Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
November 2012 Volume 28 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November 2012 Volume 28 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Granulocyte colony-stimulating factor potentiates differentiation induction by all-trans retinoic acid and arsenic trioxide and enhances arsenic uptake in the acute promyelocytic leukemia cell line HT93A

  • Authors:
    • Noriyoshi Iriyama
    • Bo Yuan
    • Yoshihiro Hatta
    • Akira Horikoshi
    • Yuta Yoshino
    • Hiroo Toyoda
    • Shin Aizawa
    • Jin Takeuchi
  • View Affiliations / Copyright

    Affiliations: Department of Hematology and Rheumatology, Itabashi Hospital, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan, Department of Clinical Molecular Genetics, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan, Department of Internal Medicine, Nerima-Hikarigaoka Hospital, Nihon University School of Medicine, Nerima-ku, Tokyo 179-0072, Japan, Department of Functional Morphology, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
  • Pages: 1875-1882
    |
    Published online on: August 31, 2012
       https://doi.org/10.3892/or.2012.2006
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The effects of arsenic trioxide (ATO), all-trans retinoic acid (ATRA) and granulocyte colony-stimulating factor (G-CSF), alone or in combination, were investigated by focusing on differentiation, growth inhibition and arsenic uptake in the acute promyelocytic leukemia (APL) cell line HT93A. ATO induced differentiation at low concentrations (0.125 µM) and apoptosis at high concentrations (1-2 µM). Furthermore, ATRA induced greater differentiation than ATO. No synergistic effect of ATRA and ATO was found on differentiation. G-CSF promoted differentiation-inducing activities of both ATO and ATRA. The combination of ATRA and G-CSF showed maximum differentiation and ATO addition was not beneficial. Addition of 1 µM ATRA and/or 50 ng/ml G-CSF to ATO did not affect apoptosis compared to ATO treatment alone. ATRA induced expression of aquaporin-9 (AQP9), a transmembrane transporter recognized as a major pathway of arsenic uptake, in a time- and dose-dependent manner. However, treatment with 1 µM ATRA decreased arsenic uptake by 43.7% compared to control subject. Although G-CSF addition did not enhance AQP9 expression in the cells, the reduced arsenic uptake was recovered to the same level as that in controls. ATRA decreased cell viability and addition of 50 ng/ml G-CSF to ATRA significantly increased the number of viable cells compared with that in ATRA alone treated cells. G-CSF not only promotes differentiation-inducing activities of both ATRA and ATO, but also makes APL cells vulnerable to increased arsenic uptake. These observations provide new insights into combination therapy using these three agents for the treatment of APL.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Goddard AD, Borrow J, Freemont PS and Solomon E: Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia. Science. 254:1371–1374. 1991. View Article : Google Scholar : PubMed/NCBI

2 

Tong JH, Dong S, Geng JP, Huang W, Wang ZY, Sun GL, Chen SJ, Chen Z, Larsen CJ and Berger R: Molecular rearrangements of the MYL gene in acute promyelocytic leukemia (APL, M3) define a breakpoint cluster region as well as some molecular variants. Oncogene. 7:311–316. 1992.PubMed/NCBI

3 

de Thé H, Chomienne C, Lanotte M, Degos L and Dejean A: The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature. 347:558–561. 1990.PubMed/NCBI

4 

Melnick A and Licht JD: Deconstructing a disease: RARα, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood. 93:3167–3215. 1999.

5 

Burnett AK, Grimwade D, Solomon E, Wheatley K and Goldstone AH: Presenting white blood cell count and kinetics of molecular remission predict prognosis in acute promyelocytic leukemia treated with all-trans retinoic acid: result of the Randomized MRC Trial. Blood. 93:4131–4143. 1999.PubMed/NCBI

6 

Shen ZX, Chen GQ, Ni JH, Li XS, Xiong SM, Qiu QY, Zhu J, Tang W, Sun GL, Yang KQ, et al: Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood. 89:3354–3360. 1997.PubMed/NCBI

7 

Soignet SL, Maslak P, Wang ZG, Jhanwar S, Calleja E, Dardashti LJ, Corso D, DeBlasio A, Gabrilove J, Scheinberg DA, et al: Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med. 339:1341–1348. 1998. View Article : Google Scholar : PubMed/NCBI

8 

Lanotte M, Martin-Thouvenin V, Najman S, Balerini P, Valensi F and Berger R: NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3). Blood. 77:1080–1086. 1991.PubMed/NCBI

9 

Matsui W, Smith BD, Vala M, Beal N, Huff CA, Diehl LF and Jones RJ: Requirement for myeloid growth factors in the differentiation of acute promyelocytic leukaemia. Br J Haematol. 128:853–862. 2005. View Article : Google Scholar : PubMed/NCBI

10 

Caprodossi S, Pedinotti M, Amantini C, Santoni G, Minucci S, Pelicci PG and Fanelli M: Differentiation response of acute promyelocytic leukemia cells and PML/RARα leukemogenic activity studies by real-time RT-PCR. Mol Biotechnol. 30:231–238. 2005.

11 

Cunha De Santis G, Tamarozzi MB, Sousa RB, Moreno SE, Secco D, Garcia AB, Lima AS, Faccioli LH, Falcão RP, Cunha FQ and Rego EM: Adhesion molecules and Differentiation Syndrome: phenotypic and functional analysis of the effect of ATRA, As2O3, phenylbutyrate, and G-CSF in acute promyelocytic leukemia. Haematologica. 92:1615–1622. 2007.PubMed/NCBI

12 

Leung J, Pang A, Yuen WH, Kwong YL and Tse EW: Relationship of expression of aquaglyceroporin 9 with arsenic uptake and sensitivity in leukemia cells. Blood. 109:740–746. 2007. View Article : Google Scholar : PubMed/NCBI

13 

Chen GQ, Shi XG, Tang W, Xiong SM, Zhu J, Cai X, Han ZG, Ni JH, Shi GY, Jia PM, et al: Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood. 89:3345–3353. 1997.PubMed/NCBI

14 

Chen GQ, Zhu J, Shi XG, Ni JH, Zhong HJ, Si GY, Jin XL, Tang W, Li XS, Xong SM, et al: In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RARα/PML proteins. Blood. 88:1052–1061. 1996.PubMed/NCBI

15 

Yoshino Y, Yuan B, Kaise T, Takeichi M, Tanaka S, Hirano T, Kroetz DL and Toyoda H: Contribution of aquaporin 9 and multidrug resistance-associated protein 2 to differential sensitivity to arsenite between primary cultured chorion and amnion cells prepared from human fetal membranes. Toxicol Appl Pharmacol. 257:198–208. 2011. View Article : Google Scholar

16 

Pébusque MJ, Lafage M, Lopez M and Mannoni P: Preferential response of acute myeloid leukemias with translocation involving chromosome 17 to human recombinant granulocyte colony-stimulating factor. Blood. 72:257–265. 1998.

17 

Souza LM, Boone TC, Gabrilove J, Lai PH, Zsebo KM, Murdock DC, Chazin VR, Bruszewski J, Lu H, Chen KK, et al: Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells. Science. 232:61–65. 1986. View Article : Google Scholar : PubMed/NCBI

18 

Hu J, Liu YF, Wu CF, Xu F, Shen ZX, Zhu YM, Li JM, Tang W, Zhao WL, Wu W, et al: Long-term efficacy and safety of all-trans retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci USA. 106:3342–3347. 2009.PubMed/NCBI

19 

Wang H, Chen XY, Wang BS, Rong ZX, Qi H and Chen HZ: The efficacy and safety of arsenic trioxide with or without all-trans retinoic acid for the treatment of acute promyelocytic leukemia: a meta-analysis. Leuk Res. 35:1170–1177. 2011. View Article : Google Scholar : PubMed/NCBI

20 

Kishi K, Toba K, Azegami T, Tsukada N, Uesugi Y, Masuko M, Niwano H, Hashimoto S, Sakaue M, Furukawa T, et al: Hematopoietic cytokine-dependent differentiation to eosinophils and neutrophils in a newly established acute promyelocytic leukemia cell line with t(15;17). Exp Hematol. 26:135–142. 1998.PubMed/NCBI

21 

Iijima Y, Ito T, Oikawa T, Eguchi M, Eguchi-Ishimae M, Kamada N, Kishi K, Asano S, Sakaki Y and Sato Y: A new ETV6/TEL partner gene, ARG (ABL-related gene or ABL2), identified in an AML-M3 cell line with a t(1;12)(q25;p13) translocation. Blood. 95:2126–2131. 2000.PubMed/NCBI

22 

Makishima M, Umesono K, Shudo K, Naoe T, Kishi K and Honma Y: Induction of differentiation in acute promyelocytic leukemia cells by 9-cis retinoic acid alpha-tocopherol ester (9-cis tretinoin tocoferil). Blood. 91:4715–4726. 1998.PubMed/NCBI

23 

Uesugi Y, Fuse I, Toba K, Kishi K, Furukawa T, Koike T and Aizawa Y: Involvement of SHP-1, a phosphotyrosine phosphatase, during myeloid cell differentiation in acute promyelocytic leukemia cell lines. Eur J Haematol. 62:239–245. 1999. View Article : Google Scholar : PubMed/NCBI

24 

Yoshino Y, Yuan B, Miyashita SI, Iriyama N, Horikoshi A, Shikino O, Toyoda H and Kaise T: Speciation of arsenic trioxide metabolites in blood cells and plasma of a patient with acute promyelocytic leukemia. Anal Bioanal Chem. 393:689–697. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Iriyama N, Yoshino Y, Yuan B, Horikoshi A, Hirabayashi Y, Hatta Y, Toyoda H and Takeuchi J: Speciation of arsenic trioxide metabolites in peripheral blood and bone marrow from an acute promyelocytic leukemia patient. J Hematol Oncol. 5:1–11. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Shao W, Fanelli M, Ferrara FF, Riccioni R, Rosenauer A, Davison K, Lamph WW, Waxman S, Pelicci PG, Lo Coco F, et al: Arsenic trioxide as an inducer of apoptosis and loss of PML/RARα protein in acute promyelocytic leukemia cells. J Natl Cancer Inst. 90:124–133. 1998.PubMed/NCBI

27 

Wang X, Gao P, Long M, Lin F, Wei JX, Ren JH, Yan L, He T, Han Y and Zhang HZ: Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol. 28:1225–1254. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Higuchi T, Kizaki M and Omine M: Induction of differentiation of retinoic acid-resistant acute promyelocytic leukemia cells by the combination of all-trans retinoic acid and granulocyte colony-stimulating factor. Leuk Res. 28:525–532. 2004. View Article : Google Scholar : PubMed/NCBI

29 

Jansen JH, de Ridder MC, Geertsma WM, Erpelinck CA, van Lom K, Smit EM, Slater R, vd Reijden BA, de Greef GE, Sonneveld P and Löwenberg B: Complete remission of t(11;17) positive acute promyelocytic leukemia induced by all-trans retinoic acid and granulocyte colony-stimulating factor. Blood. 94:39–45. 1999.PubMed/NCBI

30 

Tsurumi H, Tojo A, Takahashi T, Moriwaki H, Asano S and Muto Y: The combined effects of all-trans retinoic acid and granulocyte colony-stimulating factor as a differentiation induction therapy for acute promyelocytic leukemia. Intern Med. 32:648–650. 1993.

31 

Gianní M, Terao M, Zanotta S, Barbui T, Rambaldi A and Garattini E: Retinoic acid and granulocyte colony-stimulating factor synergistically induce leukocyte alkaline phosphatase in acute promyelocytic leukemia cells. Blood. 83:1909–1921. 1994.

32 

Dai CW, Zhang GS, Shen JK, Zheng WL, Pei MF, Xu YX, Cao YX, Yi Y, Yang JJ, Peng HL, et al: Use of all-trans retinoic acid in combination with arsenic trioxide for remission induction in patients with newly diagnosed acute promyelocytic leukemia and for consolidation/maintenance in CR patients. Acta Haematol. 121:1–8. 2009.

33 

Shinkai Y, Sumi D, Toyama T, Kaji T and Kumagai Y: Role of aquaporin 9 in cellular accumulation of arsenic and its cytotoxicity in primary mouse hepatocytes. Toxicol Appl Pharmacol. 237:232–236. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Bhattacharjee H, Carbrey J, Rosen BP and Mukhopadhyay R: Drug uptake and pharmacological modulation of drug sensitivity in leukemia by AQP9. Biochem Biophys Res Commun. 322:836–841. 2004. View Article : Google Scholar : PubMed/NCBI

35 

Jing Y, Wang L, Xia L, Chen GQ, Chen Z, Miller WH and Waxman S: Combined effect of all-trans retinoic acid and arsenic trioxide in acute promyelocytic leukemia cells in vitro and in vivo. Blood. 97:264–269. 2001.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Iriyama N, Yuan B, Hatta Y, Horikoshi A, Yoshino Y, Toyoda H, Aizawa S and Takeuchi J: Granulocyte colony-stimulating factor potentiates differentiation induction by all-trans retinoic acid and arsenic trioxide and enhances arsenic uptake in the acute promyelocytic leukemia cell line HT93A. Oncol Rep 28: 1875-1882, 2012.
APA
Iriyama, N., Yuan, B., Hatta, Y., Horikoshi, A., Yoshino, Y., Toyoda, H. ... Takeuchi, J. (2012). Granulocyte colony-stimulating factor potentiates differentiation induction by all-trans retinoic acid and arsenic trioxide and enhances arsenic uptake in the acute promyelocytic leukemia cell line HT93A. Oncology Reports, 28, 1875-1882. https://doi.org/10.3892/or.2012.2006
MLA
Iriyama, N., Yuan, B., Hatta, Y., Horikoshi, A., Yoshino, Y., Toyoda, H., Aizawa, S., Takeuchi, J."Granulocyte colony-stimulating factor potentiates differentiation induction by all-trans retinoic acid and arsenic trioxide and enhances arsenic uptake in the acute promyelocytic leukemia cell line HT93A". Oncology Reports 28.5 (2012): 1875-1882.
Chicago
Iriyama, N., Yuan, B., Hatta, Y., Horikoshi, A., Yoshino, Y., Toyoda, H., Aizawa, S., Takeuchi, J."Granulocyte colony-stimulating factor potentiates differentiation induction by all-trans retinoic acid and arsenic trioxide and enhances arsenic uptake in the acute promyelocytic leukemia cell line HT93A". Oncology Reports 28, no. 5 (2012): 1875-1882. https://doi.org/10.3892/or.2012.2006
Copy and paste a formatted citation
x
Spandidos Publications style
Iriyama N, Yuan B, Hatta Y, Horikoshi A, Yoshino Y, Toyoda H, Aizawa S and Takeuchi J: Granulocyte colony-stimulating factor potentiates differentiation induction by all-trans retinoic acid and arsenic trioxide and enhances arsenic uptake in the acute promyelocytic leukemia cell line HT93A. Oncol Rep 28: 1875-1882, 2012.
APA
Iriyama, N., Yuan, B., Hatta, Y., Horikoshi, A., Yoshino, Y., Toyoda, H. ... Takeuchi, J. (2012). Granulocyte colony-stimulating factor potentiates differentiation induction by all-trans retinoic acid and arsenic trioxide and enhances arsenic uptake in the acute promyelocytic leukemia cell line HT93A. Oncology Reports, 28, 1875-1882. https://doi.org/10.3892/or.2012.2006
MLA
Iriyama, N., Yuan, B., Hatta, Y., Horikoshi, A., Yoshino, Y., Toyoda, H., Aizawa, S., Takeuchi, J."Granulocyte colony-stimulating factor potentiates differentiation induction by all-trans retinoic acid and arsenic trioxide and enhances arsenic uptake in the acute promyelocytic leukemia cell line HT93A". Oncology Reports 28.5 (2012): 1875-1882.
Chicago
Iriyama, N., Yuan, B., Hatta, Y., Horikoshi, A., Yoshino, Y., Toyoda, H., Aizawa, S., Takeuchi, J."Granulocyte colony-stimulating factor potentiates differentiation induction by all-trans retinoic acid and arsenic trioxide and enhances arsenic uptake in the acute promyelocytic leukemia cell line HT93A". Oncology Reports 28, no. 5 (2012): 1875-1882. https://doi.org/10.3892/or.2012.2006
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team