You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
|
Crezee J, Franken NAP and Oei AL: Hyperthermia-based anti-cancer treatments. Cancers. 13:12402021. View Article : Google Scholar : PubMed/NCBI |
|
|
Datta NR, Ordóñez SG, Gaipl US, Paulides MM, Crezee H, Gellermann J, Marder D, Puric E and Bodis S: Local hyperthermia combined with radiotherapy and-/or chemotherapy: Recent advances and promises for the future. Cancer Treat Rev. 41:742–753. 2015. View Article : Google Scholar : PubMed/NCBI |
|
|
Maeda H and Khatami M: Analyses of repeated failures in cancer therapy for solid tumors: Poor tumor-selective drug delivery, low therapeutic efficacy and unsustainable costs. Clin Transl Med. 7:112018. View Article : Google Scholar : PubMed/NCBI |
|
|
Beck M, Ghadjar P, Mehrhof F, Zips D, Paulsen F, Wegener D, Burock S, Kaul D, Stromberger C, Nadobny J, et al: Salvage-radiation therapy and regional hyperthermia for biochemically recurrent prostate cancer after radical prostatectomy (Results of the Planned Interim Analysis). Cancers (Basel). 13:11332021. View Article : Google Scholar : PubMed/NCBI |
|
|
Harima Y, Ohguri T, Imada H, Sakurai H, Ohno T, Hiraki Y, Tuji K, Tanaka M and Terashima H: A multicentre randomised clinical trial of chemoradiotherapy plus hyperthermia versus chemoradiotherapy alone in patients with locally advanced cervical cancer. Int J Hyperthermia. 32:801–808. 2016. View Article : Google Scholar : PubMed/NCBI |
|
|
Issels RD, Lindner LH, Verweij J, Wust P, Reichardt P, Schem BC, Abdel-Rahman S, Daugaard S, Salat C, Wendtner CM, et al: Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: A randomised phase 3 multicentre study. Lancet Oncol. 11:561–570. 2010. View Article : Google Scholar : PubMed/NCBI |
|
|
Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R and Riess H: The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol. 43:33–56. 2002. View Article : Google Scholar : PubMed/NCBI |
|
|
Yi GY, Kim MJ, Kim HI, Park J and Baek SH: Hyperthermia treatment as a promising anti-cancer strategy: Therapeutic targets, perspective mechanisms and synergistic combinations in experimental approaches. Antioxid Basel Switz. 11:6252022. View Article : Google Scholar |
|
|
Righini MF, Durham A and Tsoutsou PG: Hyperthermia and radiotherapy: Physiological basis for a synergistic effect. Front Oncol. 14:14280652024. View Article : Google Scholar : PubMed/NCBI |
|
|
Overgaard J, Gonzalez Gonzalez D, Hulshof MC, Arcangeli G, Dahl O, Mella O and Bentzen SM: Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. European Society for Hyperthermic Oncology. Lancet Lond Engl. 345:540–543. 1995. View Article : Google Scholar : PubMed/NCBI |
|
|
Wessalowski R, Schneider DT, Mils O, Friemann V, Kyrillopoulou O, Schaper J, Matuschek C, Rothe K, Leuschner I, Willers R, et al: Regional deep hyperthermia for salvage treatment of children and adolescents with refractory or recurrent non-testicular malignant germ-cell tumours: An open-label, non-randomised, single-institution, phase 2 study. Lancet Oncol. 14:843–852. 2013. View Article : Google Scholar : PubMed/NCBI |
|
|
van der Zee J, González González D, van Rhoon GC, van Dijk JD, van Putten WL and Hart AA: Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: A prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet Lond Engl. 355:1119–1125. 2000. View Article : Google Scholar : PubMed/NCBI |
|
|
Issels RD, Lindner LH, Verweij J, Wessalowski R, Reichardt P, Wust P, Ghadjar P, Hohenberger P, Angele M, Salat C, et al: Effect of neoadjuvant chemotherapy plus regional hyperthermia on long-term outcomes among patients with localized high-risk soft tissue sarcoma: The EORTC 62961-ESHO 95 randomized clinical trial. JAMA Oncol. 4:483–492. 2018. View Article : Google Scholar : PubMed/NCBI |
|
|
Datta NR, Puric E, Klingbiel D, Gomez S and Bodis S: Hyperthermia and radiation therapy in locoregional recurrent breast cancers: A systematic review and Meta-analysis. Int J Radiat Oncol Biol Phys. 94:1073–1087. 2016. View Article : Google Scholar : PubMed/NCBI |
|
|
Datta NR, Rogers S, Klingbiel D, Gómez S, Puric E and Bodis S: Hyperthermia and radiotherapy with or without chemotherapy in locally advanced cervical cancer: A systematic review with conventional and network meta-analyses. Int J Hyperthermia. 32:809–821. 2016. View Article : Google Scholar : PubMed/NCBI |
|
|
Dikomey E and Franzke J: Effect of heat on induction and repair of DNA strand breaks in X-irradiated CHO cells. Int J Radiat Biol. 61:221–233. 1992. View Article : Google Scholar : PubMed/NCBI |
|
|
IJff M, Crezee J, Oei AL, Stalpers LJA and Westerveld H: The role of hyperthermia in the treatment of locally advanced cervical cancer: A comprehensive review. Int J Gynecol Cancer. 32:288–296. 2022. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhu W, Pan S, Zhang J, Xu J, Zhang R, Zhang Y, Fu Z, Wang Y, Hu C and Xu Z: The role of hyperthermia in the treatment of tumor. Crit Rev Oncol Hematol. 204:1045412024. View Article : Google Scholar : PubMed/NCBI |
|
|
Kim JH, Hahn EW and Tokita N: Combination hyperthermia and radiation therapy for cutaneous malignant melanoma. Cancer. 41:2143–2148. 1978. View Article : Google Scholar : PubMed/NCBI |
|
|
Liu G, Ma R, Liu P, Wang K and Cai K: An injectable nanocomposite hydrogel prevents postoperative tumor recurrence and wound infection via synergistic photothermal-chemo-therapy. J Colloid Interface Sci. 655:809–821. 2024. View Article : Google Scholar : PubMed/NCBI |
|
|
Farzin L, Saber R, Sadjadi S, Mohagheghpour E and Sheini A: Nanomaterials-based hyperthermia: A literature review from concept to applications in chemistry and biomedicine. J Therm Biol. 104:1032012022. View Article : Google Scholar : PubMed/NCBI |
|
|
Dewey WC: Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperthermia. 10:457–483. 1994. View Article : Google Scholar : PubMed/NCBI |
|
|
Dewhirst MW, Prosnitz L, Thrall D, Prescott D, Clegg S, Charles C, MacFall J, Rosner G, Samulski T, Gillette E and LaRue S: Hyperthermic treatment of malignant diseases: Current status and a view toward the future. Semin Oncol. 24:616–625. 1997.PubMed/NCBI |
|
|
Urano M, Kuroda M and Nishimura Y: For the clinical application of thermochemotherapy given at mild temperatures. Int J Hyperthermia. 15:79–107. 1999. View Article : Google Scholar : PubMed/NCBI |
|
|
Elming PB, Sørensen BS, Oei AL, Franken NAP, Crezee J, Overgaard J and Horsman MR: Hyperthermia: The optimal treatment to overcome radiation resistant hypoxia. Cancers (Basel). 11:602019. View Article : Google Scholar : PubMed/NCBI |
|
|
Dewhirst MW, Vujaskovic Z, Jones E and Thrall D: Re-setting the biologic rationale for thermal therapy. Int J Hyperthermia. 21:779–790. 2005. View Article : Google Scholar : PubMed/NCBI |
|
|
Vaupel P, Kallinowski F and Okunieff P: Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review. Cancer Res. 49:6449–6465. 1989.PubMed/NCBI |
|
|
Vaupel P, Mayer A and Höckel M: Tumor hypoxia and malignant progression. Methods Enzymol. 381:335–354. 2004. View Article : Google Scholar : PubMed/NCBI |
|
|
Tannock IF and Rotin D: Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 49:4373–4384. 1989.PubMed/NCBI |
|
|
van der Zee J, Vujaskovic Z, Kondo M and Sugahara T: The Kadota fund international Forum 2004-clinical group consensus. Int J Hyperthermia. 24:111–122. 2008. View Article : Google Scholar : PubMed/NCBI |
|
|
Brown JM and Wilson WR: Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 4:437–447. 2004. View Article : Google Scholar : PubMed/NCBI |
|
|
Dunne M, Regenold M and Allen C: Hyperthermia can alter tumor physiology and improve chemo- and radio-therapy efficacy. Adv Drug Deliv Rev. 163–164. 98–124. 2020.PubMed/NCBI |
|
|
Westra A and Dewey WC: Variation in sensitivity to heat shock during the cell-cycle of Chinese hamster cells in vitro. Int J Radiat Biol Relat Stud Phys Chem Med. 19:467–477. 1971. View Article : Google Scholar : PubMed/NCBI |
|
|
Overgaard J and Suit HD: Time-temperature relationship th hyperthermic treatment of malignant and normal tissue in vivo. Cancer Res. 39:3248–3253. 1979.PubMed/NCBI |
|
|
Sapareto SA, Raaphorst GP and Dewey WC: Cell killing and the sequencing of hyperthermia and radiation. Int J Radiat Oncol Biol Phys. 5:343–347. 1979. View Article : Google Scholar : PubMed/NCBI |
|
|
Song CW, Park HJ, Lee CK and Griffin R: Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment. Int J Hyperthermia. 21:761–767. 2005. View Article : Google Scholar : PubMed/NCBI |
|
|
Vujaskovic Z, Poulson JM, Gaskin AA, Thrall DE, Page RL, Charles HC, MacFall JR, Brizel DM, Meyer RE, Prescott DM, et al: Temperature-dependent changes in physiologic parameters of spontaneous canine soft tissue sarcomas after combined radiotherapy and hyperthermia treatment. Int J Radiat Oncol Biol Phys. 46:179–185. 2000. View Article : Google Scholar : PubMed/NCBI |
|
|
Thrall DE, Larue SM, Pruitt AF, Case B and Dewhirst MW: Changes in tumour oxygenation during fractionated hyperthermia and radiation therapy in spontaneous canine sarcomas. Int J Hyperthermia. 22:365–373. 2006. View Article : Google Scholar : PubMed/NCBI |
|
|
Sun X, Xing L, Ling CC and Li GC: The effect of mild temperature hyperthermia on tumour hypoxia and blood perfusion: Relevance for radiotherapy, vascular targeting and imaging. Int J Hyperthermia. 26:224–231. 2010. View Article : Google Scholar : PubMed/NCBI |
|
|
Winslow TB, Eranki A, Ullas S, Singh AK, Repasky EA and Sen A: A pilot study of the effects of mild systemic heating on human head and neck tumour xenografts: Analysis of tumour perfusion, interstitial fluid pressure, hypoxia and efficacy of radiation therapy. Int J Hyperthermia. 31:693–701. 2015. View Article : Google Scholar : PubMed/NCBI |
|
|
Jones EL, Prosnitz LR, Dewhirst MW, Marcom PK, Hardenbergh PH, Marks LB, Brizel DM and Vujaskovic Z: Thermochemoradiotherapy improves oxygenation in locally advanced breast cancer. Clin Cancer Res. 10:4287–4293. 2004. View Article : Google Scholar : PubMed/NCBI |
|
|
Vaupel PW and Kelleher DK: Pathophysiological and vascular characteristics of tumours and their importance for hyperthermia: Heterogeneity is the key issue. Int J Hyperthermia. 26:211–223. 2010. View Article : Google Scholar : PubMed/NCBI |
|
|
Issels RD: Hyperthermia adds to chemotherapy. Eur J Cancer. 44:2546–2554. 2008. View Article : Google Scholar : PubMed/NCBI |
|
|
Vaupel P, Piazena H, Notter M, Thomsen AR, Grosu AL, Scholkmann F, Pockley AG and Multhoff G: From localized mild hyperthermia to improved tumor oxygenation: Physiological mechanisms critically involved in oncologic thermo-radio-immunotherapy. Cancers (Basel). 15:13942023. View Article : Google Scholar : PubMed/NCBI |
|
|
Chen T, Guo J, Han C, Yang M and Cao X: Heat shock protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway. J Immunol. 182:1449–1459. 2009. View Article : Google Scholar : PubMed/NCBI |
|
|
Mace TA, Zhong L, Kokolus KM and Repasky EA: Effector CD8+ T cell IFN-γ production and cytotoxicity are enhanced by mild hyperthermia. Int J Hyperthermia. 28:9–18. 2012. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhang HG, Mehta K, Cohen P and Guha C: Hyperthermia on immune regulation: A temperature's story. Cancer Lett. 271:191–204. 2008. View Article : Google Scholar : PubMed/NCBI |
|
|
Hu X, Kang X, Zhao F, Cui Y, Fu Y, Yang X, Yin J, Li W, Fan J, Yang B, et al: Heterogeneous cellular responses to hyperthermia support combined intraperitoneal hyperthermic immunotherapy for ovarian cancer mouse models. Sci Transl Med. 17:eadp21242025. View Article : Google Scholar : PubMed/NCBI |
|
|
Demuytere J, Carlier C, Van Helden T, Belza J, Vanhaecke F, Xie F, Vermeulen A, Weerts J, Thomale J, Denys H, et al: Effects of hyperthermia on cisplatin tissue penetration and gene expression in peritoneal metastases: Results from a randomized trial in ovarian cancer. Br J Surg. 111:znae0782024. View Article : Google Scholar : PubMed/NCBI |
|
|
Gradishar WJ, Moran MS, Abraham J, Abramson V, Aft R, Agnese D, Allison KH, Anderson B, Bailey J, Burstein HJ, et al: Breast cancer, version 3.2024, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 22:331–357. 2024. View Article : Google Scholar : PubMed/NCBI |
|
|
Abu-Rustum NR, Yashar CM, Arend R, Barber E, Bradley K, Brooks R, Campos SM, Chino J, Chon HS, Crispens MA, et al: NCCN Guidelines® insights: Cervical cancer, version 1.2024. J Natl Compr Cancer Netw. 21:1224–1233. 2023. View Article : Google Scholar |
|
|
Lomax ME, Folkes LK and O'Neill P: Biological consequences of radiation-induced DNA damage: Relevance to radiotherapy. Clin Oncol (R Coll Radiol). 25:578–585. 2013. View Article : Google Scholar : PubMed/NCBI |
|
|
Sprung CN, Ivashkevich A, Forrester HB, Redon CE, Georgakilas A and Martin OA: Oxidative DNA damage caused by inflammation may link to stress-induced non-targeted effects. Cancer Lett. 356:72–81. 2015. View Article : Google Scholar : PubMed/NCBI |
|
|
van den Tempel N, Horsman MR and Kanaar R: Improving efficacy of hyperthermia in oncology by exploiting biological mechanisms. Int J Hyperthermia. 32:446–454. 2016. View Article : Google Scholar : PubMed/NCBI |
|
|
Oei AL, Vriend LEM, Crezee J, Franken NAP and Krawczyk PM: Effects of hyperthermia on DNA repair pathways: One treatment to inhibit them all. Radiat Oncol Lond Engl. 10:1652015. View Article : Google Scholar : PubMed/NCBI |
|
|
Warters RL and Henle KJ: DNA degradation in Chinese hamster ovary cells after exposure to hyperthermia. Cancer Res. 42:4427–4432. 1982.PubMed/NCBI |
|
|
Kampinga HH and Konings AW: Inhibition of repair of X-ray-induced DNA damage by heat: The role of hyperthermic inhibition of DNA polymerase alpha activity. Radiat Res. 112:86–98. 1987. View Article : Google Scholar : PubMed/NCBI |
|
|
Wu Y, Liu P, Chen W, Bai S, Chen S, Chen J, Xu X, Xia J, Wu Y, Lai J, et al: Microwave hyperthermia enhances radiosensitization by decreasing DNA repair efficiency and inducing oxidative stress in PC3 prostatic adenocarcinoma cells. Int J Hyperthermia. 41:23352012024. View Article : Google Scholar : PubMed/NCBI |
|
|
VanderWaal RP, Griffith CL, Wright WD, Borrelli MJ and Roti JL: Delaying S-phase progression rescues cells from heat-induced S-phase hypertoxicity. J Cell Physiol. 187:236–243. 2001. View Article : Google Scholar : PubMed/NCBI |
|
|
Coss RA, Dewey WC and Bamburg JR: Effects of hyperthermia on dividing Chinese hamster ovary cells and on microtubules in vitro. Cancer Res. 42:1059–1071. 1982.PubMed/NCBI |
|
|
Dewey WC: Failla memorial lecture. The search for critical cellular targets damaged by heat. Radiat Res. 120:191–204. 1989. View Article : Google Scholar : PubMed/NCBI |
|
|
Vidair CA and Dewey WC: Two distinct modes of hyperthermic cell death. Radiat Res. 116:157–171. 1988. View Article : Google Scholar : PubMed/NCBI |
|
|
Santivasi WL and Xia F: Ionizing radiation-induced DNA damage, response, and repair. Antioxid Redox Signal. 21:251–259. 2014. View Article : Google Scholar : PubMed/NCBI |
|
|
Ihara M, Takeshita S, Okaichi K, Okumura Y and Ohnishi T: Heat exposure enhances radiosensitivity by depressing DNA-PK kinase activity during double strand break repair. Int J Hyperthermia. 30:102–109. 2014. View Article : Google Scholar : PubMed/NCBI |
|
|
Luo Z, Zheng K, Fan Q, Jiang X and Xiong D: Hyperthermia exposure induces apoptosis and inhibits proliferation in HCT116 cells by upregulating miR-34a and causing transcriptional activation of p53. Exp Ther Med. 14:5379–5386. 2017.PubMed/NCBI |
|
|
Roti Roti JL: Heat-induced alterations of nuclear protein associations and their effects on DNA repair and replication. Int J Hyperthermia. 23:3–15. 2007. View Article : Google Scholar : PubMed/NCBI |
|
|
Lepock JR: Role of nuclear protein denaturation and aggregation in thermal radiosensitization. Int J Hyperthermia. 20:115–130. 2004. View Article : Google Scholar : PubMed/NCBI |
|
|
Iliakis G, Wu W and Wang M: DNA double strand break repair inhibition as a cause of heat radiosensitization: Re-evaluation considering backup pathways of NHEJ. Int J Hyperthermia. 24:17–29. 2008. View Article : Google Scholar : PubMed/NCBI |
|
|
Datta NR, Puric E, Schneider R, Weber DC, Rogers S and Bodis S: Could hyperthermia with proton therapy mimic carbon ion therapy? Exploring a thermo-radiobiological rationale. Int J Hyperthermia. 30:524–530. 2014. View Article : Google Scholar : PubMed/NCBI |
|
|
Brenner DJ: The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin Radiat Oncol. 18:234–239. 2008. View Article : Google Scholar : PubMed/NCBI |
|
|
Barendsen GW: Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys. 8:1981–1997. 1982. View Article : Google Scholar : PubMed/NCBI |
|
|
Overgaard J: The heat is (still) on-the past and future of hyperthermic radiation oncology. Radiother Oncol. 109:185–187. 2013. View Article : Google Scholar : PubMed/NCBI |
|
|
Datta NR and Bodis S: Hyperthermia with radiotherapy reduces tumour alpha/beta: Insights from trials of thermoradiotherapy vs radiotherapy alone. Radiother Oncol. 138:1–8. 2019. View Article : Google Scholar : PubMed/NCBI |
|
|
Vernon CC, Hand JW, Field SB, Machin D, Whaley JB, van der Zee J, van Putten WL, van Rhoon GC, van Dijk JD, González González D, et al: Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: Results from five randomized controlled trials. International Collaborative Hyperthermia Group. Int J Radiat Oncol Biol Phys. 35:731–744. 1996. View Article : Google Scholar : PubMed/NCBI |
|
|
Valdagni R and Amichetti M: Report of long-term follow-up in a randomized trial comparing radiation therapy and radiation therapy plus hyperthermia to metastatic lymph nodes in stage IV head and neck patients. Int J Radiat Oncol Biol Phys. 28:163–169. 1994. View Article : Google Scholar : PubMed/NCBI |
|
|
Franckena M, Stalpers LJA, Koper PCM, Wiggenraad RGJ, Hoogenraad WJ, van Dijk JDP, Wárlám-Rodenhuis CC, Jobsen JJ, van Rhoon GC and van der Zee J: Long-term improvement in treatment outcome after radiotherapy and hyperthermia in locoregionally advanced cervix cancer: An update of the Dutch Deep Hyperthermia trial. Int J Radiat Oncol Biol Phys. 70:1176–1182. 2008. View Article : Google Scholar : PubMed/NCBI |
|
|
Harima Y, Nagata K, Harima K, Ostapenko VV, Tanaka Y and Sawada S: A randomized clinical trial of radiation therapy versus thermoradiotherapy in stage IIIB cervical carcinoma. Int J Hyperthermia. 17:97–105. 2001. View Article : Google Scholar : PubMed/NCBI |
|
|
Horsman MR and Overgaard J: Hyperthermia: A potent enhancer of radiotherapy. Clin Oncol (R Coll Radiol). 19:418–426. 2007. View Article : Google Scholar : PubMed/NCBI |
|
|
Tsai TF, Hwang TIS, Chen PC, Chen YC, Chou KY, Ho CY, Chen HE and Chang AC: Hyperthermia reduces cancer cell invasion and combats chemoresistance and immune evasion in human bladder cancer. Int J Oncol. 65:1162024. View Article : Google Scholar : PubMed/NCBI |
|
|
Overgaard J: Simultaneous and sequential hyperthermia and radiation treatment of an experimental tumor and its surrounding normal tissue in vivo. Int J Radiat Oncol Biol Phys. 6:1507–1517. 1980. View Article : Google Scholar : PubMed/NCBI |
|
|
van Leeuwen CM, Oei AL, Chin KWTK, Crezee J, Bel A, Westermann AM, Buist MR, Franken NAP, Stalpers LJA and Kok HP: A short time interval between radiotherapy and hyperthermia reduces in-field recurrence and mortality in women with advanced cervical cancer. Radiat Oncol. 12:752017. View Article : Google Scholar : PubMed/NCBI |
|
|
Notter M, Piazena H and Vaupel P: Hypofractionated re-irradiation of large-sized recurrent breast cancer with thermography-controlled, contact-free water-filtered infra-red-A hyperthermia: A retrospective study of 73 patients. Int J Hyperthermia. 33:227–236. 2017. View Article : Google Scholar : PubMed/NCBI |
|
|
van Leeuwen CM, Crezee J, Oei AL, Franken NAP, Stalpers LJA, Bel A and Kok HP: The effect of time interval between radiotherapy and hyperthermia on planned equivalent radiation dose. Int J Hyperthermia. 34:901–909. 2018. View Article : Google Scholar : PubMed/NCBI |
|
|
Overgaard J: The current and potential role of hyperthermia in radiotherapy. Int J Radiat Oncol Biol Phys. 16:535–549. 1989. View Article : Google Scholar : PubMed/NCBI |
|
|
Schildkopf P, Frey B, Mantel F, Ott OJ, Weiss EM, Sieber R, Janko C, Sauer R, Fietkau R and Gaipl US: Application of hyperthermia in addition to ionizing irradiation fosters necrotic cell death and HMGB1 release of colorectal tumor cells. Biochem Biophys Res Commun. 391:1014–1020. 2010. View Article : Google Scholar : PubMed/NCBI |
|
|
Lee S, Son B, Park G, Kim H, Kang H, Jeon J, Youn H and Youn B: Immunogenic Effect of Hyperthermia on Enhancing Radiotherapeutic Efficacy. Int J Mol Sci. 19:27952018. View Article : Google Scholar : PubMed/NCBI |
|
|
Chen R, Zou J, Liu J, Kang R and Tang D: DAMPs in the immunogenicity of cell death. Mol Cell. 85:3874–3889. 2025. View Article : Google Scholar : PubMed/NCBI |
|
|
Nytko KJ, Weyland MS, Dressel-Böhm S, Scheidegger S, Salvermoser L, Werner C, Stangl S, Carpinteiro AC, Alkotub B, Multhoff G, et al: Extracellular heat shock protein 70 levels in tumour-bearing dogs and cats treated with radiation therapy and hyperthermia. Vet Comp Oncol. 21:605–615. 2023. View Article : Google Scholar : PubMed/NCBI |
|
|
Van Dieren L, Quisenaerts T, Licata M, Beddok A, Lellouch AG, Ysebaert D, Saldien V, Peeters M and Gorbaslieva I: Combined radiotherapy and hyperthermia: A systematic review of immunological synergies for amplifying radiation-induced abscopal effects. Cancers (Basel). 16:36562024. View Article : Google Scholar : PubMed/NCBI |
|
|
Overgaard J, Ccm Hulshof M, Dahl O and Arcangeli G; ESHO clinical committee, : ESHO 1–85. Hyperthermia as an adjuvant to radiation therapy in the treatment of locally advanced breast carcinoma. A randomized multicenter study by the European Society for Hyperthermic Oncology. Radiother Oncol. 196:1103132024. View Article : Google Scholar : PubMed/NCBI |
|
|
Wang Y, Hong W, Che S, Zhang Y, Meng D, Shi F, Su J, Yang Y, Ma H, Liu R, et al: Outcomes for hyperthermia combined with concurrent radiochemotherapy for patients with cervical cancer. Int J Radiat Oncol Biol Phys. 107:499–511. 2020. View Article : Google Scholar : PubMed/NCBI |
|
|
Chi MS, Yang KL, Chang YC, Ko HL, Lin YH, Huang SC, Huang YY, Liao KW, Kondo M and Chi KH: Comparing the effectiveness of combined external beam radiation and hyperthermia versus external beam radiation alone in treating patients with painful bony metastases: A phase 3 prospective, randomized, controlled trial. Int J Radiat Oncol Biol Phys. 100:78–87. 2018. View Article : Google Scholar : PubMed/NCBI |
|
|
Liu P, Wu J, Chen L, Wu Z, Wu Y, Zhang G, Yu B, Zhang B, Wei N, Shi J, et al: Water-filtered infrared A radiation hyperthermia combined with immunotherapy for advanced gastrointestinal tumours. Cancer Med. 13:e700242024. View Article : Google Scholar : PubMed/NCBI |
|
|
van der Zee J and González GD: The Dutch deep hyperthermia trial: Results in cervical cancer. Int J Hyperthermia. 18:1–12. 2002.PubMed/NCBI |
|
|
Servayge J, Olthof EP, Mom CH, van der Aa MA, Wenzel HHB, van der Velden J, Nout RA, Boere IA, van Doorn HC and van Beekhuizen HJ: Survival of women with advanced stage cervical cancer: Neo-adjuvant chemotherapy followed by radiotherapy and hyperthermia versus chemoradiotherapy. Cancers (Basel). 16:6352024. View Article : Google Scholar : PubMed/NCBI |
|
|
Yea JW, Park JW, Oh SA and Park J: Chemoradiotherapy with hyperthermia versus chemoradiotherapy alone in locally advanced cervical cancer: a systematic review and meta-analysis. Int J Hyperth. 38:1333–1340. 2021. View Article : Google Scholar : PubMed/NCBI |
|
|
Mei X, Kok HP, Rodermond HM, van Bochove GGW, Snoek BC, van Leeuwen CM, Franken NAP, Ten Hagen TLM, Crezee J, Vermeulen L, et al: Radiosensitization by hyperthermia critically depends on the time interval. Int J Radiat Oncol Biol Phys. 118:817–828. 2024. View Article : Google Scholar : PubMed/NCBI |
|
|
de Martel C, Plummer M, Vignat J and Franceschi S: Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int J Cancer. 141:664–670. 2017. View Article : Google Scholar : PubMed/NCBI |
|
|
Bol V and Grégoire V: Biological basis for increased sensitivity to radiation therapy in HPV-positive head and neck cancers. BioMed Res Int. 2014:6960282014. View Article : Google Scholar : PubMed/NCBI |
|
|
Khan I, Harshithkumar R, More A and Mukherjee A: Human papilloma virus: An unraveled enigma of universal burden of malignancies. Pathog Basel Switz. 12:5642023. View Article : Google Scholar |
|
|
Oei AL, van Leeuwen CM, ten Cate R, Rodermond HM, Buist MR, Stalpers LJA, Crezee J, Kok HP, Medema JP and Franken NA: Hyperthermia selectively targets human papillomavirus in cervical tumors via p53-dependent apoptosis. Cancer Res. 75:5120–5129. 2015. View Article : Google Scholar : PubMed/NCBI |
|
|
Datta NR, Rogers S, Ordóñez SG, Puric E and Bodis S: Hyperthermia and radiotherapy in the management of head and neck cancers: A systematic review and meta-analysis. Int J Hyperthermia. 32:31–40. 2016. View Article : Google Scholar : PubMed/NCBI |
|
|
Owadally W, Hurt C, Timmins H, Parsons E, Townsend S, Patterson J, Hutcheson K, Powell N, Beasley M, Palaniappan N, et al: PATHOS: A phase II/III trial of risk-stratified, reduced intensity adjuvant treatment in patients undergoing transoral surgery for Human papillomavirus (HPV) positive oropharyngeal cancer. BMC Cancer. 15:6022015. View Article : Google Scholar : PubMed/NCBI |
|
|
Hassanipour-Azgomi S, Mohammadian-Hafshejani A, Ghoncheh M, Towhidi F, Jamehshorani S and Salehiniya H: Incidence and mortality of prostate cancer and their relationship with the human development index worldwide. Prostate Int. 4:118–124. 2016. View Article : Google Scholar : PubMed/NCBI |
|
|
Resnick MJ, Koyama T, Fan KH, Albertsen PC, Goodman M, Hamilton AS, Hoffman RM, Potosky AL, Stanford JL, Stroup AM, et al: Long-term functional outcomes after treatment for localized prostate cancer. N Engl J Med. 368:436–445. 2013. View Article : Google Scholar : PubMed/NCBI |
|
|
Hurwitz MD, Hansen JL, Prokopios-Davos S, Manola J, Wang Q, Bornstein BA, Hynynen K and Kaplan ID: Hyperthermia combined with radiation for the treatment of locally advanced prostate cancer: Long-term results from Dana-Farber cancer institute study 94–153. Cancer. 117:510–516. 2011. View Article : Google Scholar : PubMed/NCBI |
|
|
Hurwitz MD, Kaplan ID, Hansen JL, Prokopios-Davos S, Topulos GP, Wishnow K, Manola J, Bornstein BA and Hynynen K: Hyperthermia combined with radiation in treatment of locally advanced prostate cancer is associated with a favourable toxicity profile. Int J Hyperthermia. 21:649–656. 2005. View Article : Google Scholar : PubMed/NCBI |
|
|
Deger S, Taymoorian K, Boehmer D, Schink T, Roigas J, Wille AH, Budach V, Wernecke KD and Loening SA: Thermoradiotherapy using interstitial self-regulating thermoseeds: An intermediate analysis of a phase II trial. Eur Urol. 45:574–580. 2004. View Article : Google Scholar : PubMed/NCBI |
|
|
Kouloulias V, Nikolakopoulou A, Karanasiou I, Antypas C, Armpilia C and Uzunoglou N: Documentation of a new intracavitary applicator for transrectal hyperthermia designed for prostate cancer cases: A phantom study. J Med Phys. 43:141–145. 2018. View Article : Google Scholar : PubMed/NCBI |
|
|
Schouten D, van OS R, Westermann AM, Crezee H, van Tienhoven G, Kolff MW and Bins AD: A randomized phase-II study of reirradiation and hyperthermia versus reirradiation and hyperthermia plus chemotherapy for locally recurrent breast cancer in previously irradiated area. Acta Oncol. 61:441–448. 2022. View Article : Google Scholar : PubMed/NCBI |
|
|
Linthorst M, Baaijens M, Wiggenraad R, Creutzberg C, Ghidey W, van Rhoon GC and van der Zee J: Local control rate after the combination of re-irradiation and hyperthermia for irresectable recurrent breast cancer: Results in 248 patients. Radiother Oncol. 117:217–222. 2015. View Article : Google Scholar : PubMed/NCBI |
|
|
Thomsen AR, Sahlmann J, Bronsert P, Schilling O, Poensgen F, May AM, Timme-Bronsert S, Grosu AL, Vaupel P, Gebbers JO, et al: Protocol of the HISTOTHERM study: Assessing the response to hyperthermia and hypofractionated radiotherapy in recurrent breast cancer. Front Oncol. 13:12752222023. View Article : Google Scholar : PubMed/NCBI |
|
|
Linthorst M, van Geel AN, Baaijens M, Ameziane A, Ghidey W, van Rhoon GC and van der Zee J: Re-irradiation and hyperthermia after surgery for recurrent breast cancer. Radiother Oncol. 109:188–193. 2013. View Article : Google Scholar : PubMed/NCBI |
|
|
Notter M, Stutz E, Thomsen AR and Vaupel P: Radiation-associated angiosarcoma of the breast and chest wall treated with thermography-controlled, contactless wIRA-hyperthermia and hypofractionated re-irradiation. Cancers (Basel). 13:39112021. View Article : Google Scholar : PubMed/NCBI |
|
|
Matsui K, Takebayashi S, Watai K, Kakehi M, Kubota Y, Yao M and Shuin T: Combination radiotherapy of urinary bladder carcinoma with chemohyperthermia. Int J Hyperthermia. 7:19–26. 1991. View Article : Google Scholar : PubMed/NCBI |
|
|
Masunaga SI, Hiraoka M, Akuta K, Nishimura Y, Nagata Y, Jo S, Takahashi M, Abe M, Terachi T, Oishi K, et al: Phase I/II trial of preoperative thermoradiotherapy in the treatment of urinary bladder cancer. Int J Hyperthermia. 10:31–40. 1994. View Article : Google Scholar : PubMed/NCBI |
|
|
Wittlinger M, Rödel CM, Weiss C, Krause SF, Kühn R, Fietkau R, Sauer R and Ott OJ: Quadrimodal treatment of high-risk T1 and T2 bladder cancer: Transurethral tumor resection followed by concurrent radiochemotherapy and regional deep hyperthermia. Radiother Oncol. 93:358–363. 2009. View Article : Google Scholar : PubMed/NCBI |
|
|
Merten R, Ott O, Haderlein M, Bertz S, Hartmann A, Wullich B, Keck B, Kühn R, Rödel CM, Weiss C, et al: Long-term experience of chemoradiotherapy combined with deep regional hyperthermia for organ preservation in high-risk bladder cancer (Ta, Tis, T1, T2). Oncologist. 24:e1341–e1350. 2019. View Article : Google Scholar : PubMed/NCBI |
|
|
Flaig TW, Spiess PE, Abern M, Agarwal N, Bangs R, Boorjian SA, Buyyounouski MK, Chan K, Chang S, Friedlander T, et al: NCCN Guidelines® insights: Bladder cancer, version 2.2022. J Natl Compr Cancer Netw. 20:866–878. 2022. View Article : Google Scholar : PubMed/NCBI |
|
|
Riesterer O, Ademaj A, Puric E, Eberle B, Beck M, Gomez S, Marder D, Oberacker E, Rogers S, Hälg RA, et al: Tetramodal therapy with transurethral resection followed by chemoradiation in combination with hyperthermia for muscle-invasive bladder cancer: Early results of a multicenter phase IIB study. Int J Hyperthermia. 39:1078–1087. 2022. View Article : Google Scholar : PubMed/NCBI |
|
|
De Haas-Kock DFM, Buijsen J, Pijls-Johannesma M, Lutgens L, Lammering G, van Mastrigt GAPG, De Ruysscher DK, Lambin P and van der Zee J: Concomitant hyperthermia and radiation therapy for treating locally advanced rectal cancer. Cochrane Database Syst Rev. 2009:CD0062692009.PubMed/NCBI |
|
|
Kang MK, Kim MS and Kim JH: Clinical outcomes of mild hyperthermia for locally advanced rectal cancer treated with preoperative radiochemotherapy. Int J Hyperthermia. 27:482–490. 2011. View Article : Google Scholar : PubMed/NCBI |
|
|
Schulze T, Wust P, Gellermann J, Hildebrandt B, Riess H, Felix R and Rau B: Influence of neoadjuvant radiochemotherapy combined with hyperthermia on the quality of life in rectum cancer patients. Int J Hyperthermia. 22:301–318. 2006. View Article : Google Scholar : PubMed/NCBI |
|
|
Gani C, Schroeder C, Heinrich V, Spillner P, Lamprecht U, Berger B and Zips D: Long-term local control and survival after preoperative radiochemotherapy in combination with deep regional hyperthermia in locally advanced rectal cancer. Int J Hyperthermia. 32:187–192. 2016. View Article : Google Scholar : PubMed/NCBI |
|
|
Zwirner K, Bonomo P, Lamprecht U, Zips D and Gani C: External validation of a rectal cancer outcome prediction model with a cohort of patients treated with preoperative radiochemotherapy and deep regional hyperthermia. Int J Hyperthermia. 34:455–460. 2018. View Article : Google Scholar : PubMed/NCBI |
|
|
Yu JI, Park HC, Choi DH, Noh JM, Oh D, Park JS, Chang JH, Kim ST, Lee J, Park SH, et al: Prospective phase II trial of regional hyperthermia and whole liver irradiation for numerous chemorefractory liver metastases from colorectal cancer. Radiat Oncol J. 34:34–44. 2016. View Article : Google Scholar : PubMed/NCBI |
|
|
Nakajima M, Kato H, Sakai M, Sano A, Miyazaki T, Sohda M, Inose T, Tanaka N, Suzuki S, Masuda N, et al: Planned Esophagectomy after Neoadjuvant Hyperthermo-Chemoradiotherapy using Weekly Low-dose docetaxel and hyperthermia for advanced esophageal carcinomas. Hepatogastroenterology. 62:887–891. 2015.PubMed/NCBI |
|
|
Hulshof MCCM, Van Haaren PMA, Van Lanschot JJB, Richel DJ, Fockens P, Oldenborg S, Geijsen ED, Van Berge Henegouwen MI and Crezee J: Preoperative chemoradiation combined with regional hyperthermia for patients with resectable esophageal cancer. Int J Hyperthermia. 25:79–85. 2009. View Article : Google Scholar : PubMed/NCBI |
|
|
Sakamoto T, Katoh H, Shimizu T, Yamashita I, Takemori S, Tazawa K and Fujimaki M: Clinical results of treatment of advanced esophageal carcinoma with hyperthermia in combination with chemoradiotherapy. Chest. 112:1487–1493. 1997. View Article : Google Scholar : PubMed/NCBI |
|
|
Kuwano H, Sumiyoshi K, Watanabe M, Sadanaga N, Nozoe T, Yasuda M and Sugimachi K: Preoperative hyperthermia combined with chemotherapy and irradiation for the treatment of patients with esophageal carcinoma. Tumori. 81:18–22. 1995. View Article : Google Scholar : PubMed/NCBI |
|
|
Nishimura S, Saeki H, Nakanoko T, Kasagi Y, Tsuda Y, Zaitsu Y, Ando K, Nakashima Y, Imamura YU, Ohgaki K, et al: Hyperthermia combined with chemotherapy for patients with residual or recurrent oesophageal cancer after definitive chemoradiotherapy. Anticancer Res. 35:2299–2303. 2015.PubMed/NCBI |
|
|
Sheng L, Ji Y, Wu Q and Du X: Regional hyperthermia combined with radiotherapy for esophageal squamous cell carcinoma with supraclavicular lymph node metastasis. Oncotarget. 8:5339–5348. 2017. View Article : Google Scholar : PubMed/NCBI |
|
|
Kang M, Liu WQ, Qin YT, Wei ZX and Wang RS: Long-term efficacy of microwave hyperthermia combined with chemoradiotherapy in treatment of nasopharyngeal carcinoma with cervical lymph node metastases. Asian Pac J Cancer Prev. 14:7395–7400. 2013. View Article : Google Scholar : PubMed/NCBI |
|
|
Hua Y, Ma S, Fu Z, Hu Q, Wang L and Piao Y: Intracavity hyperthermia in nasopharyngeal cancer: A phase III clinical study. Int J Hyperthermia. 27:180–186. 2011. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhao C, Chen J, Yu B and Chen X: Improvement in quality of life in patients with nasopharyngeal carcinoma treated with non-invasive extracorporeal radiofrequency in combination with chemoradiotherapy. Int J Radiat Biol. 90:853–858. 2014. View Article : Google Scholar : PubMed/NCBI |
|
|
Jones EL, Oleson JR, Prosnitz LR, Samulski TV, Vujaskovic Z, Yu D, Sanders LL and Dewhirst MW: Randomized trial of hyperthermia and radiation for superficial tumors. J Clin Oncol. 23:3079–3085. 2005. View Article : Google Scholar : PubMed/NCBI |
|
|
Kok HP, Van Dijk IWEM, Crama KF, Franken NAP, Rasch CRN, Merks JHM, Crezee J, Balgobind BV and Bel A: Re-irradiation plus hyperthermia for recurrent pediatric sarcoma; a simulation study to investigate feasibility. Int J Oncol. 54:209–218. 2019.PubMed/NCBI |
|
|
Ikuta K, Urakawa H, Kozawa E, Hamada S, Ota T, Kato R, Honda H, Kobayashi T, Ishiguro N and Nishida Y: In vivo heat-stimulus-triggered osteogenesis. Int J Hyperthermia. 31:58–66. 2015. View Article : Google Scholar : PubMed/NCBI |
|
|
Dharmaiah S, Zeng J, Rao VS, Zi O, Ma T, Yu K, Bhatt H, Shah C, Godley A, Xia P and Yu JS: Clinical and dosimetric evaluation of recurrent breast cancer patients treated with hyperthermia and radiation. Int J Hyperthermia. 36:986–992. 2019. View Article : Google Scholar : PubMed/NCBI |
|
|
Zagar TM, Higgins KA, Miles EF, Vujaskovic Z, Dewhirst MW, Clough RW, Prosnitz LR and Jones EL: Durable palliation of breast cancer chest wall recurrence with radiation therapy, hyperthermia, and chemotherapy. Radiother Oncol. 97:535–540. 2010. View Article : Google Scholar : PubMed/NCBI |
|
|
Zagar TM, Oleson JR, Vujaskovic Z, Dewhirst MW, Craciunescu OI, Blackwell KL, Prosnitz LR and Jones EL: Hyperthermia for locally advanced breast cancer. Int J Hyperthermia. 26:618–624. 2010. View Article : Google Scholar : PubMed/NCBI |
|
|
Li G, Mitsumori M, Ogura M, Horii N, Kawamura S, Masunaga S, Nagata Y and Hiraoka M: Local hyperthermia combined with external irradiation for regional recurrent breast carcinoma. Int J Clin Oncol. 9:179–183. 2004. View Article : Google Scholar : PubMed/NCBI |
|
|
Crezee H, van Leeuwen CM, Oei AL, Stalpers LJA, Bel A, Franken NA and Kok HP: Thermoradiotherapy planning: Integration in routine clinical practice. Int J Hyperthermia. 32:41–49. 2016. View Article : Google Scholar : PubMed/NCBI |
|
|
Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R and Schlag PM: Hyperthermia in combined treatment of cancer. Lancet Oncol. 3:487–497. 2002. View Article : Google Scholar : PubMed/NCBI |
|
|
Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M and Hoopes PJ: Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia. 19:267–294. 2003. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhu Y, Li Q, Wang C, Hao Y, Yang N, Chen M, Ji J, Feng L and Liu Z: Rational design of biomaterials to potentiate cancer thermal therapy. Chem Rev. 123:7326–7378. 2023. View Article : Google Scholar : PubMed/NCBI |
|
|
Torielli P, McGale J, Liao MJ, Rhaiem R, Bouche O, Botsen D, Gerin O, Lamane A, Lawrence Y, Madelis G, et al: Hepatic metastases management: A comparative review of surgical resection, thermal ablation, and stereotactic body radiation therapy. Eur J Cancer. 228:1156912025. View Article : Google Scholar : PubMed/NCBI |
|
|
Gellermann J, Wlodarczyk W, Feussner A, Fähling H, Nadobny J, Hildebrandt B, Felix R and Wust P: Methods and potentials of magnetic resonance imaging for monitoring radiofrequency hyperthermia in a hybrid system. Int J Hyperthermia. 21:497–513. 2005. View Article : Google Scholar : PubMed/NCBI |
|
|
Weihrauch M, Wust P, Weiser M, Nadobny J, Eisenhardt S, Budach V and Gellermann J: Adaptation of antenna profiles for control of MR guided hyperthermia (HT) in a hybrid MR-HT system. Med Phys. 34:4717–4725. 2007. View Article : Google Scholar : PubMed/NCBI |
|
|
Sapareto SA, Hopwood LE and Dewey WC: Combined effects of X irradiation and hyperthermia on CHO cells for various temperatures and orders of application. Radiat Res. 73:221–233. 1978. View Article : Google Scholar : PubMed/NCBI |
|
|
Kroesen M, Mulder HT, van Holthe JML, Aangeenbrug AA, Mens JWM, van Doorn HC, Paulides MM, Oomen-de Hoop E, Vernhout RM, Lutgens LC, et al: The effect of the time interval between radiation and hyperthermia on clinical outcome in 400 locally advanced cervical carcinoma patients. Front Oncol. 9:1342019. View Article : Google Scholar : PubMed/NCBI |
|
|
Crezee J, Oei AL, Franken NAP, Stalpers LJA and Kok HP: Response: Commentary: The impact of the time interval between radiation and hyperthermia on clinical outcome in patients with locally advanced cervical cancer. Front Oncol. 10:5282020. View Article : Google Scholar : PubMed/NCBI |
|
|
Rhee JG, Schuman VL, Song CW and Levitt SH: Difference in the thermotolerance of mouse mammary carcinoma cells in vivo and in vitro. Cancer Res. 47:2571–2575. 1987.PubMed/NCBI |
|
|
Nah BS, Choi IB, Oh WY, Osborn JL and Song CW: Vascular thermal adaptation in tumors and normal tissue in rats. Int J Radiat Oncol Biol Phys. 35:95–101. 1996. View Article : Google Scholar : PubMed/NCBI |
|
|
Griffin RJ, Dings RPM, Jamshidi-Parsian A and Song CW: Mild temperature hyperthermia and radiation therapy: Role of tumour vascular thermotolerance and relevant physiological factors. Int J Hyperthermia. 26:256–263. 2010. View Article : Google Scholar : PubMed/NCBI |
|
|
Kok HP, Herrera TD and Crezee J: Biological treatment evaluation in thermoradiotherapy: Application in cervical cancer patients. Strahlenther Onkol. 200:512–522. 2024. View Article : Google Scholar : PubMed/NCBI |
|
|
Notter M, Thomsen AR, Nitsche M, Hermann RM, Wolff HA, Habl G, Münch K, Grosu AL and Vaupel P: Combined wIRA-Hyperthermia and Hypofractionated Re-irradiation in the treatment of locally recurrent breast cancer: Evaluation of therapeutic outcome based on a novel size classification. Cancers (Basel). 12:6062020. View Article : Google Scholar : PubMed/NCBI |
|
|
Lee SY, Fiorentini G, Szasz AM, Szigeti G, Szasz A and Minnaar CA: Quo vadis oncological hyperthermia (2020)? Front Oncol. 10:16902020. View Article : Google Scholar : PubMed/NCBI |
|
|
Ademaj A, Veltsista PD, Marder D, Hälg RA, Puric E, Brunner TB, Crezee H, Gabrys D, Franckena M, Gani C, et al: A patterns of care analysis of hyperthermia in combination with radio(chemo)therapy or chemotherapy in European clinical centers. Strahlenther Onkol. 199:436–444. 2023. View Article : Google Scholar : PubMed/NCBI |
|
|
Kwon S, Jung S and Baek SH: Combination therapy of radiation and hyperthermia, focusing on the synergistic anti-cancer effects and research trends. Antioxid Basel Switz. 12:9242023. View Article : Google Scholar |
|
|
Bañobre-López M, Teijeiro A and Rivas J: Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep Pract Oncol Radiother. 18:397–400. 2013. View Article : Google Scholar : PubMed/NCBI |
|
|
Szwed M and Marczak A: Application of nanoparticles for magnetic hyperthermia for cancer treatment-the current state of knowledge. Cancers (Basel). 16:11562024. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhou X, Zhang D, Han M, Ma Y, Li W and Yu N: Carbohydrate polymer-functionalized metal nanoparticles in cancer therapy: A review. Int J Biol Macromol. 306:1412352025. View Article : Google Scholar : PubMed/NCBI |
|
|
Mohammad F, Bwatanglang IB, Al-Lohedan HA, Shaik JP, Moosavi M, Dahan WM, Al-Tilasi HH, Aldhayan DM, Chavali M and Soleiman AA: Magnetically controlled drug delivery and hyperthermia effects of core-shell Cu@Mn3O4 nanoparticles towards cancer cells in vitro. Int J Biol Macromol. 249:1260712023. View Article : Google Scholar : PubMed/NCBI |
|
|
Beik J, Abed Z, Ghoreishi FS, Hosseini-Nami S, Mehrzadi S, Shakeri-Zadeh A and Kamrava SK: Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. J Control Release. 235:205–221. 2016. View Article : Google Scholar : PubMed/NCBI |
|
|
Yusuf A, Almotairy ARZ, Henidi H, Alshehri OY and Aldughaim MS: Nanoparticles as drug delivery systems: A review of the implication of nanoparticles' physicochemical properties on responses in biological systems. Polymers. 15:15962023. View Article : Google Scholar : PubMed/NCBI |
|
|
Wang X, Liu J, Durga L, Beeraka NM, Zhou R, Lu P, Song R, Sinelnikov MY, Chen K, Fan R and Zhao D: Recent updates on the efficacy of Mitocans in Photo/Radio-therapy for targeting metabolism in Chemo/radio-resistant cancers: Nanotherapeutics. Curr Med Chem. 32:2156–2182. 2025. View Article : Google Scholar : PubMed/NCBI |
|
|
Shirvalilou S, Tavangari Z, Parsaei MH, Sargazi S, Sheervalilou R, Shirvaliloo M, Ghaznavi H and Khoei S: The future opportunities and remaining challenges in the application of nanoparticle-mediated hyperthermia combined with chemo-radiotherapy in cancer. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 15:e19222023. View Article : Google Scholar : PubMed/NCBI |
|
|
Aloss K and Hamar P: Augmentation of the EPR effect by mild hyperthermia to improve nanoparticle delivery to the tumor. Biochim Biophys Acta Rev Cancer. 1879:1891092024. View Article : Google Scholar : PubMed/NCBI |
|
|
Shimizu T and Kondo T: Cellular response to physical stress and therapeutic applications. Cell Biology Research Progress. Nova Biomedical; New York: pp. p2162013 |
|
|
Revia RA and Zhang M: Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: Recent advances. Mater Today Kidlington Engl. 19:157–168. 2016. View Article : Google Scholar : PubMed/NCBI |
|
|
Krenacs T, Meggyeshazi N, Forika G, Kiss E, Hamar P, Szekely T and Vancsik T: Modulated Electro-hyperthermia-induced tumor damage mechanisms revealed in cancer models. Int J Mol Sci. 21:62702020. View Article : Google Scholar : PubMed/NCBI |
|
|
Hegyi G, Szasz O and Szasz A: Oncothermia: A new paradigm and promising method in cancer therapies. Acupunct Electrother Res. 38:161–197. 2013. View Article : Google Scholar : PubMed/NCBI |
|
|
Viana P and Hamar P: Targeting the heat shock response induced by modulated electro-hyperthermia (mEHT) in cancer. Biochim Biophys Acta Rev Cancer. 1879:1890692024. View Article : Google Scholar : PubMed/NCBI |
|
|
Datta NR, Jain BM, Mathi Z, Datta S, Johari S, Singh AR, Kalbande P, Kale P, Shivkumar V and Bodis S: Hyperthermia: A potential game-changer in the management of cancers in low-middle-income group countries. Cancers (Basel). 14:3152022. View Article : Google Scholar : PubMed/NCBI |
|
|
Schildkopf P, Ott OJ, Frey B, Wadepohl M, Sauer R, Fietkau R and Gaipl US: Biological rationales and clinical applications of temperature controlled hyperthermia-implications for multimodal cancer treatments. Curr Med Chem. 17:3045–3057. 2010. View Article : Google Scholar : PubMed/NCBI |
|
|
Kok HP, Cressman ENK, Ceelen W, Brace CL, Ivkov R, Grüll H, Ter Haar G, Wust P and Crezee J: Heating technology for malignant tumors: A review. Int J Hyperthermia. 37:711–741. 2020. View Article : Google Scholar : PubMed/NCBI |