Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
March-2026 Volume 31 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2026 Volume 31 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

 Three‑dimensional culture of tumor cells (Review)

  • Authors:
    • Shiyao Du
    • Jinyu Yang
    • Hui Li
    • Shanshan Men
    • Dongping Xu
    • Haifeng Wang
  • View Affiliations / Copyright

    Affiliations: School of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, P.R. China
  • Article Number: 110
    |
    Published online on: January 15, 2026
       https://doi.org/10.3892/ol.2026.15464
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:


Abstract

While conventional two‑dimensional (2D) cell cultures and animal models have been cornerstone technologies in cancer research, they possess limitations in replicating human tumor pathophysiology. Notably, 2D models fail to capture key tissue‑level architecture and cell‑cell interactions, whereas animal models are often constrained by species‑specific discrepancies and high costs, which limits their applicability in investigating precise human tumor mechanisms. To overcome these shortcomings, three‑dimensional (3D) tumor models have emerged as a powerful complementary platform. The present review comprehensively explores the unique capabilities of 3D models in maintaining tumor heterogeneity, simulating the dynamic tumor microenvironment and accelerating high‑throughput drug screening. The present review also highlights the transformative potential of 3D models in personalized medicine and in deciphering the mechanisms underlying metastasis. Finally, the present review proposes a visionary roadmap for in vitro 3D model innovation, with the goal of guiding their effective translation from foundational research to clinical decision‑making in the future.

View Figures

Figure 1

Schematic illustration of 3D cell
culture using a hydrogel scaffold. 3D, three-dimensional.

Figure 2

3D printing system with the
synthesized scaffold. 3D, three-dimensional.

Figure 3

Schematic diagram of forming 3D cell
spheroids from 2D cultures using the spheroid culture method. 3D,
three-dimensional; 2D, two-dimensional.

Figure 4

Schematic diagram of the agarose
scaffold method for culturing cell spheroids in a 96-well
plate.
View References

1 

Madrid MF, Mendoza EN, Padilla AL, Choquenaira-Quispe C, de Jesus Guimarães C, de Melo Pereira JV, Barros-Nepomuceno FWA, Lopes Dos Santos I, Pessoa C, de Moraes Filho MO, et al: In vitro models to evaluate multidrug resistance in cancer cells: Biochemical and morphological techniques and pharmacological strategies. J Toxicol Environ Health B Crit Rev. 28:1–27. 2025. View Article : Google Scholar : PubMed/NCBI

2 

Faber MN, Sojan JM, Saraiva M, van West P and Secombes CJ: Development of a 3D spheroid cell culture system from fish cell lines for in vitro infection studies: Evaluation with Saprolegnia parasitica. J Fish Dis. 44:701–710. 2021. View Article : Google Scholar : PubMed/NCBI

3 

Langhans SA: Using 3D in vitro cell culture models in Anti-cancer drug discovery. Expert Opin Drug Discov. 16:841–850. 2021. View Article : Google Scholar : PubMed/NCBI

4 

Lu X, Liu X, Zhong H, Zhang W, Yu S and Guan R: Progress on Three-dimensional cell culture technology and their application. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 40:602–608. 2023.(In Chinese). PubMed/NCBI

5 

Sugimoto M, Kitagawa Y, Yamada M, Yajima Y, Utoh R and Seki M: Micropassage-embedding composite hydrogel fibers enable quantitative evaluation of cancer cell invasion under 3D coculture conditions. Lab Chip. 18:1378–1387. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Zhang T, Zhang KN and Ke CX: Research progress of three-dimensional cell culture in bladder cancer. J Med Res. 50:16–18. 2021.

7 

Zhang C, Yang Z, Dong DL, Jang TS, Knowles JC, Kim HW, Jin GZ and Xuan Y: 3D culture technologies of cancer stem cells: Promising ex vivo tumor models. J Tissue Eng. 11:20417314209334072020. View Article : Google Scholar : PubMed/NCBI

8 

Jovanović Stojanov S, Grozdanić M, Ljujić M, Dragičević S, Dragoj M and Dinić J: Cancer 3D Models: Essential tools for understanding and overcoming drug resistance. Oncol Res. 33:2741–2785. 2025. View Article : Google Scholar : PubMed/NCBI

9 

Lonkwic KM, Zajdel R and Kaczka K: Unlocking the potential of spheroids in personalized medicine: A systematic review of seeding methodologies. Int J Mol Sci. 26:64782025. View Article : Google Scholar : PubMed/NCBI

10 

Kaur N, Savitsky MJ, Scutte A, Mehta R, Dridi N, Sogbesan T, Savannah A, Lopez D, Yang D and Ali J: Navigating cancer treatment: A journey from 2D to 3D cancer models and nanoscale therapies. ACS Pharmacol Transl Sci. 8:3773–3800. 2025. View Article : Google Scholar : PubMed/NCBI

11 

Abuwatfa WH, Pitt WG and Husseini GA: Scaffold-based 3D cell culture models in cancer research. J Biomed Sci. 31:72024. View Article : Google Scholar : PubMed/NCBI

12 

Wang X, Kawazoe N and Chen G: Interaction of immune cells and tumor cells in gold nanorod-gelatin composite porous scaffolds. Nanomaterials (Basel). 9:13672019. View Article : Google Scholar : PubMed/NCBI

13 

Wang X, Zhang J, Li J, Chen Y, Kawazoe N and Chen G: Bifunctional scaffolds for the photothermal therapy of breast tumor cells and adipose tissue regeneration. J Mater Chem B. 6:7728–7736. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Alafnan A, Seetharam AA, Hussain T, Gupta MS, Rizvi SMD, Moin A, Alamri A, Unnisa A, Awadelkareem AM, Elkhalifa AO, et al: Development and characterization of PEGDA microneedles for localized drug delivery of gemcitabine to treat inflammatory breast cancer. Materials (Basel). 15:76932022. View Article : Google Scholar : PubMed/NCBI

15 

Bai G, Yuan P, Cai B, Qiu X, Jin R, Liu S, Li Y and Chen X: Stimuli-responsive scaffold for breast cancer treatment combining accurate photothermal therapy and adipose tissue regeneration. Adv Funct Mater. 29:19044012019. View Article : Google Scholar

16 

Dettin M, Sieni E, Zamuner A, Marino R, Sgarbossa P, Lucibello M, Tosi AL, Keller F, Campana LG and Signori E: A Novel 3D scaffold for cell growth to asses electroporation efficacy. Cells. 8:14702019. View Article : Google Scholar : PubMed/NCBI

17 

Fang Z, Chen L, Moser MA, Zhang W, Qin Z and Zhang B: Electroporation-based therapy for brain tumors: A review. J Biomech Eng. 143:1008022021. View Article : Google Scholar : PubMed/NCBI

18 

Lou J and Mooney DJ: Chemical strategies to engineer hydrogels for cell culture. Nat Rev Chem. 6:726–744. 2022. View Article : Google Scholar : PubMed/NCBI

19 

Radulescu DM, Neacsu IA, Grumezescu AM and Andronescu E: New insights of scaffolds based on hydrogels in tissue engineering. Polymers (Basel). 14:7992022. View Article : Google Scholar : PubMed/NCBI

20 

Wang C, Ye X, Zhao Y, Bai L, He Z, Tong Q, Xie X, Zhu H, Cai D, Zhou Y, et al: Cryogenic 3D printing of porous scaffolds for in situ delivery of 2D black phosphorus nanosheets, doxorubicin hydrochloride and osteogenic peptide for treating tumor resection-induced bone defects. Biofabrication. 12:0350042020. View Article : Google Scholar : PubMed/NCBI

21 

Yang X, Wang Y, Mao T, Wang Y, Liu R, Yu L and Ding J: An oxygen-enriched thermosensitive hydrogel for the relief of a hypoxic tumor microenvironment and enhancement of radiotherapy. Biomater Sci. 9:7471–7482. 2021. View Article : Google Scholar : PubMed/NCBI

22 

Yang A, Bai Y, Dong X, Ma T, Zhu D, Mei L and Lv F: Hydrogel/nanoadjuvant-mediated combined cell vaccines for cancer immunotherapy. Acta Biomater. 133:257–267. 2021. View Article : Google Scholar : PubMed/NCBI

23 

Fu SJ, Liu XX, Hu MB, Li CJ, Wang FJ and Wang L: Preparation and characterization of fiber-hydrogel composite scaffolds for three-dimensional culture of breast tumorcells. J Donghua Univ (Nat Sci). 50:11–19. 2024.

24 

Quazi MZ and Park N: DNA Hydrogel-based nanocomplexes with Cancer-targeted delivery and Light-triggered peptide drug release for Cancer-specific therapeutics. Biomacromolecules. 24:2127–2137. 2023. View Article : Google Scholar : PubMed/NCBI

25 

Jiang R, Huang J, Sun X, Chu X, Wang F, Zhou J, Fan Q and Pang L: Construction of in vitro 3-D model for lung cancer-cell metastasis study. BMC Cancer. 22:4382022. View Article : Google Scholar : PubMed/NCBI

26 

Yao J, Li J, Du G and Zhao JM: Effect of nano-microporous polycaprolactone combined with bone marrow mesenchymal stem cells on cartilage injury in rabbits. Guangdong Med J. 35:3307–3309. 2014.

27 

Mahendiran B, Muthusamy S, Selvakumar R, Rajeswaran N, Sampath S, Jaisankar SN and Krishnakumar GS: Decellularized natural 3D cellulose scaffold derived from Borassus flabellifer (Linn.) as extracellular matrix for tissue engineering applications. Carbohydr Polym. 272:1184942021. View Article : Google Scholar : PubMed/NCBI

28 

Nemati M, Bani F, Sepasi T, Zamiri RE, Rasmi Y, Kahroba H, Rahbarghazi R, Sadeghi MR, Wang Y, Zarebkohan A and Gao H: Unraveling the effect of breast cancer patients' plasma on the targeting ability of folic acid-modified chitosan nanoparticles. Mol Pharm. 18:4341–4353. 2021. View Article : Google Scholar : PubMed/NCBI

29 

Tian XH: Preparation of pH-responsive Chitosan Anticancer Drug Carriers and Their Application. Jinzhou Medical University; 2019

30 

De Araújo JT, Tavares Junior AG, Di Filippo LD, Duarte JL, Ribeiro TD and Chorilli M: Overview of chitosan-based nanosystems for prostate cancer therapy. Eur Polymer J. 160:1108122021. View Article : Google Scholar

31 

Pham DT, Saelim N and Tiyaboonchai W: Paclitaxel loaded EDC-crosslinked fibroin nanoparticles: A potential approach for colon cancer treatment. Drug Deliv Transl Res. 10:413–424. 2020. View Article : Google Scholar : PubMed/NCBI

32 

Chaicharoenaudomrung N, Kunhorm P, Promjantuek W, Heebkaew N, Rujanapun N and Noisa P: Fabrication of 3D calcium-alginate scaffolds for human glioblastoma modeling and anticancer drug response evaluation. J Cell Physiol. 234:20085–20097. 2019. View Article : Google Scholar : PubMed/NCBI

33 

Kim CJ, Terado T, Tambe Y, Mukaisho KI, Sugihara H, Kawauchi A and Inoue H: Anti-oncogenic activities of cyclin D1b siRNA on human bladder cancer cells via induction of apoptosis and suppression of cancer cell stemness and invasiveness. Int J Oncol. 52:231–240. 2018.PubMed/NCBI

34 

Liu C, Wang Z, Wei X, Chen B and Luo Y: 3D printed hydrogel/PCL core/shell fiber scaffolds with NIR-triggered drug release for cancer therapy and wound healing. Acta Biomater. 131:314–325. 2021. View Article : Google Scholar : PubMed/NCBI

35 

Niculescu AG, Chircov C, Bîrcă AC and Grumezescu AM: Fabrication and applications of microfluidic devices: A review. Int J Mol Sci. 22:20112021. View Article : Google Scholar : PubMed/NCBI

36 

Modena MM, Chawla K, Misun PM and Hierlemann A: Smart cell culture systems: Integration of sensors and actuators into microphysiological systems. ACS Chem Biol. 13:1767–1784. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Parihar A and Mehta PP: Lab-on-a-chip devices for advanced biomedicines: Laboratory scale engineering to clinical ecosystem. Royal Society of Chemistry; 2024, View Article : Google Scholar

38 

Hakim M, Khorasheh F, Alemzadeh I and Vossoughi M: A new insight to deformability correlation of circulating tumor cells with metastatic behavior by application of a new deformability-based microfluidic chip. Anal Chim Acta. 1186:3391152021. View Article : Google Scholar : PubMed/NCBI

39 

Matsuura-Sawada Y, Maeki M, Uno S, Wada K and Tokeshi M: Controlling lamellarity and physicochemical properties of liposomes prepared using a microfluidic device. Biomater Sci. 11:2419–2426. 2023. View Article : Google Scholar : PubMed/NCBI

40 

Xu Y, Chen B, He M, Cui Z and Hu B: All-in-One microfluidic chip for online labeling, separating, and focusing rare circulating tumor cells from blood samples followed by inductively coupled plasma mass spectrometry detection. Anal Chem. 95:14061–14067. 2023. View Article : Google Scholar : PubMed/NCBI

41 

Zhu YH, Chen S, Zhang CF, Ikoma T, Guo HM, Zhang XY, Li X and Chen W: Novel microsphere-packing synthesis, microstructure, formation mechanism and in vitro biocompatibility of porous gelatin/hydroxyapatite microsphere scaffolds. Ceramics Int. 47:32187–32194. 2021. View Article : Google Scholar

42 

Allu I, Sahi AK, Koppadi M, Gundu S and Sionkowska A: Decellularization techniques for tissue engineering: Towards replicating native extracellular matrix architecture in liver regeneration. J Funct Biomater. 14:5182023. View Article : Google Scholar : PubMed/NCBI

43 

Qiu H, Wang H, Yang X and Huo F: High performance isolation of circulating tumor cells by acoustofluidic chip coupled with ultrasonic concentrated energy transducer. Colloids Surf B Biointerfaces. 222:1131382023. View Article : Google Scholar : PubMed/NCBI

44 

Hen SK and Jv XJ: Preparation of open macroporous alginate microspheres for Three-dimensional cell culture. Polymer Materials Sci Engine. 39:126–133. 2023.

45 

Song JQ, Chen HL and Yang FW: Research and Application of 3D Bioprinting Technology in Medical Field. Chin Med Equipment. 36:151–165. 2021.

46 

Liu P: Construction and Application of 3D-printed microfluidic chip cell analysis platform. Shandong Normal University; 2023

47 

Jin Y, Zhang J, Xing J, Li Y, Yang H, Ouyang L, Fang ZY, Sun LJ, Jin B, et al: Multicellular 3D bioprinted human gallbladder carcinoma forin vitromimicry of tumor microenvironment and intratumoral heterogeneity. Biofabrication. 16:0450282024. View Article : Google Scholar

48 

Mai P, Hampl J, Baca M, Brauer D, Singh S, Weise F, Borowiec J, Schmidt A, Küstner JM, Klett M, et al: MatriGrid® based biological morphologies: Tools for 3D cell culturing. Bioengineering (Basel). 9:2202022. View Article : Google Scholar : PubMed/NCBI

49 

Jubelin C, Muñoz-Garcia J, Griscom L, Cochonneau D, Ollivier E, Heymann MF, Vallette FM, Oliver L and Heymann D: Three-dimensional in vitro culture models in oncology research. Cell Biosci. 12:1552022. View Article : Google Scholar : PubMed/NCBI

50 

Ayvaz I, Sunay D, Sariyar E, Erdal E and Karagonlar ZF: Three-dimensional cell culture models of hepatocellular carcinoma-a review. J Gastrointest Cancer. 52:1294–1308. 2021. View Article : Google Scholar : PubMed/NCBI

51 

De Pieri A, Rochev Y and Zeugolis DI: Scaffold-free cell-based tissue engineering therapies: Advances, shortfalls and forecast. NPJ Regen Med. 6:182021. View Article : Google Scholar : PubMed/NCBI

52 

Czaplinska D, Elingaard-Larsen LO, Rolver MG, Severin M and Pedersen SF: 3D multicellular models to study the regulation and roles of acid-base transporters in breast cancer. Biochem Soc Trans. 47:1689–1700. 2019. View Article : Google Scholar : PubMed/NCBI

53 

Kelm JM, Timmins NE, Brown CJ, Fussenegger M and Nielsen LK: Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng. 83:173–180. 2003. View Article : Google Scholar : PubMed/NCBI

54 

Rodoplu D, Matahum JS and Hsu CH: A microfluidic hanging drop-based spheroid co-culture platform for probing tumor angiogenesis. Lab Chip. 22:1275–1285. 2022. View Article : Google Scholar : PubMed/NCBI

55 

Safari F, Shakery T and Sayadamin N: Evaluating the effect of secretome of human amniotic mesenchymal stromal cells on apoptosis induction and epithelial-mesenchymal transition inhibition in LNCaP prostate cancer cells based on 2D and 3D cell culture models. Cell Biochem Funct. 39:813–820. 2021. View Article : Google Scholar : PubMed/NCBI

56 

Heinrich MA, Huynh NT and Heinrich Prakash J: Understanding glioblastoma stromal barriers against NK cell attack using tri-culture 3D spheroid model. Heliyon. 10:e248082024. View Article : Google Scholar : PubMed/NCBI

57 

Bahmad HF, Cheaito K, Chalhoub RM, Hadadeh O, Monzer A, Ballout F, EL-Hajj A, Mukherji D, Liu YN, Daoud G and Abou-Kheir W: Sphere-formation assay: Three-dimensional in vitro culturing of prostate cancer stem/progenitor sphere-forming cells. Front Oncol. 8:3472018. View Article : Google Scholar : PubMed/NCBI

58 

Ferreira SM: Effect of normal and tumor extracellular matrix in cancer stem Cell-Like properties. Universidade do Porto (Portugal); 2019

59 

Xue W, Wang J, Hou Y, Wu D, Wang H, Jia Q, Jiang Q, Wang Y, Song C, Wang Y, et al: Lung decellularized matrix-derived 3D spheroids: Exploring silicosis through the impact of the Nrf2/Bax pathway on myofibroblast dynamics. Heliyon. 10:e335852024. View Article : Google Scholar : PubMed/NCBI

60 

Sun B, Liang Z, Wang Y, Yu Y, Zhou X, Geng X and Li B: A 3D spheroid model of quadruple cell co-culture with improved liver functions for hepatotoxicity prediction. Toxicology. 505:1538292024. View Article : Google Scholar : PubMed/NCBI

61 

Wang J, Kong Y and Deng FS: Enrichment of pancreatic cancer stem cells by sphere-forming culture. Anhui Med J. 40:1303–1305. 2019.

62 

Raggi C, Taddei ML, Sacco E, Navari N, Correnti M, Piombanti B, Pastore M, Campani C, Pranzini E, Iorio J, et al: Mitochondrial oxidative metabolism contributes to a cancer stem cell phenotype in cholangiocarcinoma. J Hepatol. 74:1373–1385. 2021. View Article : Google Scholar : PubMed/NCBI

63 

Topal U and Zamur C: Microgravity, stem cells, and cancer: A new hope for cancer treatment. Stem Cells Int. 2021:55668722021. View Article : Google Scholar : PubMed/NCBI

64 

Kumar V, Sethi B, Staller DW, Shrestha P and Mahato RI: Gemcitabine elaidate and ONC201 combination therapy for inhibiting pancreatic cancer in a KRAS mutated syngeneic mouse model. Cell Death Discov. 10:1582024. View Article : Google Scholar : PubMed/NCBI

65 

Belloni D, Ferrarini M, Ferrero E, Guzzeloni V, Barbaglio F, Ghia P and Scielzo C: Protocol for generation of 3D bone marrow surrogate microenvironments in a rotary cell culture system. STAR Protoc. 3:1016012022. View Article : Google Scholar : PubMed/NCBI

66 

Naser Al Deen N, Atallah Lanman N, Chittiboyina S, Lelièvre S, Nasr R, Nassar F, Dohna H, AbouHaidar M and Talhouk R: A risk progression breast epithelial 3D culture model reveals Cx43/hsa_circ_0077755/miR-182 as a biomarker axis for heightened risk of breast cancer initiation. Sci Rep. 11:26262021. View Article : Google Scholar : PubMed/NCBI

67 

Malhão F, Macedo AC, Ramos AA and Rocha E: Morphometrical, morphological, and immunocytochemical characterization of a tool for cytotoxicity research: 3D cultures of breast cell lines grown in Ultra-low attachment plates. Toxics. 10:4152022. View Article : Google Scholar : PubMed/NCBI

68 

Yang JY, Liu D, Li L, Li DH and Wang HF: Effect of propofol on pyroptosis of lung cancer A549 cells by NLRP3/ASC/caspase-1 pathway. J China Med Univ. 53:132–141. 2024.

69 

Du M, Liu ZJ, Zou F, Cai HH, Li JY and Zhou BMJ: Effect of umbilical cord mesenchymal stem cell supernatant on esophageal squamous cell carcinoma spheres. Chin J Gastroenterol Hepatol. 31:634–637. 2022.

70 

Liu B, Han S, Modarres-Sadeghi Y and Lynch ME: Multiphysics simulation of a compression-perfusion combined bioreactor to predict the mechanical microenvironment during bone metastatic breast cancer loading experiments. Biotechnol Bioeng. 118:1779–1792. 2021. View Article : Google Scholar : PubMed/NCBI

71 

Calamak S, Ermis M, Sun H, Islam S, Sikora M, Nguyen M, Hasirci V and Steinmetz LM: A circulating bioreactor reprograms cancer cells toward a more mesenchymal niche. Adv Biosyst. 4:e19001392020. View Article : Google Scholar : PubMed/NCBI

72 

Huo Z, Bilang R, Supuran CT, von der Weid N, Bruder E, Holland-Cunz S, Martin I, Muraro MG and Gros SJ: Perfusion-based bioreactor culture and isothermal microcalorimetry for preclinical drug testing with the carbonic anhydrase inhibitor SLC-0111 in Patient-derived neuroblastoma. Int J Mol Sci. 23:31282022. View Article : Google Scholar : PubMed/NCBI

73 

Bober Z, Podgórski R, Aebisher D, Cieślar G, Kawczyk-Krupka A and Bartusik-Aebisher D: Cellular 1H MR relaxation times in healthy and cancer Three-dimensional (3D) breast cell culture. Int J Mol Sci. 24:47352023. View Article : Google Scholar : PubMed/NCBI

74 

Anil-Inevi M, Yilmaz E, Sarigil O, Tekin HC and Ozcivici E: Single cell densitometry and weightlessness culture of mesenchymal stem cells using magnetic levitation. Methods Mol Biol. 2125:15–25. 2020. View Article : Google Scholar : PubMed/NCBI

75 

Hoarau-Vechot J, Rafii A, Touboul C and Pasquier J: Halfway between 2D and animal models: Are 3D cultures the ideal tool to study cancer-microenvironment interactions? Int J Mol Sci. 19:1812018. View Article : Google Scholar : PubMed/NCBI

76 

Vu B, Souza GR and Dengjel J: Scaffold-free 3D cell culture of primary skin fibroblasts induces profound changes of the matrisome. Matrix Biol Plus. 11:1000662021. View Article : Google Scholar : PubMed/NCBI

77 

Qin WJ, Pan MP, Su ZJ, Hou RR, Lu HJ and Le ZC: Biological clock synchronization of cancer cells basedw on suspension culturedand its application in the study of timing drug administration. J Xiamen Univ (Nat Sci). 138–143. 2021.

78 

Jaganathan H, Gage J, Leonard F, Srinivasan S, Souza GR, Dave B and Godin B: Three-dimensional in vitro co-culture model of breast tumor using magnetic levitation. Sci Rep. 4:64682014. View Article : Google Scholar : PubMed/NCBI

79 

He YY, Li LJ, Zhang SQ, Li YZ, Yang S and Ji P: Method of constructing cell spheroids based on agarose and polyacrylic molds. Chin J Tissue Eng Res. 26:553–559. 2022.(In Chinese).

80 

Zhang J, Fan X, Li M, Dou MJ and Wang HF: Establishment of 3-dimensional culture model of HepG2 cells and viability detection. Central South Pharmacy. 18:1111–1114. 2020.

81 

Chen L, Li KM, Ma HJ, Wang F, Zeng SX and Song XQ: The inhibitory effect of EGCG on breast cancer stem cell migration and Self-renewal properties in 3D culture system. J Xinyang Normal Univ Nat Sci Ed. 32:437–442. 2019.

82 

Gong C, Kong Z and Wang X: The effect of agarose on 3D bioprinting. Polymers (Basel). 13:40282021. View Article : Google Scholar : PubMed/NCBI

83 

Wang H, Brown PC, Chow ECY, Ewart L, Ferguson SS, Fitzpatrick S, Freedman BS, Guo GL, Hedrich W, Heyward S, et al: 3D cell culture models: Drug pharmacokinetics, safety assessment, and regulatory consideration. Clin Transl Sci. 14:1659–1680. 2021. View Article : Google Scholar : PubMed/NCBI

84 

Zuo DQ and Cai ZD: Progress in three-dimensional cell culture and its application in tumor research. Tumor. 38:502–507. 2023.

85 

Rauner G, Gupta PB and Kuperwasser C: From 2D to 3D and beyond: The evolution and impact of in vitro tumor models in cancer research. Nat Methods. 22:1776–1787. 2025. View Article : Google Scholar : PubMed/NCBI

86 

Barbosa MA, Xavier CP, Pereira RF, Petrikaitė V and Vasconcelos MH: 3D cell culture models as recapitulators of the tumor microenvironment for the screening of Anti-cancer drugs. Cancers (Basel). 14:1902021. View Article : Google Scholar : PubMed/NCBI

87 

Valyi-Nagy K, Kormos B, Ali M, Shukla D and Valyi-Nagy T: Stem cell marker CD271 is expressed by vasculogenic mimicry-forming uveal melanoma cells in three-dimensional cultures. Mol Vis. 18:588–592. 2012.PubMed/NCBI

88 

Lombardo Y, Filipović A, Molyneux G, Periyasamy M, Giamas G, Hu Y, Trivedi PS, Wang J, Yagüe E, Michel L and Coombes RC: Nicastrin regulates breast cancer stem cell properties and tumor growth in vitro and in vivo. Proc Natl Acad Sci USA. 109:16558–16563. 2012. View Article : Google Scholar : PubMed/NCBI

89 

Eelen G, Treps L, Li X and Carmeliet P: Basic and therapeutic aspects of angiogenesis updated. Circ Res. 127:310–329. 2020. View Article : Google Scholar : PubMed/NCBI

90 

Lugano R, Ramachandran M and Dimberg A: Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell Mol Life Sci. 77:1745–1770. 2020. View Article : Google Scholar : PubMed/NCBI

91 

Lazzari G, Nicolas V, Matsusaki M, Akashi M, Couvreur P and Mura S: Multicellular spheroid based on a triple co-culture: A novel 3D model to mimic pancreatic tumor complexity. Acta Biomater. 78:296–307. 2018. View Article : Google Scholar : PubMed/NCBI

92 

Kumari S, Advani D, Sharma S, Ambasta RK and Kumar P: Combinatorial therapy in tumor microenvironment: Where do we stand? Biochim Biophys Acta Rev Cancer. 1876:1885852021. View Article : Google Scholar : PubMed/NCBI

93 

Gao QD, Duan XF, Li Y, Xu T, Yu YY and Bai GD: Research on the role of resveratrol against breast cancer. China Pharmacy. 35:1408–1412. 2024.

94 

Ren X, Zhang L, Zhang Y, Li Z, Siemers N and Zhang Z: Insights gained from Single-Cell analysis of immune cells i91n the tumor microenvironment. Annu Rev Immunol. 9:583–609. 2021. View Article : Google Scholar : PubMed/NCBI

95 

Amaral RLF, Miranda M, Marcato PD and Swiech K: Comparative analysis of 3D bladder tumor spheroids obtained by forced floating and hanging drop methods for drug screening. Front Physiol. 8:6052017. View Article : Google Scholar : PubMed/NCBI

96 

Zhang W, Zhao K, Zhang K, Chen X, Hao M and Yang Z: Advances in the biological characteristics and stem maintenance mechanisms of tumor stem cells. Chin J Biotech. 40:391–418. 2024.

97 

Li XY, Yang X and Huang M: Advances in cancer therapeutic targets-cancer stem cells. J Logistics Univ PAP (Med Sci). 3:65–70. 2021.

98 

Zhang LS, Shi HY, Zhang T, Wang J, Mao H and Wang XL: Research progress of biomarkers of endometrial cancer stemc cells. Med Recapitulate. 934–939. 2022.

99 

Lee H, Kim B, Park J, Park S, Yoo G, Yum S, Kang W, Lee JM, Youn H and Youn B: Cancer stem cells: Landscape, challenges and emerging therapeutic innovations. Signal Transduct Target Ther. 10:2482025. View Article : Google Scholar : PubMed/NCBI

100 

Guo S, Zheng S, Liu M and Wang G: Novel anti-cancer stem cell Compounds: A Comprehensive review. Pharmaceutics. 16:10242024. View Article : Google Scholar : PubMed/NCBI

101 

Li YR, Fang Y, Lyu Z, Zhu Y and Yang L: Exploring the dynamic interplay between cancer stem cells and the tumor microenvironment: implications for novel therapeutic strategies. J Transl Med. 21:6862023. View Article : Google Scholar : PubMed/NCBI

102 

Kimlin LC, Casagrande G and Virador VM: In vitro three-dimensional (3D) models in cancer research: An update. Mol Carcinog. 52:167–182. 2013. View Article : Google Scholar : PubMed/NCBI

103 

Chunduri V and Maddi S: Role of in vitro two-dimensional (2D) and three-dimensional (3D) cell culture systems for ADME-Tox screening in drug discovery and development: A comprehensive review. ADMET DMPK. 11:1–32. 2023.PubMed/NCBI

104 

Crouigneau R, Li YF, Auxillos J, Goncalves-Alves E, Marie R, Sandelin A and Pedersen SF: Mimicking and analyzing the tumor microenvironment. Cell Reports Methods. 4:1008662024. View Article : Google Scholar : PubMed/NCBI

105 

Honkala A, Malhotra SV, Kummar S and Junttila MR: Harnessing the predictive power of preclinical models for oncology drug development. Nat Rev Drug Discov. 21:99–114. 2022. View Article : Google Scholar : PubMed/NCBI

106 

Baru A, Mazumder S, Kundu P, Sharma S, Purakayastha BPD, Khan S, Gupta R and Arora NM: Establishment of a three-dimensional triculture model on the novel AXTEX-4D™ platform. Oncol Rep. 49:22023. View Article : Google Scholar : PubMed/NCBI

107 

Goenka A, Khan F, Verma B, Sinha P, Dmello CC, Jogalekar MP, Gangadaran P and Ahn BC: Tumor microenvironment signaling and therapeutics in cancer progression. Cancer Commun (Lond). 43:525–561. 2023. View Article : Google Scholar : PubMed/NCBI

108 

Rosendahl J, Svanström A, Berglin M, Petronis S, Bogestål Y, Stenlund P, Standoft S, Ståhlberg A, Landberg G, Chinga-Carrasco G and Håkansson J: 3D printed nanocellulose scaffolds as a cancer cell culture model system. Bioengineering (Basel). 8:972021. View Article : Google Scholar : PubMed/NCBI

109 

Rafieyan S, Ansari E and Vasheghani-Farahani E: A practical machine learning approach for predicting the quality of 3D (bio) printed scaffolds. Biofabrication. 162024.doi: 10.1088/1758-5090/ad6374. PubMed/NCBI

110 

Anthon SG and Valente KPL: Vascularization strategies in 3D cell culture models: From scaffold-free models to 3D bioprinting. Int J Mol Sci. 23:145822022. View Article : Google Scholar : PubMed/NCBI

111 

Yoon S, Cheon SY, Park S, Lee D, Lee Y, Han S, Kim M and Koo H: Recent advances in optical imaging through deep tissue: Imaging probes and techniques. Biomater Res. 26:572022. View Article : Google Scholar : PubMed/NCBI

112 

Xu X, Su J, Zhu R, Li K, Zhao X, Fan J and Mao F: From morphology to single-cell molecules: High-resolution 3D histology in biomedicine. Mol Cancer. 24:632025. View Article : Google Scholar : PubMed/NCBI

113 

Ali M, Benfante V, Basirinia G, Alongi P, Sperandeo A, Quattrocchi A, Giannone AG, Cabibi D and Yezzi A: Applications of artificial intelligence, deep learning, and machine learning to support the analysis of microscopic images of cells and tissues. J Imaging. 11:592025. View Article : Google Scholar : PubMed/NCBI

114 

Li Y and Cui H and Cui H: Precision spatial control of Tumor-stroma interactions in cancer models via 3D bioprinting for advanced research and therapy. Adv Funct Materials. 35:25033912025. View Article : Google Scholar

115 

Hamilton C, Collins V, Butala S, Lee K, Panse N, Pierce A, Borole A, Gupta S, Rahimi S, Truong H and Beckerman W: Current trends and outlook of 3D printing in vascular surgery. JVS-Vascular Insights. 2:1001142024. View Article : Google Scholar

116 

Li Z, Hui J, Yang P and Mao H: Microfluidic organ-on-a-chip system for disease modeling and drug development. Biosensors. 12:3702022. View Article : Google Scholar : PubMed/NCBI

117 

Nevedomskaya E and Haendler B: From omics to multi-omics approaches for in-depth analysis of the molecular mechanisms of prostate cancer. Int J Mol Sci. 23:62812022. View Article : Google Scholar : PubMed/NCBI

118 

Yetgin A: Revolutionizing multi-omics analysis with artificial intelligence and data processing. Quantitative Biol. 13:e700022025. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Du S, Yang J, Li H, Men S, Xu D and Wang H: <p>&nbsp;Three‑dimensional culture of tumor cells (Review)</p>. Oncol Lett 31: 110, 2026.
APA
Du, S., Yang, J., Li, H., Men, S., Xu, D., & Wang, H. (2026). <p>&nbsp;Three‑dimensional culture of tumor cells (Review)</p>. Oncology Letters, 31, 110. https://doi.org/10.3892/ol.2026.15464
MLA
Du, S., Yang, J., Li, H., Men, S., Xu, D., Wang, H."<p>&nbsp;Three‑dimensional culture of tumor cells (Review)</p>". Oncology Letters 31.3 (2026): 110.
Chicago
Du, S., Yang, J., Li, H., Men, S., Xu, D., Wang, H."<p>&nbsp;Three‑dimensional culture of tumor cells (Review)</p>". Oncology Letters 31, no. 3 (2026): 110. https://doi.org/10.3892/ol.2026.15464
Copy and paste a formatted citation
x
Spandidos Publications style
Du S, Yang J, Li H, Men S, Xu D and Wang H: <p>&nbsp;Three‑dimensional culture of tumor cells (Review)</p>. Oncol Lett 31: 110, 2026.
APA
Du, S., Yang, J., Li, H., Men, S., Xu, D., & Wang, H. (2026). <p>&nbsp;Three‑dimensional culture of tumor cells (Review)</p>. Oncology Letters, 31, 110. https://doi.org/10.3892/ol.2026.15464
MLA
Du, S., Yang, J., Li, H., Men, S., Xu, D., Wang, H."<p>&nbsp;Three‑dimensional culture of tumor cells (Review)</p>". Oncology Letters 31.3 (2026): 110.
Chicago
Du, S., Yang, J., Li, H., Men, S., Xu, D., Wang, H."<p>&nbsp;Three‑dimensional culture of tumor cells (Review)</p>". Oncology Letters 31, no. 3 (2026): 110. https://doi.org/10.3892/ol.2026.15464
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team