 10:5572802020. View Article : Google Scholar : PubMed/NCBI | |
|
Skírnisdóttir IA, Sorbe B, Lindborg K and Seidal T: Prognostic impact of p53, p27, and C-MYC on clinicopathological features and outcome in early-stage (FIGO I–II) epithelial ovarian cancer. Int J Gynecol Cancer. 21:236–244. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Chen CH, Shen J, Lee WJ and Chow SN: Overexpression of cyclin D1 and c-Myc gene products in human primary epithelial ovarian cancer. Int J Gynecol Cancer. 15:878–883. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Plisiecka-Hałasa J, Karpińska G, Szymańska T, Ziółkowska I, Madry R, Timorek A, Debniak J, Ułańska M, Jedryka M, Chudecka-Głaz A, et al: P21WAF1, P27KIP1, TP53 and C-MYC analysis in 204 ovarian carcinomas treated with platinum-based regimens. Ann Oncol. 14:1078–1085. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
van Dam PA, Vergote IB, Lowe DG, Watson JV, van Damme P, van der Auwera JC and Shepherd JH: Expression of c-erbB-2, c-myc, and c-ras oncoproteins, insulin-like growth factor receptor I, and epidermal growth factor receptor in ovarian carcinoma. J Clin Pathol. 47:914–919. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Watson JV, Curling OM, Munn CF and Hudson CN: Oncogene expression in ovarian cancer: A pilot study of c-myc oncoprotein in serous papillary ovarian cancer. Gynecol Oncol. 28:137–150. 1987. View Article : Google Scholar : PubMed/NCBI | |
|
Sasano H, Nagura H and Silverberg SG: Immunolocalization of c-myc oncoprotein in mucinous and serous adenocarcinomas of the ovary. Hum Pathol. 23:491–495. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Li XS, Sun J and He XL: Expression of c-myc and mutation of the KRAS gene in patients with ovarian mucinous tumors. Genet Mol Res. 14:10752–10759. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Polacarz SV, Hey NA, Stephenson TJ and Hill AS: C-myc oncogene product P62c-myc in ovarian mucinous neoplasms: Immunohistochemical study correlated with malignancy. J Clin Pathol. 42:148–152. 1989. View Article : Google Scholar : PubMed/NCBI | |
|
Ning YX, Luo X, Xu M, Feng X and Wang J: Let-7d increases ovarian cancer cell sensitivity to a genistein analog by targeting c-Myc. Oncotarget. 8:74836–74845. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Curling M, Stenning S, Hudson CN and Watson JV: Multivariate analyses of DNA index, p62c-myc, and clinicopathological status of patients with ovarian cancer. J Clin Pathol. 51:455–461. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Jung M, Russell AJ, Kennedy C, Gifford AJ; Australian Ovarian Cancer Study Group, ; Mallitt KA, Sivarajasingam S, Bowtell DD, DeFazio A, Haber M, et al: Clinical importance of Myc family oncogene aberrations in epithelial ovarian cancer. JNCI Cancer Spectr. 2:pky0472018. View Article : Google Scholar : PubMed/NCBI | |
|
Yamamoto A, Kurata M, Yamamoto K, Nogawa D, Inoue M, Ishibashi S, Ikeda M, Miyasaka N and Kitagawa M: High amplification of PVT1 and MYC predict favorable prognosis in early ovarian carcinoma. Pathol Res Pract. 216:1531752020. View Article : Google Scholar : PubMed/NCBI | |
|
Mori T, Li Y, Hata H, Ono K and Kochi H: NIRF, a novel RING finger protein, is involved in cell-cycle regulation. Biochem Biophys Res Commun. 296:530–536. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Khan NH, Chen HJ, Fan Y, Surfaraz M, Ahammad MF, Qin YZ, Shahid M, Virk R, Jiang E, Wu DD and Ji XY: Biology of PEST-containing nuclear protein: A potential molecular target for cancer research. Front Oncol. 12:7845972022. View Article : Google Scholar : PubMed/NCBI | |
|
Xu T, Wu K, Shi J, Ji L, Song X, Tao G, Zheng S, Zhang L and Jiang B: LINC00858 promotes colon cancer progression through activation of STAT3/5 signaling by recruiting transcription factor RAD21 to upregulate PCNP. Cell Death Discov. 8:2282022. View Article : Google Scholar : PubMed/NCBI | |
|
Dong P, Fu H, Chen L, Zhang S, Zhang X, Li H, Wu D and Ji X: PCNP promotes ovarian cancer progression by accelerating β-catenin nuclear accumulation and triggering EMT transition. J Cell Mol Med. 24:8221–8235. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Alhosin M, Sharif T, Mousli M, Etienne-Selloum N, Fuhrmann G, Schini-Kerth VB and Bronner C: Down-regulation of UHRF1, associated with re-expression of tumor suppressor genes, is a common feature of natural compounds exhibiting anti-cancer properties. J Exp Clin Cancer Res. 30:412011. View Article : Google Scholar : PubMed/NCBI | |
|
Wu DD, Gao YR, Li T, Wang DY, Lu D, Liu SY, Hong Y, Ning HB, Liu JP, Shang J, et al: PEST-containing nuclear protein mediates the proliferation, migration, and invasion of human neuroblastoma cells through MAPK and PI3K/AKT/mTOR signaling pathways. BMC Cancer. 18:4992018. View Article : Google Scholar : PubMed/NCBI | |
|
Clevers H: Wnt/beta-catenin signaling in development and disease. Cell. 127:469–480. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Ghahhari NM and Babashah S: Interplay between microRNAs and WNT/β-catenin signalling pathway regulates epithelial-mesenchymal transition in cancer. Eur J Cancer. 51:1638–1649. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Arend RC, Londoño-Joshi AI, Straughn JM Jr and Buchsbaum DJ: The Wnt/β-catenin pathway in ovarian cancer: A review. Gynecol Oncol. 131:772–779. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Shi-Bai Z, Rui-Min L, Ying-Chuan S, Jie Z, Chao J, Can-Hua Y, Xi C and Wen-Wei Q: TIPE2 expression is increased in peripheral blood mononuclear cells from patients with rheumatoid arthritis. Oncotarget. 8:87472–87479. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Rivlin N, Brosh R, Oren M and Rotter V: Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes Cancer. 2:466–474. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Momand J, Zambetti GP, Olson DC, George D and Levine AJ: The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell. 69:1237–1245. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Lin J, Chen J, Elenbaas B and Levine AJ: Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 8:1235–1346. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Stramucci L, Pranteda A and Bossi G: Insights of crosstalk between p53 protein and the MKK3/MKK6/p38 MAPK signaling pathway in cancer. Cancers (Basel). 10:1312018. View Article : Google Scholar : PubMed/NCBI | |
|
Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, Benfeitas R, Arif M, Liu Z, Edfors F, et al: A pathology atlas of the human cancer transcriptome. Science. 357:eaan25072017. View Article : Google Scholar : PubMed/NCBI | |
|
Thul PJ, Åkesson L, Wiking M, Mahdessian D, Geladaki A, Ait Blal H, Alm T, Asplund A, Björk L, Breckels LM, et al: A subcellular map of the human proteome. Science. 356:eaal33212017. View Article : Google Scholar : PubMed/NCBI | |
|
Cheaib B, Auguste A and Leary A: The PI3K/Akt/mTOR pathway in ovarian cancer: Therapeutic opportunities and challenges. Chin J Cancer. 34:4–16. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hopkins BD, Hodakoski C, Barrows D, Mense SM and Parsons RE: PTEN function: The long and the short of it. Trends Biochem Sci. 39:183–190. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Mabuchi S, Kuroda H, Takahashi R and Sasano T: The PI3K/AKT/mTOR pathway as a therapeutic target in ovarian cancer. Gynecol Oncol. 137:173–179. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Siddique HR, Parray A, Tarapore RS, Wang L, Mukhtar H, Karnes RJ, Deng Y, Konety BR and Saleem M: BMI1 polycomb group protein acts as a master switch for growth and death of tumor cells: Regulates TCF4-transcriptional factor-induced BCL2 signaling. PLoS One. 8:e606642013. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Guo Y, Chu H, Guan Y, Bi J and Wang B: Multiple functions of the RNA-binding protein HuR in cancer progression, treatment responses and prognosis. Int J Mol Sci. 14:10015–10041. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Cao L, Bombard J, Cintron K, Sheedy J, Weetall ML and Davis TW: BMI1 as a novel target for drug discovery in cancer. J Cell Biochem. 112:2729–2741. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Glinsky GV, Berezovska O and Glinskii AB: Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest. 115:1503–1521. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Gray F, Cho HJ, Shukla S, He S, Harris A, Boytsov B, Jaremko Ł, Jaremko M, Demeler B, Lawlor ER, et al: BMI1 regulates PRC1 architecture and activity through homo- and hetero-oligomerization. Nat Commun. 7:133432016. View Article : Google Scholar : PubMed/NCBI | |
|
Luo W, Chen J, Li L, Ren X, Cheng T, Lu S, Lawal RA, Nie Q, Zhang X and Hanotte O: c-Myc inhibits myoblast differentiation and promotes myoblast proliferation and muscle fibre hypertrophy by regulating the expression of its target genes, miRNAs and lincRNAs. Cell Death Differ. 26:426–442. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Rechsteiner M and Rogers SW: PEST sequences and regulation by proteolysis. Trends Biochem Sci. 21:267–271. 1996. View Article : Google Scholar : PubMed/NCBI |