|
1
|
Linder P: Dead-box proteins: A family
affair-active and passive players in RNP-remodeling. Nucleic Acids
Res. 34:4168–4180. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Arenas JE and Abelson JN: Prp43: An RNA
helicase-like factor involved in spliceosome disassembly. Proc Natl
Acad Sci USA. 94:11798–11802. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Combs DJ, Nagel RJ, Ares M Jr and Stevens
SW: Prp43p is a DEAH-box spliceosome disassembly factor essential
for ribosome biogenesis. Mol Cell Biol. 26:523–534. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Tanaka N, Aronova A and Schwer B: Ntr1
activates the Prp43 helicase to trigger release of lariat-intron
from the spliceosome. Genes Dev. 21:2312–2325. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Mosallanejad K, Sekine Y,
Ishikura-Kinoshita S, Kumagai K, Nagano T, Matsuzawa A, Takeda K,
Naguro I and Ichijo H: The DEAH-box RNA helicase DHX15 activates
NF-κB and MAPK signaling downstream of MAVS during antiviral
responses. Sci Signal. 7:ra402014. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Xing J, Zhou X, Fang M, Zhang E, Minze LJ
and Zhang Z: DHX15 is required to control RNA virus-induced
intestinal inflammation. Cell Rep. 35:1092052021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Pan L, Li Y, Zhang HY, Zheng Y, Liu XL, Hu
Z, Wang Y, Wang J, Cai YH, Liu Q, et al: DHX15 is associated with
poor prognosis in acute myeloid leukemia (AML) and regulates cell
apoptosis via the NF-kB signaling pathway. Oncotarget.
8:89643–89654. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Yao G, Chen K, Qin Y, Niu Y, Zhang X, Xu
S, Zhang C, Feng M and Wang K: Long non-coding RNA JHDM1D-AS1
interacts with DHX15 protein to enhance non-small-cell lung cancer
growth and metastasis. Mol Ther Nucleic Acids. 18:831–840. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Jing Y, Nguyen MM, Wang D, Pascal LE, Guo
W, Xu Y, Ai J, Deng FM, Masoodi KZ, Yu X, et al: DHX15 promotes
prostate cancer progression by stimulating Siah2-mediated
ubiquitination of androgen receptor. Oncogene. 37:638–650. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Zheng W, Wang X, Yu Y, Ji C and Fang L:
CircRNF10-DHX15 interaction suppressed breast cancer progression by
antagonizing DHX15-NF-κB p65 positive feedback loop. Cell Mol Biol
Lett. 28:342023. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zhao M, Ying L, Wang R, Yao J, Zhu L,
Zheng M, Chen Z and Yang Z: DHX15 inhibits autophagy and the
proliferation of hepatoma cells. Front Med (Lausanne).
7:5917362020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zong Z, Li H, Ning Z, Hu C, Tang F, Zhu X,
Tian H, Zhou T and Wang H: Integrative bioinformatics analysis of
prognostic alternative splicing signatures in gastric cancer. J
Gastrointest Oncol. 11:685–694. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ito S, Koso H, Sakamoto K and Watanabe S:
RNA helicase DHX15 acts as a tumour suppressor in glioma. Br J
Cancer. 117:1349–1359. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249.
2021.PubMed/NCBI
|
|
15
|
Lv X, Ma W, Miao X, Hu S and Xie H:
Navigating colorectal cancer prognosis: A Treg-related signature
discovered through single-cell and bulk transcriptomic approaches.
Environ Toxicol. 39:3512–3522. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Lu P, Zhang Y, Cui Y, Liao Y, Liu Z, Cao
ZJ, Liu JE, Wen L, Zhou X, Fu W and Tang F: Systematic
characterization of full-length RNA isoforms in human colorectal
cancer at single-cell resolution. Protein Cell. 16:873–895. 2025.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Tao Y, Li J, Pan J, Wang Q, Ke RW, Yuan D,
Wu H, Cao Y and Zhao L: Integration of scRNA-Seq and bulk RNA-Seq
identifies circadian rhythm disruption-related genes associated
with prognosis and drug resistance in colorectal cancer patients.
Immunotargets Ther. 14:475–489. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Fan L, Guo X, Zhang J, Wang Y, Wang J and
Li Y: Relationship between DHX15 expression and survival in
colorectal cancer. Rev Esp Enferm Dig. 115:234–240. 2023.PubMed/NCBI
|
|
19
|
Zhu H, Li M, Bi D, Yang H, Gao Y, Song F,
Zheng J, Xie R, Zhang Y, Liu H, et al: Fusobacterium nucleatum
promotes tumor progression in KRAS p.G12D-mutant colorectal cancer
by binding to DHX15. Nat Commun. 15:16882024. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Huang SH and O'Sullivan B: Overview of the
8th edition TNM classification for head and neck cancer. Curr Treat
Options Oncol. 18:402017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Rajput A, Martin ID, Rose R, Beko A, Levea
C, Sharratt E, Mazurchuk R, Hoffman RM, Brattain MG and Wang J:
Characterization of HCT116 human colon cancer cells in an
orthotopic model. J Surg Res. 147:276–281. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Verhagen MP, Xu T, Stabile R, Joosten R,
Tucci FA, van Royen M, Trerotola M, Alberti S, Sacchetti A and
Fodde R: The SW480 cell line as a model of resident and migrating
colon cancer stem cells. iScience. 27:1106582024. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Sambuy Y, De Angelis I, Ranaldi G, Scarino
ML, Stammati A and Zucco F: The Caco-2 cell line as a model of the
intestinal barrier: Influence of cell and culture-related factors
on Caco-2 cell functional characteristics. Cell Biol Toxicol.
21:1–26. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Dexter DL, Spremulli EN, Fligiel Z,
Barbosa JA, Vogel R, VanVoorhees A and Calabresi P: Heterogeneity
of cancer cells from a single human colon carcinoma. Am J Med.
71:949–956. 1981. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Ahmed D, Eide PW, Eilertsen IA, Danielsen
SA, Eknæs M, Hektoen M, Lind GE and Lothe RA: Epigenetic and
genetic features of 24 colon cancer cell lines. Oncogenesis.
2:e712013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Saita K, Moriuchi Y, Iwagawa T, Aihara M,
Takai Y, Uchida K and Watanabe S: Roles of CSF2 as a modulator of
inflammation during retinal degeneration. Cytokine. 158:1559962022.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Koso H, Yi H, Sheridan P, Miyano S, Ino Y,
Todo T and Watanabe S: Identification of RNA-binding protein LARP4B
as a tumor suppressor in glioma. Cancer Res. 76:2254–2264. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Tsuruta L, Lee HJ, Masuda ES, Yokota T,
Arai N and Arai K: Regulation of expression of the IL-2 and IL-5
genes and the role of proteins related to nuclear factor of
activated T cells. J Allergy Clin Immunol. 96:1126–1135. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kuribayashi H, Iwagawa T, Murakami A,
Kawamura T, Suzuki Y and Watanabe S: NMNAT1 is essential for human
iPS cell differentiation to the retinal lineage. Invest Ophthalmol
Vis Sci. 65:372024. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kabiri Z, Greicius G, Zaribafzadeh H,
Hemmerich A, Counter CM and Virshup DM: Wnt signaling suppresses
MAPK-driven proliferation of intestinal stem cells. J Clin Invest.
128:3806–3812. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Jiao L, Jiang M, Liu J, Wei L and Wu M:
Nuclear factor-kappa B activation inhibits proliferation and
promotes apoptosis of vascular smooth muscle cells. Vascular.
26:634–640. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Levine B and Kroemer G: Biological
functions of autophagy genes: A disease perspective. Cell.
176:11–42. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Xie C, Liao H, Zhang C and Zhang S:
Overexpression and clinical relevance of the RNA helicase DHX15 in
hepatocellular carcinoma. Hum Pathol. 84:213–220. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Wang Y, He K, Sheng B, Lei X, Tao W, Zhu
X, Wei Z, Fu R, Wang A, Bai S, et al: The RNA helicase Dhx15
mediates Wnt-induced antimicrobial protein expression in Paneth
cells. Proc Natl Acad Sci USA. 118:e20174321182021. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Yao J, Cai Y, Chen Z, Wang X, Lai X, Pan
L, Li Y and Wang S: Dhx15 regulates zebrafish intestinal
development through the Wnt signaling pathway. Genomics.
115:1105782023. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, Wu
C, Wang C and Ye L: Wnt/β-catenin signaling in cancers and targeted
therapies. Signal Transduct Target Ther. 6:3072021. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Ge X and Wang X: Role of Wnt canonical
pathway in hematological malignancies. J Hematol Oncol. 3:332010.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Chang SH, Huang SW, Wang ST, Chung KC,
Hsieh CW, Kao JK, Chen YJ, Wu CY and Shieh JJ: Imiquimod-induced
autophagy is regulated by ER stress-mediated PKR activation in
cancer cells. J Dermatol Sci. 87:138–148. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Russell RC and Guan KL: The multifaceted
role of autophagy in cancer. EMBO J. 41:e1100312022. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Jalali P, Shahmoradi A, Samii A,
Mazloomnejad R, Hatamnejad MR, Saeed A, Namdar A and Salehi Z: The
role of autophagy in cancer: From molecular mechanism to
therapeutic window. Front Immunol. 16:15282302025. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Niu X, You Q, Hou K, Tian Y, Wei P, Zhu Y,
Gao B, Ashrafizadeh M, Aref AR, Kalbasi A, et al: Autophagy in
cancer development, immune evasion, and drug resistance. Drug
Resist Updat. 78:1011702025. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Alves S, Castro L, Fernandes MS, Francisco
R, Castro P, Priault M, Chaves SR, Moyer MP, Oliveira C, Seruca R,
et al: Colorectal cancer-related mutant KRAS alleles function as
positive regulators of autophagy. Oncotarget. 6:30787–30802. 2015.
View Article : Google Scholar : PubMed/NCBI
|