Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
January-2026 Volume 31 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2026 Volume 31 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Oxidative stress as a nexus: Integrating mitophagy and ferroptosis in endometrial carcinogenesis (Review)

  • Authors:
    • Qixia Yu
    • Liangxin Ren
    • Feng Ren
    • Fengling Li
  • View Affiliations / Copyright

    Affiliations: Department of Gynecology and Obstetrics, The Second School of Clinical Medicine, Binzhou Medical University, Yantai, Shandong 264100, P.R. China
    Copyright: © Yu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 40
    |
    Published online on: November 20, 2025
       https://doi.org/10.3892/ol.2025.15393
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Endometrial cancer (EC), a malignancy of the uterine lining with rising global incidence that is linked to obesity and metabolic syndrome, is molecularly stratified into four The Cancer Genome Atlas subtypes (DNA polymerase ε ultramutated, microsatellite instability‑high, copy‑number low and copy‑number high), each requiring tailored therapeutic strategies. Despite advancements, drug resistance remains a critical challenge, prompting exploration of regulated cell death pathways such as ferroptosis, an iron‑driven process marked by lipid peroxidation and glutathione peroxidase 4 (GPX4) inactivation. Mitochondrial dysfunction, a hallmark of EC, exacerbates oxidative stress by disrupting fission/fusion dynamics (via dynamin‑related protein 1/mitofusin 1/2 imbalance) and impairing mitophagy (through PTEN‑induced kinase 1/Parkin or FUN14 domain‑containing protein 1 pathway defects), thereby promoting iron overload and ferroptotic vulnerability. Reactive oxygen species (ROS), generated via mitochondrial electron transport chains and NADPH oxidases, exhibit dual roles: Moderate levels drive tumorigenesis through DNA damage and immune evasion, while excessive ROS levels induce ferroptosis by depleting antioxidants (such as glutathione) and amplifying lipid peroxidation. The present review systematically integrates evidence on mitophagy and ferroptosis in EC pathogenesis; it highlights oxidative stress as a central nexus linking mitochondrial surveillance failure (such as cristae collapse and BCL2/adenovirus E1B 19 kDa protein‑interacting protein 3‑like‑mediated mitophagy in TP53‑mutant tumors) to iron‑dependent membrane damage (via acyl‑CoA synthetase long‑chain family member 4 and ferroptosis suppressor protein 1‑coenzyme Q10 dysregulation). Emerging therapeutic strategies targeting redox‑sensitive nodes, including GPX4 degraders, mitophagy inducers (urolithin A) and chronotherapy, have the potential to overcome resistance. By elucidating the crosstalk between mitochondrial quality control and ferroptotic signaling, the present review provides a mechanistic framework for precision oncology in EC, emphasizing subtype‑specific vulnerabilities and spatiotemporal redox profiling.
View Figures

Figure 1

Schematic illustration of the design
of precision therapies for The Cancer Genome Atlas molecular
subtypes of endometrial cancer, depicted by targeted inhibitors
acting on their respective molecular pathways within each subtype
panel. These subtypes exhibit distinct redox adaptations and
associated therapeutic vulnerabilities. The POLE-mutated subtype
exhibits synthetic lethality to PARP inhibitors and heightened
ferroptosis sensitivity. The MSI-H subtype exhibits SLC7A11
hypermethylation, conferring sensitivity to demethylating agents.
The CN-H subtype exhibits TP53-mutant-driven HIF-1α stabilization
and FSP1 upregulation, vulnerable to HIF-1α and FSP1 co-inhibition.
The CN-L subtype displays ERα-driven oxidative stress and Nrf2
suppression, targetable by iron chelators. CN-H, copy-number high;
CN-L, copy-number low; ERα, estrogen receptor α; FSP1, ferroptosis
suppressor protein 1; HIF-1α, hypoxia-inducible factor-1α; MSI-H,
microsatellite instability-high; Nrf2, nuclear factor erythroid
2-related factor 2; PARP, poly (ADP-ribose) polymerase; POLE, DNA
polymerase ε; SLC7A11, solute carrier family 7 member 11; AMPK,
AMP-activated protein kinase; NOXs, NADPH oxidases; keap1,
Kelch-like ECH-associated protein 1; NADPH, nicotinamide adenine
dinucleotide phosphate; Cat, catalase; PRX, peroxiredoxin; SOD2,
superoxide dismutase 2; FTH1, ferritin heavy chain 1; TFR,
transferrin receptor; STEAP3, six-transmembrane epithelial antigen
of the prostate 3; IMM, inner mitochondrial membrane; OMM, outer
mitochondrial membrane; IMS, mitochondrial intermembrane space;
ECT, mitochondrial electron transport chain; LPCAT3,
lysophosphatidylcholine acyltransferase 3; ALOXs, arachidonate
lipoxygenases; LOXs, lipoxygenases; PUFA, polyunsaturated fatty
acid; PUFA-PL-OOH, PUFA-containing phospholipid hydroperoxide;
TXNRD1, thioredoxin reductase 1; GSH, glutathione; GPX, GSH
peroxidase; GSR, GSH disulfide reductase; GSSG, oxidized GSH; LC3,
microtubule-associated protein 1A/1B-light chain 3.

Figure 2

A conceptual model of the
mitophagy-ferroptosis crosstalk in endometrial cancer, revealing
nodes for potential combined therapeutic targeting. Mitophagic
clearance of damaged mitochondria modulates cellular ROS levels.
Low ROS levels promote Nrf2-mediated antioxidant defense and
ferroptosis resistance, while high ROS levels suppress Nrf2 and
facilitate ferroptosis execution via ACSL4 and Fenton reactions.
Key molecular players (PINK1/Parkin, FUNDC1, GPX4 and FSP1) form a
critical regulatory network. Spatial tumor heterogeneity in EC is
also summarized. ACSL4, acyl-CoA synthetase long-chain family
member 4; EC, endometrial cancer; FSP1, ferroptosis suppressor
protein 1; FUNDC1, FUN14 domain-containing protein 1; GPX4,
glutathione peroxidase 4; Nrf2, nuclear factor erythroid 2-related
factor 2; PINK1, PTEN-induced kinase 1; ROS, reactive oxygen
species.
View References

1 

Bray F, Laversanne M, Sung H, ME JF, Siegel RL, Soerjomataram I and DVM AJ: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. 74:229–263. PubMed/NCBI

2 

Mili N, Paschou SA, Goulis DG, Dimopoulos MA, Lambrinoudaki I and Psaltopoulou T: Obesity, metabolic syndrome, and cancer: Pathophysiological and therapeutic associations. Endocrine. 74:478–497. 2021. View Article : Google Scholar : PubMed/NCBI

3 

Henley SJ, Ward E, Scott S, Ma J, Anderson RN, Firth AU, Thomas CC, Islami F, Weir HK, Lewis DR, et al: Annual report to the nation on the status of cancer, Part 1: National cancer statistics. Cancer. 126:2225–2249. 2020. View Article : Google Scholar : PubMed/NCBI

4 

Avgerinos KI, Spyrou N, Mantzoros CS and Dalamaga M: Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism. 92:121–135. 2019. View Article : Google Scholar : PubMed/NCBI

5 

Karpel HC, Slomovitz B, Coleman RL and Pothuri B: Treatment options for molecular subtypes of endometrial cancer in 2023. Curr Opin Obstet Gynecol. 35:270–278. 2023. View Article : Google Scholar : PubMed/NCBI

6 

Alexa M, Hasenburg A and Battista MJ: The TCGA molecular classification of endometrial cancer and its possible impact on adjuvant treatment decisions. Cancers. 13:14782021. View Article : Google Scholar : PubMed/NCBI

7 

Vermij L, Smit V, Nout R and Bosse T: Incorporation of molecular characteristics into endometrial cancer management. Histopathology. 76:52–63. 2020. View Article : Google Scholar : PubMed/NCBI

8 

Galant N, Krawczyk P, Monist M, Obara A, Gajek Ł, Grenda A, Nicoś M, Kalinka E and Milanowski J: Molecular classification of endometrial cancer and its impact on therapy selection. Int J Mol Sci. 25:58932024. View Article : Google Scholar : PubMed/NCBI

9 

Brasseur K, Gévry N and Asselin E: Chemoresistance and targeted therapies in ovarian and endometrial cancers. Oncotarget. 8:4008–4042. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Wilson EM, Eskander RN and Binder PS: Recent therapeutic advances in gynecologic oncology: A review. Cancers. 16:7702024. View Article : Google Scholar : PubMed/NCBI

11 

Žalytė E: Ferroptosis, metabolic rewiring, and endometrial cancer. Int J Mol Sci. 25:752023. View Article : Google Scholar : PubMed/NCBI

12 

Al Mamun A, Geng P, Wang S and Shao C: Role of pyroptosis in endometrial cancer and its therapeutic regulation. J Inflamm Res. 17:7037–7056. 2024. View Article : Google Scholar : PubMed/NCBI

13 

Devis-Jauregui L, Eritja N, Davis ML, Matias-Guiu X and Llobet-Navàs D: Autophagy in the physiological endometrium and cancer. Autophagy. 17:1077–1095. 2024. View Article : Google Scholar : PubMed/NCBI

14 

Fukuda T and Wada-Hiraike O: The Two-faced role of autophagy in endometrial cancer. Front Cell Dev Biol. 10:8394162022. View Article : Google Scholar : PubMed/NCBI

15 

Nuñez-Olvera SI, Gallardo-Rincón D, Puente-Rivera J, Salinas-Vera YM, Marchat LA, Morales-Villegas R and López-Camarillo C: Autophagy machinery as a promising therapeutic target in endometrial cancer. Front Oncol. 9:13262019. View Article : Google Scholar : PubMed/NCBI

16 

Wu J, Zhang L, Wu S and Liu Z: Ferroptosis: Opportunities and challenges in treating endometrial cancer. Front Mol Biosci. 9:9298322022. View Article : Google Scholar : PubMed/NCBI

17 

Brand MD: The sites and topology of mitochondrial superoxide production. Exp Gerontol. 45:466–472. 2010. View Article : Google Scholar : PubMed/NCBI

18 

West AP, Shadel GS and Ghosh S: Mitochondria in innate immune responses. Nat Rev Immunol. 11:389–402. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Lambeth JD and Neish AS: Nox enzymes and new thinking on reactive oxygen: A Double-edged sword revisited. Annu Rev Pathol Mech Dis. 9:119–145. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Wang Y, Qi H, Liu Y, Duan C, Liu X, Xia T, Chen D, Piao HL and Liu HX: The double-edged roles of ROS in cancer prevention and therapy. Theranostics. 11:4839–4857. 2021. View Article : Google Scholar : PubMed/NCBI

21 

Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, Castoria G and Migliaccio A: ROS in cancer therapy: the bright side of the moon. Exp Mol Med. 52:192–203. 2020. View Article : Google Scholar : PubMed/NCBI

22 

van der Pol A, van Gilst WH, Voors AA and van der Meer P: Treating oxidative stress in heart failure: Past, present and future. Eur J Heart Fail. 21:425–435. 2019. View Article : Google Scholar : PubMed/NCBI

23 

Senoner T and Dichtl W: Oxidative stress in cardiovascular diseases: Still a therapeutic target? Nutrients. 11:20902019. View Article : Google Scholar : PubMed/NCBI

24 

Rezzani R and Franco C: Liver, oxidative stress and metabolic syndromes. Nutrients. 13:3012021. View Article : Google Scholar : PubMed/NCBI

25 

Teleanu DM, Niculescu AG, Lungu II, Radu CI, Vladâcenco O, Roza E, Costăchescu B, Grumezescu AM and Teleanu RI: An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int J Mol Sci. 23:59382022. View Article : Google Scholar : PubMed/NCBI

26 

Huang R, Chen H, Liang J, Li Y, Yang J, Luo C, Tang Y, Ding Y, Liu X, Yuan Q, et al: Dual role of reactive oxygen species and their application in cancer therapy. J Cancer. 12:5543–5561. 2021. View Article : Google Scholar : PubMed/NCBI

27 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An Iron-dependent form of Non-apoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Tang D, Chen X, Kang R and Kroemer G: Ferroptosis: Molecular mechanisms and health implications. Cell Res. 31:107–125. 2021. View Article : Google Scholar : PubMed/NCBI

29 

Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell Death Dis. 11:882020. View Article : Google Scholar : PubMed/NCBI

30 

Xu Y, Shen J and Ran Z: Emerging views of mitophagy in immunity and autoimmune diseases. Autophagy. 16:3–17. 2019. View Article : Google Scholar : PubMed/NCBI

31 

Lu Y, Li Z, Zhang S, Zhang T, Liu Y and Zhang L: Cellular mitophagy: Mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics. 13:736–766. 2023. View Article : Google Scholar : PubMed/NCBI

32 

Onishi M, Yamano K, Sato M, Matsuda N and Okamoto K: Molecular mechanisms and physiological functions of mitophagy. EMBO J. 40:e1047052021. View Article : Google Scholar : PubMed/NCBI

33 

Czegle I, Huang C, Soria PG, Purkiss DW, Shields A and Wappler-Guzzetta EA: The role of genetic mutations in mitochondrial-driven cancer growth in selected tumors: Breast and gynecological malignancies. Life. 13:9962023. View Article : Google Scholar : PubMed/NCBI

34 

Musicco C, Cormio G, Pesce V, Loizzi V, Cicinelli E, Resta L, Ranieri G and Cormio A: Mitochondrial dysfunctions in type I endometrial carcinoma: Exploring their role in oncogenesis and tumor progression. Int J Mol Sci. 19:20762018. View Article : Google Scholar : PubMed/NCBI

35 

Yıldırım E, Türkler C, Görkem Ü, Şimşek ÖY, Yılmaz E and Aladağ H: The relationship between oxidative stress markers and endometrial hyperplasia: A case-control study. Turk J Obstet Gynecol. 18:298–303. 2021. View Article : Google Scholar : PubMed/NCBI

36 

Bukato K, Kostrzewa T, Gammazza AM, Gorska-Ponikowska M and Sawicki S: Endogenous estrogen metabolites as oxidative stress mediators and endometrial cancer biomarkers. Cell Commun Signal. 22:2052024. View Article : Google Scholar : PubMed/NCBI

37 

Gao Y, Sun W, Wang J, Zhao D, Tian H, Qiu Y, Ji S, Wang S, Fu Q, Zhang F, et al: Oxidative stress induces ferroptosis in tendon stem cells by regulating mitophagy through cGAS-STING pathway. Int Immunopharmacol. 138:1126522024. View Article : Google Scholar : PubMed/NCBI

38 

Granata S, Votrico V, Spadaccino F, Catalano V, Netti GS, Ranieri E, Stallone G and Zaza G: Oxidative Stress and Ischemia/reperfusion injury in kidney transplantation: Focus on ferroptosis, mitophagy and new antioxidants. Antioxidants (Basel). 11:7692022. View Article : Google Scholar : PubMed/NCBI

39 

Jomova K, Alomar SY, Alwasel SH, Nepovimova E, Kuca K and Valko M: Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch Toxicol. 98:1323–1367. 2024. View Article : Google Scholar : PubMed/NCBI

40 

Zorov DB, Juhaszova M and Sollott SJ: Mitochondrial reactive oxygen species (ROS) and ROS-Induced ROS Release. Physiol Rev. 94:909–950. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Phaniendra A, Jestadi DB and Periyasamy L: Free Radicals: Properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 30:11–26. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Canli Ö, Nicolas AM, Gupta J, Finkelmeier F, Goncharova O, Pesic M, Neumann T, Horst D, Löwer M, Sahin U and Greten FR: Myeloid Cell-derived reactive oxygen species induce epithelial mutagenesis. Cancer Cell. 32:869–883.e5. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Kumari S, Badana AK G MM, G S and Malla R: Reactive oxygen species: A key constituent in cancer survival. Biomark Insights. 13:11772719187553912018. View Article : Google Scholar : PubMed/NCBI

44 

Iskandar K, Foo J, Liew AQX, Zhu H, Raman D, Hirpara JL, Leong YY, Babak MV, Kirsanova AA and Armand AS: A novel MTORC2-AKT-ROS axis triggers mitofission and mitophagy-associated execution of colorectal cancer cells upon drug-induced activation of mutant KRAS. Autophagy. 20:1418–1441. 2024. View Article : Google Scholar : PubMed/NCBI

45 

Srinivas US, Tan BWQ, Vellayappan BA and Jeyasekharan AD: ROS and the DNA damage response in cancer. Redox Biol. 25:1010842018. View Article : Google Scholar : PubMed/NCBI

46 

Liu B, Chen Y and St Clair DK: ROS and p53: Versatile partnership. Free Radic Biol Med. 44:1529–1535. 2008. View Article : Google Scholar : PubMed/NCBI

47 

Zhang Y, Choksi S, Chen K, Pobezinskaya Y, Linnoila I and Liu ZG: ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of Tumor-associated macrophages. Cell Res. 23:898–914. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Zhong LM, Liu ZG, Zhou X, Song SH, Weng GY, Wen Y, Liu FB, Cao DL and Liu YF: Expansion of PMN-myeloid derived suppressor cells and their clinical relevance in patients with oral squamous cell carcinoma. Oral Oncol. 95:157–163. 2019. View Article : Google Scholar : PubMed/NCBI

49 

Jiang J, Wang K, Chen Y, Chen H, Nice EC and Huang C: Redox regulation in tumor cell epithelial-mesenchymal transition: molecular basis and therapeutic strategy. Signal Transduct Target Ther. 2:170362017. View Article : Google Scholar : PubMed/NCBI

50 

Snezhkina AV, Kudryavtseva AV, Kardymon OL, Savvateeva MV, Melnikova NV, Krasnov GS and Dmitriev AA: ROS generation and antioxidant defense systems in normal and malignant cells. Oxid Med Cell Longev. 2019:61758042019. View Article : Google Scholar : PubMed/NCBI

51 

Dey P, Baddour J, Muller F, Wu CC, Wang H, Liao WT, Lan Z, Chen A, Gutschner T, Kang Y, et al: Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer. Nature. 542:119–123. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang DW and Zhao G: The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther. 8:3042023. View Article : Google Scholar : PubMed/NCBI

53 

Orvedahl A, Sumpter R, Xiao G, Ng A, Zou Z, Tang Y, Narimatsu M, Gilpin C, Sun Q and Roth M: Image-based Genome-Wide siRNA screen identifies selective autophagy factors. Nature. 480:113–117. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Vara-Perez M, Felipe-Abrio B and Agostinis P: Mitophagy in cancer: A tale of adaptation. Cells. 8:4932019. View Article : Google Scholar : PubMed/NCBI

55 

Ferro F, Servais S, Besson P, Roger S, Dumas JF and Brisson L: Autophagy and mitophagy in cancer metabolic remodelling. Semin Cell Dev Biol. 98:129–138. 2020. View Article : Google Scholar : PubMed/NCBI

56 

Peoples JN, Saraf A, Ghazal N, Pham TT and Kwong JQ: Mitochondrial dysfunction and oxidative stress in heart disease. Exp Mol Med. 51:1622019. View Article : Google Scholar : PubMed/NCBI

57 

Scheibye-Knudsen M, Fang EF, Croteau DL, Wilson DM and Bohr VA: Protecting the mitochondrial powerhouse. Trends Cell Biol. 25:158–170. 2015. View Article : Google Scholar : PubMed/NCBI

58 

Wu W, Xu H, Wang Z, Mao Y, Yuan L, Luo W, Cui Z, Cui T, Wang XL and Shen YH: PINK1-Parkin-Mediated mitophagy protects mitochondrial integrity and prevents metabolic stress-induced endothelial injury. PLoS One. 10:e01324992015. View Article : Google Scholar : PubMed/NCBI

59 

Song C, Pan S, Zhang J, Li N and Geng Q: Mitophagy: A novel perspective for insighting into cancer and cancer treatment. Cell Prolif. 55:e133272022. View Article : Google Scholar : PubMed/NCBI

60 

Chen Z, Liu L, Cheng Q, Li Y, Wu H, Zhang W, Zhang W, Wang Y, Sehgal SA, Siraj S, et al: Mitochondrial E3 ligase MARCH5 regulates FUNDC1 to fine-tune hypoxic mitophagy. EMBO Rep. 18:495–509. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Li J, Agarwal E, Bertolini I, Seo JH, Caino MC, Ghosh JC, Kossenkov AV, Liu Q, Tang HY, Goldman AR, et al: The mitophagy effector FUNDC1 controls mitochondrial reprogramming and cellular plasticity in cancer cells. Sci Signal. 13:eaaz82402020. View Article : Google Scholar : PubMed/NCBI

62 

Poole LP and Macleod KF: Mitophagy in tumorigenesis and metastasis. Cell Mol Life Sci. 78:3817–3851. 2021. View Article : Google Scholar : PubMed/NCBI

63 

Akabane S, Matsuzaki K, Yamashita S, Arai K, Okatsu K, Kanki T, Matsuda N and Oka T: Constitutive activation of PINK1 protein leads to proteasome-mediated and Non-apoptotic cell death independently of mitochondrial autophagy. J Biol Chem. 291:16162–16174. 2016. View Article : Google Scholar : PubMed/NCBI

64 

Song C, Pan S, Zhang J, Li N and Geng Q: Mitophagy: A novel perspective for insighting into cancer and cancer treatment. Cell Prolif. 55:e133272022. View Article : Google Scholar : PubMed/NCBI

65 

Liu K, Shi Y, Guo XH, Ouyang YB, Wang SS, Liu DJ, Wang AN, Li N and Chen DX: Phosphorylated AKT inhibits the apoptosis induced by DRAM-mediated mitophagy in hepatocellular carcinoma by preventing the translocation of DRAM to mitochondria. Cell Death Dis. 5:e10782014. View Article : Google Scholar : PubMed/NCBI

66 

Yin K, Lee J, Liu Z, Kim H, Martin DR, Wu D, Liu M and Xue X: Mitophagy protein PINK1 suppresses colon tumor growth by metabolic reprogramming via p53 activation and reducing acetyl-CoA production. Cell Death Differ. 28:2421–2435. 2021. View Article : Google Scholar : PubMed/NCBI

67 

Chen L, Mao LS, Xue JY, Jian YH, Deng ZW, Mazhar M, Zou Y, Liu P, Chen MT, Luo G and Liu MN: Myocardial ischemia-reperfusion injury: The balance mechanism between mitophagy and NLRP3 inflammasome. Life Sci. 355:1229982024. View Article : Google Scholar : PubMed/NCBI

68 

Ikeda H, Kawase K, Nishi T, Watanabe T, Takenaga K, Inozume T, Ishino T, Aki S, Lin J, Kawashima S, et al: Immune evasion through mitochondrial transfer in the tumour microenvironment. Nature. 638:225–236. 2025. View Article : Google Scholar : PubMed/NCBI

69 

Wang SF, Tseng LM and Lee HC: Role of mitochondrial alterations in human cancer progression and cancer immunity. J Biomed Sci. 30:612023. View Article : Google Scholar : PubMed/NCBI

70 

Sun R, Zhou X, Wang T, Liu Y, Wei L, Qiu Z, Qiu C and Jiang J: Novel insights into tumorigenesis and prognosis of endometrial cancer through systematic investigation and validation on mitophagy-related signature. Hum Cell. 36:1548–1563. 2023. View Article : Google Scholar : PubMed/NCBI

71 

Zhao MM, Wang B, Huang WX, Zhang L, Peng R and Wang C: Verteporfin suppressed mitophagy via PINK1/parkin pathway in endometrial cancer. Am J Cancer Res. 14:1935–1946. 2024. View Article : Google Scholar : PubMed/NCBI

72 

Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology, and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI

73 

Zhang C, Liu X, Jin S, Chen Y and Guo R: Ferroptosis in cancer therapy: A novel approach to reversing drug resistance. Mol Cancer. 21:472022. View Article : Google Scholar : PubMed/NCBI

74 

Chen X, Li J, Kang R, Klionsky DJ and Tang D: Ferroptosis: Machinery and regulation. Autophagy. 17:2054–2081. 2021. View Article : Google Scholar : PubMed/NCBI

75 

Pandrangi SL, Chittineedi P, Chikati R, Lingareddy JR, Nagoor M and Ponnada SK: Role of dietary iron revisited: In metabolism, ferroptosis and pathophysiology of cancer. Am J Cancer Res. 12:974–985. 2022.PubMed/NCBI

76 

Gao W, Wang X, Zhou Y, Wang X and Yu Y: Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct Target Ther. 7:1962022. View Article : Google Scholar : PubMed/NCBI

77 

Dai E, Chen X, Linkermann A, Jiang X, Kang R, Kagan VE, Bayir H, Yang WS, Garcia-Saez AJ, Ioannou MS, et al: A guideline on the molecular ecosystem regulating ferroptosis. Nat Cell Biol. 26:1447–1547. 2024. View Article : Google Scholar : PubMed/NCBI

78 

Mou Y, Wang J, Wu J, He D, Zhang C, Duan C and Li B: Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol. 12:342019. View Article : Google Scholar : PubMed/NCBI

79 

Zhang M, Zhang T, Song C, Qu J, Gu Y, Liu S, Li H, Xiao W, Kong L, Sun Y and Lv W: Guizhi Fuling Capsule ameliorates endometrial hyperplasia through promoting p62-Keap1-NRF2-mediated ferroptosis. J Ethnopharmacol. 274:1140642021. View Article : Google Scholar : PubMed/NCBI

80 

López-Janeiro Á, Ruz-Caracuel I, Ramón-Patino JL, De Los Ríos V, Villalba Esparza M, Berjón A, Yébenes L, Hernández A, Masetto I, Kadioglu E, et al: Proteomic analysis of Low-grade, early-stage endometrial carcinoma reveals new dysregulated pathways associated with cell death and cell signaling. Cancers (Basel). 13:7942021. View Article : Google Scholar : PubMed/NCBI

81 

Tang S and Chen L: The recent advancements of ferroptosis of gynecological cancer. Cancer Cell Int. 24:3512024. View Article : Google Scholar : PubMed/NCBI

82 

Huang JY and Yu HN: The role of the Nrf2 pathway in inhibiting ferroptosis in kidney disease and its future prospects. Pathol Res Pract. 272:1560842025. View Article : Google Scholar : PubMed/NCBI

83 

Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al: Acsl4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar : PubMed/NCBI

84 

Rosenblum SL: Inflammation, dysregulated iron metabolism, and cardiovascular disease. Front Aging. 4:11241782023. View Article : Google Scholar : PubMed/NCBI

85 

Wei S, Yu Z, Shi R, An L, Zhang Q, Zhang Q, Zhang T, Zhang J and Wang H: GPX4 suppresses ferroptosis to promote malignant progression of endometrial carcinoma via transcriptional activation by ELK1. BMC Cancer. 22:8812022. View Article : Google Scholar : PubMed/NCBI

86 

Hirayama T, Nagata Y, Nishida M, Matsuo M, Kobayashi S, Yoneda A, Kanetaka K, Udono H and Eguchi S: Metformin prevents peritoneal dissemination via Immune-suppressive cells in the tumor microenvironment. Anticancer Res. 39:4699–4709. 2019. View Article : Google Scholar : PubMed/NCBI

87 

Zhao Y, Wang Y, Zhang X, Han S and Yang B: Metformin-induced RBMS3 expression enhances ferroptosis and suppresses ovarian cancer progression. Reprod Biol. 25:1009682025. View Article : Google Scholar : PubMed/NCBI

88 

van den Heerik ASVM, Horeweg N, de Boer SM, Bosse T and Creutzberg CL: Adjuvant therapy for endometrial cancer in the era of molecular classification: Radiotherapy, chemoradiation and novel targets for therapy. Int J Gynecol Cancer. 31:594–604. 2021. View Article : Google Scholar : PubMed/NCBI

89 

Liu Q, Zhao Y, Zhou H and Chen C: Ferroptosis: Challenges and opportunities for nanomaterials in cancer therapy. Regen Biomater. 10:rbad0042023. View Article : Google Scholar : PubMed/NCBI

90 

Sotomayor-Flores C, Rivera-Mejías P, Vásquez-Trincado C, López-Crisosto C, Morales PE, Pennanen C, Polakovicova I, Aliaga-Tobar V, García L, Roa JC, et al: Angiotensin-(1–9) prevents cardiomyocyte hypertrophy by controlling mitochondrial dynamics via miR-129-3p/PKIA pathway. Cell Death Differ. 27:2586–2604. 2020. View Article : Google Scholar : PubMed/NCBI

91 

Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, et al: Regulation of ferroptotic cancer cell death by GPX4. Cell. 156:317–33. 20141 View Article : Google Scholar : PubMed/NCBI

92 

Egan DF, Shackelford DB, Mihaylova MM, Gelino SR, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, et al: Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 331:456–461. 2011. View Article : Google Scholar : PubMed/NCBI

93 

Zhao L, Zhou X, Xie F and Zhang L, Yan H, Huang J, Zhang C, Zhou F, Chen J and Zhang L: Ferroptosis in cancer and cancer immunotherapy. Cancer Commun. 42:88–116. 2022. View Article : Google Scholar : PubMed/NCBI

94 

Cormio A, Musicco C, Gasparre G, Cormio G, Pesce V, Sardanelli AM and Gadaleta MN: Increase in proteins involved in mitochondrial fission, mitophagy, proteolysis and antioxidant response in type I endometrial cancer as an adaptive response to respiratory complex I deficiency. Biochem Biophys Res Commun. 491:85–90. 2017. View Article : Google Scholar : PubMed/NCBI

95 

Liu C, Li Z, Li B, Liu W, Zhang S, Qiu K and Zhu W: Relationship between ferroptosis and mitophagy in cardiac ischemia reperfusion injury: A mini-review. PeerJ. 11:e149522023. View Article : Google Scholar : PubMed/NCBI

96 

Bi Y, Liu S, Qin X, Abudureyimu M, Wang L, Zou R, Ajoolabady A, Zhang W, Peng H, Ren J and Zhang Y: FUNDC1 interacts with GPx4 to govern hepatic ferroptosis and fibrotic injury through a mitophagy-dependent manner. J Adv Res. 55:45–60. 2023. View Article : Google Scholar : PubMed/NCBI

97 

Wilhelm LP, Zapata-Muñoz J, Villarejo-Zori B, Pellegrin S, Freire CM, Toye AM, Boya P and Ganley IG: BNIP3L/NIX regulates both mitophagy and pexophagy. EMBO J. 41:e1111152022. View Article : Google Scholar : PubMed/NCBI

98 

Yamashita SI, Sugiura Y, Matsuoka Y, Maeda R, Inoue K, Furukawa K, Fukuda T, Chan DC and Kanki T: Mitophagy mediated by BNIP3 and NIX protects against ferroptosis by downregulating mitochondrial reactive oxygen species. Cell Death Differ. 31:651–661. 2024. View Article : Google Scholar : PubMed/NCBI

99 

Yang CH, Almomen A, Wee YS, Jarboe EA, Peterson CM and Janát-Amsbury MM: An estrogen-induced endometrial hyperplasia mouse model recapitulating human disease progression and genetic aberrations. Cancer Med. 4:1039–1050. 2015. View Article : Google Scholar : PubMed/NCBI

100 

Fan R, Wang Y, Wang Y, Wei L and Zheng W: Mechanism of progestin resistance in endometrial precancer/cancer through Nrf2-survivin pathway. Am J Transl Res. 9:1483–1491. 2017.PubMed/NCBI

101 

Yi J, Zhu J, Wu J, Thompson CB and Jiang X: Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci USA. 117:31189–31197. 2020. View Article : Google Scholar : PubMed/NCBI

102 

Álvarez-Garcia V, Tawil Y, Wise HM and Leslie NR: Mechanisms of PTEN loss in cancer: It's all about diversity. Semin Cancer Biol. 59:66–79. 2019. View Article : Google Scholar : PubMed/NCBI

103 

Nero C, Ciccarone F, Pietragalla A and Scambia G: PTEN and gynecological cancers. Cancers. 11:14582019. View Article : Google Scholar : PubMed/NCBI

104 

Wang P, Zhang XP, Liu F and Wang W: Progressive Deactivation of Hydroxylases Controls Hypoxia-Inducible Factor-1α-Coordinated Cellular Adaptation to Graded Hypoxia. Research. 8:06512025. View Article : Google Scholar : PubMed/NCBI

105 

Wang P, Dai X, Jiang W, Li Y and Wei W: RBR E3 ubiquitin ligases in tumorigenesis. Semin Cancer Biol. 67:131–144. 2020. View Article : Google Scholar : PubMed/NCBI

106 

Zhang HL, Hu BX, Li ZL, Du T, Shan JL, Ye ZP, Peng XD, Li X, Huang Y, Zhu XY, et al: PKCβII phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis. Nature Cell Biol. 24:88–98. 2022. View Article : Google Scholar : PubMed/NCBI

107 

Jaramillo MC and Zhang DD: The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 27:2179–2191. 2013. View Article : Google Scholar : PubMed/NCBI

108 

Yang B, Hu M, Fu Y, Sun D, Zheng W, Liao H, Zhang Z and Chen X: LASS2 mediates Nrf2-driven progestin resistance in endometrial cancer. Am J Transl Res. 13:1280–1289. 2021.PubMed/NCBI

109 

Read AD, Bentley RET, Archer SL and Dunham-Snary KJ: Mitochondrial iron-sulfur clusters: Structure, function, and an emerging role in vascular biology. Redox Biol. 47:1021642021. View Article : Google Scholar : PubMed/NCBI

110 

Luo J, Zhang X, Liang Z, Zhuang W, Jiang M, Ma M, Peng S, Huang S, Qiao G and Chen Q: ISCU-p53 axis orchestrates macrophage polarization to dictate immunotherapy response in esophageal squamous cell carcinoma. Cell Death Dis. 16:4622025. View Article : Google Scholar : PubMed/NCBI

111 

Yang H, Yao X, Liu Y, Shen X, Li M and Luo Z: Ferroptosis Nanomedicine: Clinical Challenges and Opportunities for Modulating Tumor Metabolic and Immunological Landscape. ACS Nano. 17:15328–15353. 2023. View Article : Google Scholar : PubMed/NCBI

112 

Glorieux C, Liu S, Trachootham D and Huang P: Targeting ROS in cancer: Rationale and strategies. Nature Reviews Drug Discovery. 23:583–606. 2024. View Article : Google Scholar : PubMed/NCBI

113 

McKee CA, Polino AJ, King MW and Musiek ES: Circadian clock protein BMAL1 broadly influences autophagy and endolysosomal function in astrocytes. Proc Natl Acad Sci USA. 120:e22205511202025. View Article : Google Scholar

114 

Makovec T: Cisplatin and beyond: Molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiol Oncol. 53:148–1458. 2019. View Article : Google Scholar : PubMed/NCBI

115 

Dasari S and Tchounwou PB: Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol. 740:364–378. 2014. View Article : Google Scholar : PubMed/NCBI

116 

Mauro-Lizcano M, Sotgia F and Lisanti MP: Mitophagy and cancer: Role of BNIP3/BNIP3L as energetic drivers of stemness features, ATP production, proliferation, and cell migration. Aging (Albany NY). 16:9334–9349. 2024. View Article : Google Scholar : PubMed/NCBI

117 

Li K, Xu K, He Y, Yang Y, Tan M, Mao Y, Zou Y, Feng Q, Luo Z and Cai K: Oxygen Self-generating nanoreactor mediated ferroptosis activation and immunotherapy in Triple-negative breast cancer. ACS Nano. 17:4667–4687. 2023. View Article : Google Scholar : PubMed/NCBI

118 

Xu L, Fang Q, Miao Y, Xu M, Wang Y, Sun L and Jia X: The role of CCR2 in prognosis of patients with endometrial cancer and tumor microenvironment remodeling. Bioengineered. 12:3467–3484. 2021. View Article : Google Scholar : PubMed/NCBI

119 

Nizami ZN, Aburawi HE, Semlali A, Muhammad K and Iratni R: Oxidative stress inducers in cancer therapy: Preclinical and clinical evidence. Antioxidants. 12:11592023. View Article : Google Scholar : PubMed/NCBI

120 

Li J, Jia Y Chen, Ding Y Xuan, Bai J, Cao F and Li F: The crosstalk between ferroptosis and mitochondrial dynamic regulatory networks. Int J Biol Sci. 19:2756–2771. 2023. View Article : Google Scholar : PubMed/NCBI

121 

CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4-PMC [Internet], . [cited 2025 Sept 10]. Available from. https://pmc.ncbi.nlm.nih.gov/articles/PMC9007863/

122 

Huo K, Yang Y, Yang T, Zhang W and Shao J: Identification of drug targets and agents associated with ferroptosis-related osteoporosis through integrated network pharmacology and molecular docking technology. Curr Pharm Des. 30:1103–1114. 2024. View Article : Google Scholar : PubMed/NCBI

123 

Hu G, Yuan Z and Wang J: Autophagy inhibition and ferroptosis activation during atherosclerosis: Hypoxia-inducible factor 1α inhibitor PX-478 alleviates atherosclerosis by inducing autophagy and suppressing ferroptosis in macrophages. Biomed Pharmacother. 161:1143332023. View Article : Google Scholar : PubMed/NCBI

124 

Bhatt V, Lan T, Wang W, Kong J, Lopes EC, Wang J, Khayati K, Raju A, Rangel M, Lopez E, et al: Inhibition of autophagy and MEK promotes ferroptosis in Lkb1-deficient Kras-driven lung tumors. Cell Death Dis. 14:612023. View Article : Google Scholar : PubMed/NCBI

125 

Crouigneau R, Li YF, Auxillos J, Goncalves-Alves E, Marie R, Sandelin A and Pedersen SF: Mimicking and analyzing the tumor microenvironment. Cell Rep Methods. 4:1008662024. View Article : Google Scholar : PubMed/NCBI

126 

Early JO, Menon D, Wyse CA, Cervantes-Silva MP, Zaslona Z, Carroll RG, Palsson-McDermott EM, Angiari S, Ryan DG, Corcoran SE, et al: Circadian clock protein BMAL1 regulates IL-1β in macrophages via NRF2. Proc Natl Acad Sci USA. 115:E8460–E8468. 2018. View Article : Google Scholar : PubMed/NCBI

127 

Wang Z, Ge S, Liao T, Yuan M, Qian W, Chen Q, Liang W, Cheng X, Zhou Q, Ju Z, et al: Integrative single-cell metabolomics and phenotypic profiling reveals metabolic heterogeneity of cellular oxidation and senescence. Nat Commun. 16:27402025. View Article : Google Scholar : PubMed/NCBI

128 

Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Grocin AG, da Silva TNX, Panzilius E, Scheel CH, et al: FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 575:693–698. 2019. View Article : Google Scholar : PubMed/NCBI

129 

Bersuker K, Hendricks J, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al: The CoQ oxidoreductase FSP1 acts in parallel to GPX4 to inhibit ferroptosis. Nature. 575:688–692. 2019. View Article : Google Scholar : PubMed/NCBI

130 

Pekovic-Vaughan V, Gibbs J, Yoshitane H, Yang N, Pathiranage D, Guo B, Sagami A, Taguchi K, Bechtold D, Loudon A, et al: The circadian clock regulates rhythmic activation of the NRF2/glutathione-mediated antioxidant defense pathway to modulate pulmonary fibrosis. Genes Dev. 28:548–560. 2014. View Article : Google Scholar : PubMed/NCBI

131 

Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, Koppula P, Wu S, Zhuang L, Fang B, et al: DHODH-mediated ferroptosis defense is a targetable vulnerability in cancer. Nature. 593:586–590. 2021. View Article : Google Scholar : PubMed/NCBI

132 

Oh M, Jang SY, Lee JY, Kim JW, Jung Y, Kim J, Seo J, Han TS, Jang E, Son HY, et al: The lipoprotein-associated phospholipase A2 inhibitor Darapladib sensitises cancer cells to ferroptosis by remodelling lipid metabolism. Nat Commun. 14:57282023. View Article : Google Scholar : PubMed/NCBI

133 

Błachnio-Zabielska AU, Sadowska P, Zdrodowski M, Laudański P and Szamatowicz J and Szamatowicz J: The Interplay between Oxidative Stress and Sphingolipid Metabolism in Endometrial Cancer. Int J Mol Sci. 25:102432024. View Article : Google Scholar : PubMed/NCBI

134 

Hsin IL, Shen HP, Chang HY, Ko JL and Wang PH: Suppression of PI3K/Akt/mTOR/c-Myc/mtp53 Positive Feedback Loop Induces Cell Cycle Arrest by Dual PI3K/mTOR Inhibitor PQR309 in Endometrial Cancer Cell Lines. Cells. 10:29162021. View Article : Google Scholar : PubMed/NCBI

135 

Ruiz-Mitjana A, Vidal-Sabanés M, Navaridas R, Perramon-Güell A, Yeramian A, Nicholson-Sabaté N, Egea J, Encinas M, Matias-Guiu X and Dolcet X: Metformin exhibits antineoplastic effects on Pten-deficient endometrial cancer by interfering with TGF-β and p38/ERK MAPK signalling. Biomed Pharmacother. 168:1158172023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yu Q, Ren L, Ren F and Li F: Oxidative stress as a nexus: Integrating mitophagy and ferroptosis in endometrial carcinogenesis (Review). Oncol Lett 31: 40, 2026.
APA
Yu, Q., Ren, L., Ren, F., & Li, F. (2026). Oxidative stress as a nexus: Integrating mitophagy and ferroptosis in endometrial carcinogenesis (Review). Oncology Letters, 31, 40. https://doi.org/10.3892/ol.2025.15393
MLA
Yu, Q., Ren, L., Ren, F., Li, F."Oxidative stress as a nexus: Integrating mitophagy and ferroptosis in endometrial carcinogenesis (Review)". Oncology Letters 31.1 (2026): 40.
Chicago
Yu, Q., Ren, L., Ren, F., Li, F."Oxidative stress as a nexus: Integrating mitophagy and ferroptosis in endometrial carcinogenesis (Review)". Oncology Letters 31, no. 1 (2026): 40. https://doi.org/10.3892/ol.2025.15393
Copy and paste a formatted citation
x
Spandidos Publications style
Yu Q, Ren L, Ren F and Li F: Oxidative stress as a nexus: Integrating mitophagy and ferroptosis in endometrial carcinogenesis (Review). Oncol Lett 31: 40, 2026.
APA
Yu, Q., Ren, L., Ren, F., & Li, F. (2026). Oxidative stress as a nexus: Integrating mitophagy and ferroptosis in endometrial carcinogenesis (Review). Oncology Letters, 31, 40. https://doi.org/10.3892/ol.2025.15393
MLA
Yu, Q., Ren, L., Ren, F., Li, F."Oxidative stress as a nexus: Integrating mitophagy and ferroptosis in endometrial carcinogenesis (Review)". Oncology Letters 31.1 (2026): 40.
Chicago
Yu, Q., Ren, L., Ren, F., Li, F."Oxidative stress as a nexus: Integrating mitophagy and ferroptosis in endometrial carcinogenesis (Review)". Oncology Letters 31, no. 1 (2026): 40. https://doi.org/10.3892/ol.2025.15393
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team