|
1
|
Petersen JF, Timmermans AJ, van Dijk BAC,
Overbeek LIH, Smit LA, Hilgers FJM, Stuiver MM and van den Brekel
MWM: Trends in treatment, incidence and survival of hypopharynx
cancer: A 20-year population-based study in the Netherlands. Eur
Arch Otorhinolaryngol. 275:181–189. 2018. View Article : Google Scholar
|
|
2
|
Cordunianu AV, Ganea G, Cordunianu MA,
Cochior D, Moldovan CA and Adam R: Hypopharyngeal cancer trends in
a high-incidence region: A retrospective tertiary single center
study. World J Clin Cases. 11:5666–5677. 2023. View Article : Google Scholar
|
|
3
|
Sanders O and Pathak S: Hypopharyngeal
Cancer. StatPearls. StatPearls Publishing; Treasure Island, FL:
2025
|
|
4
|
Patel EJ, Oliver JR, Jacobson AS, Li Z, Hu
KS, Tam M, Vaezi A, Morris LGT and Givi B: Human papillomavirus in
patients with hypopharyngeal squamous cell carcinoma. Otolaryngol
Head Neck Surg. 166:109–117. 2022. View Article : Google Scholar
|
|
5
|
Rami-Porta R, Nishimura KK, Giroux DJ,
Detterbeck F, Cardillo G, Edwards JG, Fong KM, Giuliani M, Huang J,
Kernstine KH Sr, et al: The International association for the study
of lung cancer lung cancer staging project: Proposals for revision
of the TNM stage groups in the forthcoming (Ninth) Edition of the
TNM classification for lung cancer. J Thorac Oncol. 19:1007–1027.
2024. View Article : Google Scholar
|
|
6
|
Bozec A, Benezery K, Chamorey E, Ettaiche
M, Vandersteen C, Dassonville O, Poissonnet G, Riss JC,
Hannoun-Lévi JM, Chand ME, et al: Nutritional status and
feeding-tube placement in patients with locally advanced
hypopharyngeal cancer included in an induction chemotherapy-based
larynx preservation program. Eur Arch Otorhinolaryngol.
273:2681–2687. 2016. View Article : Google Scholar
|
|
7
|
Malecki K, Glinski B, Mucha-Malecka A, Rys
J, Kruczak A, Roszkowski K, Urbańska-Gąsiorowska M and Hetnał M:
Prognostic and predictive significance of p53, EGFr, Ki-67 in
larynx preservation treatment. Rep Pract Oncol Radiother. 15:87–92.
2010. View Article : Google Scholar
|
|
8
|
Zhang J, Tian XJ and Xing J: Signal
transduction pathways of EMT Induced by TGF-beta, SHH, and WNT and
their crosstalks. J Clin Med. 5:412016. View Article : Google Scholar
|
|
9
|
Ahluwalia A and Tarnawski AS: Critical
role of hypoxia sensor-HIF-1α in VEGF gene activation. Implications
for angiogenesis and tissue injury healing. Curr Med Chem.
19:90–97. 2012. View Article : Google Scholar
|
|
10
|
Lin MY, Wang CY, Chan YH, Su SP, Chiang
HK, Yang MH and Lee YJ: The emergence of tumor-initiating cells in
an advanced hypopharyngeal tumor model exhibits enhanced
angiogenesis and nuclear factor erythroid 2-related factor
2-associated antioxidant effects. Antioxid Redox Signal.
41:505–521. 2024. View Article : Google Scholar
|
|
11
|
Taneja N, Chauhan A, Kulshreshtha R and
Singh S: HIF-1 mediated metabolic reprogramming in cancer:
Mechanisms and therapeutic implications. Life Sci. 352:1228902024.
View Article : Google Scholar
|
|
12
|
Zhong X, Wang Y, He X, He X, Hu Z, Huang
H, Chen J, Chen K, Wei P, Zhao S, et al: HIF1A-AS2 promotes the
metabolic reprogramming and progression of colorectal cancer via
miR-141-3p/FOXC1 axis. Cell Death Dis. 15:6452024. View Article : Google Scholar
|
|
13
|
Meyer SP, Bauer R, Brune B and Schmid T:
The role of type I interferon signaling in myeloid anti-tumor
immunity. Front Immunol. 16:15474662025. View Article : Google Scholar
|
|
14
|
Critchley-Thorne RJ, Yan N, Nacu S, Weber
J, Holmes SP and Lee PP: Down-regulation of the interferon
signaling pathway in T lymphocytes from patients with metastatic
melanoma. PLoS Med. 4:e1762007. View Article : Google Scholar
|
|
15
|
Rangan SR: A new human cell line (FaDu)
from a hypopharyngeal carcinoma. Cancer. 29:117–121. 1972.
View Article : Google Scholar
|
|
16
|
Keski-Santti H, Luukkaa M, Carpen T,
Jouppila-Matto A, Lehtio K, Maenpaa H, Vuolukka K, Vahlberg T and
Mäkitie A: Hypopharyngeal carcinoma in Finland from 2005 to 2014:
Outcome remains poor after major changes in treatment. Eur Arch
Otorhinolaryngol. 280:1361–1367. 2023. View Article : Google Scholar
|
|
17
|
Ewels P, Magnusson M, Lundin S and Kaller
M: MultiQC: Summarize analysis results for multiple tools and
samples in a single report. Bioinformatics. 32:3047–3048. 2016.
View Article : Google Scholar
|
|
18
|
Kim D, Langmead B and Salzberg SL: HISAT:
A fast spliced aligner with low memory requirements. Nat Methods.
12:357–360. 2015. View Article : Google Scholar
|
|
19
|
Love MI, Huber W and Anders S: Moderated
estimation of fold change and dispersion for RNA-seq data with
DESeq2. Genome Biol. 15:5502014. View Article : Google Scholar
|
|
20
|
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z,
Feng T, Zhou L, Tang W, Zhan L, et al: clusterProfiler 4.0: A
universal enrichment tool for interpreting omics data. Innovation
(Camb). 2:1001412021.
|
|
21
|
Yu G, Wang LG, Han Y and He QY:
clusterProfiler: An R package for comparing biological themes among
gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar
|
|
22
|
Liberzon A, Birger C, Thorvaldsdottir H,
Ghandi M, Mesirov JP and Tamayo P: The molecular signatures
database (MSigDB) hallmark gene set collection. Cell Syst.
1:417–425. 2015. View Article : Google Scholar
|
|
23
|
Liberzon A, Subramanian A, Pinchback R,
Thorvaldsdottir H, Tamayo P and Mesirov JP: Molecular signatures
database (MSigDB) 3.0. Bioinformatics. 27:1739–1740. 2011.
View Article : Google Scholar
|
|
24
|
Subramanian A, Tamayo P, Mootha VK,
Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub
TR, Lander ES and Mesirov JP: Gene set enrichment analysis: A
knowledge-based approach for interpreting genome-wide expression
profiles. Proc Natl Acad Sci USA. 102:15545–15550. 2005. View Article : Google Scholar
|
|
25
|
Kuleshov MV, Jones MR, Rouillard AD,
Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM,
Lachmann A, et al: Enrichr: A comprehensive gene set enrichment
analysis web server 2016 update. Nucleic Acids Res. 44:W90–W97.
2016. View Article : Google Scholar
|
|
26
|
Clarke DJB, Marino GB, Deng EZ, Xie Z,
Evangelista JE and Ma'ayan A: Rummagene: Massive mining of gene
sets from supporting materials of biomedical research publications.
Commun Biol. 7:4822024. View Article : Google Scholar
|
|
27
|
Han H, Cho JW, Lee S, Yun A, Kim H, Bae D,
Yang S, Kim CY, Lee M, Kim E, et al: TRRUST v2: An expanded
reference database of human and mouse transcriptional regulatory
interactions. Nucleic Acids Res. 46:D380–D386. 2018. View Article : Google Scholar
|
|
28
|
Rauluseviciute I, Riudavets-Puig R,
Blanc-Mathieu R, Castro-Mondragon JA, Ferenc K, Kumar V, Lemma RB,
Lucas J, Chèneby J, Baranasic D, et al: JASPAR 2024: 20th
anniversary of the open-access database of transcription factor
binding profiles. Nucleic Acids Res. 52:D174–D182. 2024. View Article : Google Scholar
|
|
29
|
Han H, Cho JW, Lee S, Yun A, Kim H, Bae D,
et al: TRRUST v2: an expanded reference database of human and mouse
transcriptional regulatory interactions. Nucleic Acids Res.
46:D380–D386. 2018. View Article : Google Scholar
|
|
30
|
Hu C, Li T, Xu Y, Zhang X, Li F, Bai J,
Chen J, Jiang W, Yang K, Ou Q, et al: CellMarker 2.0: An updated
database of manually curated cell markers in human/mouse and web
tools based on scRNA-seq data. Nucleic Acids Res. 51:D870–D876.
2023. View Article : Google Scholar
|
|
31
|
Xie Z, Bailey A, Kuleshov MV, Clarke DJB,
Evangelista JE, Jenkins SL, Lachmann A, Wojciechowicz ML,
Kropiwnicki E, Jagodnik KM, et al: Gene set knowledge discovery
with enrichr. Curr Protoc. 1:e902021. View
Article : Google Scholar
|
|
32
|
Chen EY, Tan CM, Kou Y, Duan Q, Wang Z,
Meirelles GV, Clark NR and Ma'ayan A: Enrichr: Interactive and
collaborative HTML5 gene list enrichment analysis tool. BMC
Bioinformatics. 14:1282013. View Article : Google Scholar
|
|
33
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
|
34
|
Bonjardim CA, Ferreira PC and Kroon EG:
Interferons: Signaling, antiviral and viral evasion. Immunol Lett.
122:1–11. 2009. View Article : Google Scholar
|
|
35
|
Kaplan DH, Shankaran V, Dighe AS, Stockert
E, Aguet M, Old LJ and Schreiber RD: Demonstration of an interferon
gamma-dependent tumor surveillance system in immunocompetent mice.
Proc Natl Acad Sci USA. 95:7556–7561. 1998. View Article : Google Scholar
|
|
36
|
Morgado M, Sutton MN, Simmons M, Warren
CR, Lu Z, Constantinou PE, Liu J, Francis LL, Conlan RS, Bast RC Jr
and Carson DD: Tumor necrosis factor-α and interferon-ү stimulate
MUC16 (CA125) expression in breast, endometrial and ovarian cancers
through NFĸB. Oncotarget. 7:14871–14884. 2016. View Article : Google Scholar
|
|
37
|
Tsai YS, Chen YC, Chen TI, Lee YK, Chiang
CJ, You SL, Hsu WL and Liao LJ: Incidence trends of oral cavity,
oropharyngeal, hypopharyngeal and laryngeal cancers among males in
Taiwan, 1980–2019: A population-based cancer registry study. BMC
Cancer. 23:2132023. View Article : Google Scholar
|
|
38
|
Ma J, Zhu X, Heng Y, Ding X, Tao L and Lu
L: Establishment and characterization of a novel hypopharyngeal
squamous cell carcinoma cell line CZH1 with genetic abnormalities.
Hum Cell. 37:546–559. 2024. View Article : Google Scholar
|