Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
December 2012 Volume 28 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December 2012 Volume 28 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Role of VEGF/VEGFR in the pathogenesis of leukemias and as treatment targets (Review)

  • Authors:
    • Guanhua Song
    • Yanmei Li
    • Guosheng Jiang
  • View Affiliations / Copyright

    Affiliations: Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Department of Hemato-Oncology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Key Laboratory of Ministry of Health for Biotech-Drug, Key Laboratory for Modern Medicine and Technology of Shandong Province, Jinan, Shandong, P.R. China
  • Pages: 1935-1944
    |
    Published online on: September 19, 2012
       https://doi.org/10.3892/or.2012.2045
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Angiogenesis plays an important role in solid tumor growth, progression and metastasis. Evidence suggests that the progression of hematolymphoid malignancies also depends on the induction of new blood vessel formation under the influence of acute leukemia, myelodysplastic syndromes, myeloproliferative neoplasms, multiple myeloma and lymphomas. The vascular endothelial growth factor (VEGF) is the most important proangiogenic agent that activates receptors on vascular endothelial cells and promotes blood vessel regeneration. It has been demonstrated that VEGF/VEGF receptor (VEGFR) expression is upregulated in several types of hematolymphoid tumor cells accompanied with angiogenesis. The levels of VEGF/VEGFR are correlated with the treatment, relapse and prognosis of hematolymphoid tumors. In order for VEGF family and their receptors as antiangiogenic targets to treat solid tumors, several antiangiogenic agents targeting VEGF-related pathways have been used for the treatment of hematolymphoid malignancies in clinical trials. The results demonstrate a promising therapeutic intervention in multiple types of hematolymphoid tumors. This review aims to summarize recent advances in understanding the role of VEGF and angiogenesis in leukemias, mainly focusing on their upstream transcriptors, downstream targets and the correlation of VEGF/VEGFR with the treatment, relapse or prognosis of leukemia. The progress of VEGF and its receptors as attractive targets for therapies are also discussed in clinical application.
View Figures

Figure 1

Figure 2

View References

1 

Kerbel RS: Tumor angiogenesis. N Engl J Med. 358:2039–2049. 2008. View Article : Google Scholar : PubMed/NCBI

2 

Ellis LM and Hicklin DJ: VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer. 8:579–591. 2008. View Article : Google Scholar : PubMed/NCBI

3 

Medinger M, Fischer N and Tzankov A: Vascular endothelial growth factor-related pathways in hemato-lymphoid malignancies. J Oncol. 2010:7297252010. View Article : Google Scholar

4 

Aguayo A, Kantarjian HM, Estey EH, et al: Plasma vascular endothelial growth factor levels have prognostic significance in patients with acute myeloid leukemia but not in patients with myelodysplastic syndromes. Cancer. 95:1923–1930. 2002. View Article : Google Scholar

5 

Zhu Z, Hattori K, Zhang H, et al: Inhibition of human leukemia in an animal model with human antibodies directed against vascular endothelial growth factor receptor 2. Correlation between antibody affinity and biological activity. Leukemia. 17:604–611. 2003. View Article : Google Scholar

6 

Benouchan M and Colombo BM: Anti-angiogenic strategies for cancer therapy. Int J Oncol. 27:563–571. 2005.PubMed/NCBI

7 

Ferrara N and Henzel WJ: Pituitary follicular cell secrete a novel heparin-binding growth factor specific for vascular endothelial cell. Biochem Biophys Res Commun. 161:8511989. View Article : Google Scholar : PubMed/NCBI

8 

Ferrara N, Gerber HP and LeCouter J: The biology of VEGF and its receptors. Nat Med. 9:669–676. 2003. View Article : Google Scholar : PubMed/NCBI

9 

Cao Y: Positive and negative modulation of angiogenesis by VEGFR1 ligands. Sci Signal. 2:re12009.PubMed/NCBI

10 

Zhang L, Zhou F, Han W, et al: VEGFR-3 ligand-binding and kinase activity are required for lymphangiogenesis but not for angiogenesis. Cell Res. 20:1319–1331. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Wu Y, Hooper AT, Zhong Z, et al: The vascular endothelial growth factor receptor (VEGFR-1) supports growth and survival of human breast carcinoma. Int J Cancer. 119:1519–1529. 2006. View Article : Google Scholar : PubMed/NCBI

12 

Autiero M, Luttun A, Tjwa M and Carmeliet P: Placental growth factor and its receptor, vascular endothelial growth factor receptor-1: novel targets for stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders. J Thromb Haemost. 1:1356–1370. 2003. View Article : Google Scholar

13 

Holmes K, Roberts OL, Thomas AM and Cross MJ: Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal. 19:2003–2012. 2007. View Article : Google Scholar

14 

Brekken RA, Overholser JP, Stastny VA, Waltenberger J, Minna JD and Thorpe PE: Selective inhibition of vascular endothelial growth factor (VEGF) receptor 2 (KDR/Flk-1) activity by a monoclonal anti-VEGF antibody blocks tumor growth in mice. Cancer Res. 60:5117–5124. 2000.PubMed/NCBI

15 

Katoh O, Tauchi H, Kawaishi K, Kimura A and Satow Y: Expression of the vascular endothelial growth factor (VEGF) receptor gene, KDR, in hematopoietic cells and inhibitory effect of VEGF on apoptotic cell death caused by ionizing radiation. Cancer Res. 55:5687–5692. 1995.PubMed/NCBI

16 

Cursiefen C, Chen L, Borges LP, et al: VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest. 113:1040–1050. 2004. View Article : Google Scholar : PubMed/NCBI

17 

Adams J, Carder PJ, Downey S, et al: Vascular endothelial growth factor (VEGF) in breast cancer: comparison of plasma, serum and tissue VEGF and microvessel density and effects of tamoxifen. Cancer Res. 60:2898–2905. 2000.PubMed/NCBI

18 

Kay NE, Bone ND, Tschumper RC, et al: B-CLL cells are capable of synthesis and secretion of both pro- and anti-angiogenic molecules. Leukemia. 16:911–919. 2002. View Article : Google Scholar : PubMed/NCBI

19 

Rafii S, Lyden D, Benezra R, Hattori K and Heissig B: Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer. 2:826–835. 2002. View Article : Google Scholar : PubMed/NCBI

20 

Shweiki D, Itin A, Soffer D and Keshet E: Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 359:843–845. 1992. View Article : Google Scholar : PubMed/NCBI

21 

Dor Y, Porat R and Keshet E: Vascular endothelial growth factor and vascular adjustments to perturbations in oxygen homeostasis. Am J Physiol Cell Physiol. 280:C1367–C1374. 2001.PubMed/NCBI

22 

Kaelin WG Jr: The von Hippel-Lindau tumor suppressor protein and clear cell renal carcinoma. Clin Cancer Res. 13:680s–682s. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Cong XL, Li B, Yang RC, Feng SZ, Chen SJ and Han ZC: Enhanced growth suppression of Philadephia1 leukemia cells by targeting bcr3/abl2 and VEGF through antisense strategy. Leukemia. 19:1517–1524. 2005. View Article : Google Scholar : PubMed/NCBI

24 

Ghosh AK, Shanafelt TD, Cimmino A, et al: Aberrant regulation of pVHL levels by microRNA promotes the HIF/VEGF axis in CLL B cells. Blood. 113:5568–5574. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Withey JM, Marley SB, Kaeda J, Harvey AJ, Crompton MR and Gordon MY: Targeting primary human leukemia cells with RNA interference: Bcr-Abl targeting inhibits myeloid progenitor self-renewal in chronic myeloid leukaemia cells. Br J Haematol. 129:377–380. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Schmittgen TD and Livak KJ: Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 3:1101–1108. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Ghosh AK, Secreto CR, Knox TR, Ding W, Mukhopadhyay D and Kay NE: Circulating microvesicles in B-cell chronic lymphocytic leukemia can stimulate marrow stromal cells: implications for disease progression. Blood. 115:1755–1764. 2010. View Article : Google Scholar

28 

Aggarwal BB, Sethi G, Ahn KS, et al: Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer:modern target but ancient solution. Ann NY Acad Sci. 1091:151–169. 2006. View Article : Google Scholar : PubMed/NCBI

29 

Eriksen KW, Kaltoft K, Mikkelsen G, et al: Constitutive STAT3-activation in Sezary syndrome: tyrphostin AG490 inhibits STAT3-activation, interleukin-2 receptor expression and growth of leukemic Sezary cells. Leukemia. 15:787–793. 2001. View Article : Google Scholar

30 

Nielsen M, Nissen MH, Gerwien J, et al: Spontaneous interleukin-5 production in cutaneous T-cell lymphoma lines is mediated by constitutively activated Stat3. Blood. 99:973–977. 2002. View Article : Google Scholar : PubMed/NCBI

31 

Minet E, Michel G, Mottet D, et al: c-JUN gene induction and AP-1 activity is regulated by a JNK-dependent pathway in hypoxic HepG2 cells. Exp Cell Res. 265:114–124. 2001. View Article : Google Scholar : PubMed/NCBI

32 

Pages G, Berra E, Milanini J, Levy AP and Pouyssegur J: Stress-activated protein kinases (JNK and p38/HOG) are essential for vascular endothelial growth factor mRNA stability. J Biol Chem. 275:26484–26491. 2000. View Article : Google Scholar : PubMed/NCBI

33 

Krejsgaard T, Vetter-Kauczok CS, Woetmann A, et al: Jak3- and JNK-dependent vascular endothelial growth factor expression in cutaneous T-cell lymphoma. Leukemia. 20:1759–1766. 2006. View Article : Google Scholar : PubMed/NCBI

34 

Kumar SA, Hu X, Brown M, et al: Lysophosphatidic acid receptor expression in chronic lymphocytic leukemia leads to cell survival mediated though vascular endothelial growth factor expression. Leuk Lymphoma. 50:2038–2048. 2009. View Article : Google Scholar

35 

Hu X, Mendoza FJ, Sun J, Banerji V, Johnston JB and Gibson SB: Lysophosphatidic acid (LPA) induces the expression of VEGF leading to protection against apoptosis in B-cell derived malignancies. Cell Signal. 20:1198–1208. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Aguayo A, Kantarjian H, Manshouri T, et al: Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood. 96:2240–2245. 2000.PubMed/NCBI

37 

Bellamy WT, Richter L, Sirjani D, et al: Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood. 97:1427–1434. 2001. View Article : Google Scholar

38 

Braun T, Carvalho G, Fabre C, Grosjean J, Fenaux P and Kroemer G: Targeting NF-kappaB in hematologic malignancies. Cell Death Differ. 13:748–758. 2006. View Article : Google Scholar : PubMed/NCBI

39 

Zhao T, Yasunaga J, Satou Y, et al: Human T-cell leukemia virus type 1 bZIP factor selectively suppresses the classical pathway of NF-kappaB. Blood. 113:2755–2764. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Sujobert P, Bardet V, Cornillet-Lefebvre P, et al: Essential role for the p110delta isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia. Blood. 106:1063–1066. 2005. View Article : Google Scholar : PubMed/NCBI

41 

Ramos AM, Fernandez C, Amran D, Sancho P, de Blas E and Aller P: Pharmacologic inhibitors of PI3K/Akt potentiate the apoptotic action of the antileukemic drug arsenic trioxide via glutathione depletion and increased peroxide accumulation in myeloid leukemia cells. Blood. 105:4013–4020. 2005. View Article : Google Scholar

42 

Shi Q, Le X, Abbruzzese JL, et al: Constitutive Sp1 activity is essential for differential constitutive expression of vascular endothelial growth factor in human pancreatic adenocarcinoma. Cancer Res. 61:4143–4154. 2001.

43 

Hsu TC, Young MR, Cmarik J and Colburn NH: Activator protein 1 (AP-1) and nuclear factor kappaB (NF-kappa B)-dependent transcriptional events in carcinogenesis. Free Radic Biol Med. 28:1338–1348. 2000. View Article : Google Scholar : PubMed/NCBI

44 

Angel P and Karin M: The role of Jun, Fos and the AP-1 complex in cell proliferation and transformation. Biochim Biophys Acta. 1072:129–157. 1991.PubMed/NCBI

45 

Pollmann C, Huang X, Mall J, Bech-Otschir D, Naumann M and Dubiel W: The constitutive photomorphogenesis 9 signalosome directs vascular endothelial growth factor production in tumor cells. Cancer Res. 61:8416–8421. 2001.PubMed/NCBI

46 

Poulaki V, Mitsiades CS, McMullan C, et al: Regulation of vascular endothelial growth factor expression by insulin-like growth factor I in thyroid carcinomas. J Clin Endocrinol Metab. 88:5392–5398. 2003. View Article : Google Scholar : PubMed/NCBI

47 

Chuang CH, Huang CS and Hu ML: Vitamin E and rutin synergistically inhibit expression of vascular endothelial growth factor through down-regulation of binding activity of activator protein-1 in human promyelocytic leukemia (HL-60) cells. Chem Biol Interact. 183:434–441. 2010. View Article : Google Scholar

48 

Rho SB, Choi K, Park K and Lee JH: Inhibition of angiogenesis by the BTB domain of promyelocytic leukemia zinc finger protein. Cancer Lett. 294:49–56. 2010. View Article : Google Scholar : PubMed/NCBI

49 

Konopka JB, Watanabe SM and Witte ON: An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell. 37:1035–1042. 1984. View Article : Google Scholar : PubMed/NCBI

50 

Pendergast AM, Quilliam LA, Cripe LD, et al: BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell. 75:175–185. 1993. View Article : Google Scholar : PubMed/NCBI

51 

Carlesso N, Frank DA and Griffin JD: Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. J Exp Med. 183:811–820. 1996. View Article : Google Scholar : PubMed/NCBI

52 

Sillaber C, Gesbert F, Frank DA, Sattler M and Griffin JD: STAT5 activation contributes to growth and viability in Bcr/Abl-transformed cells. Blood. 95:2118–2125. 2000.PubMed/NCBI

53 

Nieborowska-Skorska M, Wasik MA, Slupianek A, Salomoni P, Kitamura T, Calabretta B and Skorski T: Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis. J Exp Med. 189:1229–1242. 1999. View Article : Google Scholar : PubMed/NCBI

54 

Skorski T, Bellacosa A, Nieborowska-Skorska M, Majewski M, Martinez R, Choi JK, et al: Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J. 16:6151–6161. 1997. View Article : Google Scholar : PubMed/NCBI

55 

Hwan D, Kim, Xu W, et al: Lipton genetic variants in the candidate genes of the apoptosis pathway and susceptibility to chronic myeloid leukemia. Blood. 113:2517–2525. 2009. View Article : Google Scholar : PubMed/NCBI

56 

Li L, Zhang R, Fang ZY, Chen JN and Zhu ZL: Suppression of vascular endothelial growth factor (VEGF) expression by targeting the Bcr-Abl oncogene and protein tyrosine kinase activity in Bcr-Abl-positive leukaemia cells. J Int Med Res. 37:426–437. 2009. View Article : Google Scholar : PubMed/NCBI

57 

Böhm A, Aichberger KJ, Mayerhofer M, et al: Targeting of mTOR is associated with decreased growth and decreased VEGF expression in acute myeloid leukaemia cells. Eur J Clin Invest. 39:395–405. 2009.PubMed/NCBI

58 

Venables JP: Unbalanced alternative splicing and its significance in cancer. Bioessays. 28:378–386. 2006. View Article : Google Scholar : PubMed/NCBI

59 

Podar K, Tai YT and Davies FE: Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood. 98:428–435. 2001. View Article : Google Scholar : PubMed/NCBI

60 

Hussong JW, Rodgers GM and Shami PJ: Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood. 95:390–313. 2000.PubMed/NCBI

61 

Padró T, Ruiz S, Bieker R, Bürger H, Steins M, Kienast J, et al: Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia. Blood. 95:2637–2644. 2000.

62 

Abrams ST, Lakum T, Lin K, et al: B-cell receptor signaling in chronic lymphocytic leukemia cells is regulated by overexpressed active protein kinase CβII. Blood. 109:1193–1201. 2007.PubMed/NCBI

63 

Gora-Tybor J, Blonski JZ and Robak T: Circulating vascular endothelial growth factor (VEGF) and its soluble receptors in patients with chronic lymphocytic leukemia. Eur Cytokine Netw. 16:41–46. 2005.PubMed/NCBI

64 

Abrams ST, Brown BR, Zuzel M and Slupsky JR: Vascular endothelial growth factor stimulates protein kinase CβII expression in chronic lymphocytic leukaemia cells. Blood. 115:4447–4454. 2010.

65 

Ugarte-Berzal E, Redondo-Muñoz J, Eroles P, et al: VEGF/VEGFR2 interaction down-regulates matrix metalloproteinase-9 via STAT1 activation and inhibits B chronic lymphocytic leukemia cell migration. Blood. 115:846–849. 2010. View Article : Google Scholar : PubMed/NCBI

66 

Hata AN and Breyer RM: Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation. Pharmacol Ther. 103:147–166. 2004. View Article : Google Scholar : PubMed/NCBI

67 

Wu G, Luo J, Rana JS, Laham R, Sellke FW and Li J: Involvement of COX-2 in VEGF-induced angiogenesis via P38 and JNK pathways in vascular endothelial cells. Cardiovasc. 69:512–519. 2006. View Article : Google Scholar : PubMed/NCBI

68 

Su JL, Shih JY, Yen ML, et al: Cyclooxygenase-2 induces EP1- and HER-2/Neu-dependent vascular endothelial growth factor-C up-regulation: a novel mechanism of lymphangiogenesis in lung adenocarcinoma. Cancer Res. 64:554–564. 2004. View Article : Google Scholar : PubMed/NCBI

69 

Véronèse L, Tournilhac O, Verrelle P, et al: Low MCL-1 mRNA expression correlates with prolonged survival in B-cell chronic lymphocytic leukemia. Leukemia. 22:1291–1293. 2008.PubMed/NCBI

70 

Pepper C, Lin TT, Pratt G, et al: Mcl-1 expression has in vitro and in vivo significance in chronic lymphocytic leukemia and is associated with other poor prognostic markers. Blood. 112:3807–3817. 2008. View Article : Google Scholar : PubMed/NCBI

71 

Véronèse L, Tournilhac O, Verrelle P, et al: Strong correlation between VEGF and MCL-1 mRNA expression levels in B-cell chronic lymphocytic leukemia. Leuk Res. 33:1623–1626. 2009.PubMed/NCBI

72 

Perez-Atayde AR, Sallan SE, Tedrow U, Connors S, Allred E and Folkman J: Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am J Pathol. 150:815–821. 1997.PubMed/NCBI

73 

Yetgin S, Yenicesu I, Etin MC and Tuncer M: Clinical importance of serum vascular endothelial and basic fibroblast growth factors in children with acute lymphoblastic leukemia. Leuk Lymphoma. 42:83–88. 2001. View Article : Google Scholar : PubMed/NCBI

74 

Dong X, Han ZC and Yang R: Angiogenesis and antiangiogenic therapy in hematologic malignancies. Crit Rev Oncol Hematol. 62:105–118. 2007. View Article : Google Scholar : PubMed/NCBI

75 

Frater JL, Kay NE, Goolsby CL, Crawford SE, Dewald GW and Peterson LC: Dysregulated angiogenesis in B-chronic lymphocytic leukemia: morphologic, immunohistochemical, and flow cytometric evidence. Diagn Pathol. 3:162008. View Article : Google Scholar

76 

Norén-Nyström U, Heyman M, Frisk P, et al: Vascular density in childhood acute lymphoblastic leukaemia correlates to biological factors and outcome. Br J Haematol. 146:521–530. 2009.PubMed/NCBI

77 

Chen H, Treweeke AT, West DC, Till KJ, Cawley JC, Zuzel M and Toh CH: In vitro and in vivo production of vascular endothelial growth factor by chronic lymphocytic leukemia cells. Blood. 96:3181–3187. 2000.PubMed/NCBI

78 

Folkman J: Fundamental concepts of the angiogenic process. Curr Mol Med. 3:643–651. 2003. View Article : Google Scholar : PubMed/NCBI

79 

Verstovsek S, Lunin S, Kantarjian H, et al: Clinical relevance of VEGF receptors 1 and 2 in patients with chronic myelogenous leukemia. Leuk Res. 27:661–669. 2003. View Article : Google Scholar : PubMed/NCBI

80 

Hayashibara T, Yamada Y, Miyanishi T, et al: Vascular endothelial growth factor and cellular chemotaxis: a possible autocrine pathway in adult T-cell leukemia cell invasion. Clin Cancer Res. 7:2719–2726. 2001.PubMed/NCBI

81 

Demacq C, Vasconcellos VB, Izidoro-Toledo TC, et al: Vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (NOS3) polymorphisms are associated with high relapse risk in childhood acute lymphoblastic leukemia (ALL). Clin Chim Acta. 411:1335–1405. 2010. View Article : Google Scholar : PubMed/NCBI

82 

Fragoso R, Elias AP and Dias S: Autocrine VEGF loops, signaling pathways, and acute leukemia regulation. Leuk Lymphoma. 48:481–488. 2007. View Article : Google Scholar : PubMed/NCBI

83 

Bellamy WT: Expression of vascular endothelial growth factor and its receptors in multiple myeloma and other hematopoietic malignancies. Semin Oncol. 28:551–559. 2001. View Article : Google Scholar : PubMed/NCBI

84 

Bairey O, Boycov O, Kaganovsky E, Zimra Y, Shaklai M and Rabizadeh E: All three receptors for vascular endothelial growth factor (VEGF) are expressed on B-chronic lymphocytic leukemia (CLL) cells. Leuk Res. 28:243–248. 2004. View Article : Google Scholar : PubMed/NCBI

85 

de Bont ES, Neefjes VM, Rosati S, Vellenga E and Kamps WA: New vessel formation and aberrant VEGF/VEGFR signaling in acute leukemia: does it matter? Leuk Lymphoma. 43:1901–1909. 2002.PubMed/NCBI

86 

Aguayo A, Estey E, Kantarjian H, et al: Cellular vascular endothelial growth factor is a predictor of outcome in patients with acute myeloid leukemia. Blood. 94:3717–3721. 1999.PubMed/NCBI

87 

Fu J, Fu J, Chen X, Zhang Y, Gu H and Bai Y: CD147 and VEGF co-expression predicts prognosis in patients with acute myeloid leukemia. Jpn J Clin Oncol. 40:1046–1052. 2010. View Article : Google Scholar : PubMed/NCBI

88 

Fiedler W, Graeven U, Ergün S, et al: Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood. 89:1870–1875. 1997.PubMed/NCBI

89 

Koistinen P, Siitonen T, Mäntymaa P, et al: Regulation of the acute myeloid leukemia cell line OCI/AML-2 by endothelial nitric oxide synthase under the control of a vascular endothelial growth factor signaling system. Leukemia. 15:1433–1441. 2001. View Article : Google Scholar

90 

Fielder W, Graeven U, Ergün S, et al: Expression of FLT4 and its ligand VEGF-C in acute myeloid leukemia. Leukemia. 11:1234–1237. 1997. View Article : Google Scholar : PubMed/NCBI

91 

de Jonge HJ, Valk PJ, Veeger NJ, et al: High VEGFC expression is associated with unique gene expression profiles and predicts adverse prognosis in pediatric and adult acute myeloid leukemia. Blood. 116:1747–1754. 2010.PubMed/NCBI

92 

Molica S, Vitelli G, Levato D, Gandolfo GM and Liso V: Increased serum levels of vascular endothelial growth factor predict risk of progression in early B-cell chronic lymphocytic leukaemia. Br J Haematol. 107:605–610. 1999. View Article : Google Scholar : PubMed/NCBI

93 

Ferrajoli A, Manshouri T, Estrov Z, et al: High levels of vascular endothelial growth factor receptor-2 correlate with shortened survival in chronic lymphocytic leukemia. Clin Cancer Res. 7:795–799. 2001.PubMed/NCBI

94 

Dias S, Hattori K, Zhu Z, et al: Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J Clin Invest. 106:511–521. 2000. View Article : Google Scholar : PubMed/NCBI

95 

Dias S, Hattori K, Heissig B, et al: Inhibition of both paracrine and autocrine VEGF/VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias. Proc Natl Acad Sci USA. 98:10857–10862. 2001. View Article : Google Scholar : PubMed/NCBI

96 

Schuch G, Machluf M, Bartsch G Jr, et al: In vivo administration of vascular endothelial growth factor (VEGF) and its antagonist, soluble neuropilin-1, predicts a role of VEGF in the progression of acute myeloid leukemia in vivo. Blood. 100:4622–4628. 2002. View Article : Google Scholar : PubMed/NCBI

97 

Liu P, Wang Y, Li YH, et al: Adenovirus-mediated gene therapy with an antiangiogenic fragment of thrombospondin-1 inhibits human leukemia xenograft growth in nude mice. Leuk Res. 27:701–708. 2003. View Article : Google Scholar : PubMed/NCBI

98 

Vecchiarelli-Federico LM, Cervi D, Haeri M, Li Y, Nagy A and Ben-David Y: Vascular endothelial growth factor - a positive and negative regulator of tumor growth. Cancer Res. 70:863–867. 2010. View Article : Google Scholar : PubMed/NCBI

99 

Cervi D, Shaked Y, Haeri M, et al: Enhanced natural-killer cell and erythropoietic activities in VEGF-A-overexpressing mice delay F-MuLV-induced erythroleukemia. Blood. 109:2139–2146. 2007. View Article : Google Scholar : PubMed/NCBI

100 

Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG and Kerbel RS: Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell. 15:232–239. 2009. View Article : Google Scholar : PubMed/NCBI

101 

Hurwitz H, Fehrenbacher L, Novotny W, et al: Bevacizumab plus irinotecan, fluorouracil and leucovorin for metastatic colorectal cancer. N Engl J Med. 350:2335–2342. 2004. View Article : Google Scholar : PubMed/NCBI

102 

Sandler A, Gray R, Perry MC, et al: Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 355:2542–2550. 2006. View Article : Google Scholar : PubMed/NCBI

103 

Miller K, Wang M, Gralow J, et al: Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med. 357:2666–2676. 2007. View Article : Google Scholar : PubMed/NCBI

104 

Escudier B, Eisen T, Stadler WM, et al: Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 356:125–134. 2007. View Article : Google Scholar : PubMed/NCBI

105 

Motzer RJ, Hutson TE, Tomczak P, et al: Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 356:115–124. 2007. View Article : Google Scholar : PubMed/NCBI

106 

Karp JE, Gojo I, Pili R, et al: Targeting vascular endothelial growth factor for relapsed and refractory adult acute myelogenous leukemias: therapy with sequential 1-β-d-arabinofuranosylcytosine, mitoxantrone, and bevacizumab. Clin Cancer Res. 10:3577–3585. 2004.PubMed/NCBI

107 

Presta LG, Chen H, O’Connor SJ, et al: Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 57:4593–4599. 1997.PubMed/NCBI

108 

D’Amato RJ, Loughnan MS, Flynn E and Folkman J: Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA. 91:4082–4085. 1994.

109 

Teo SK: Properties of thalidomide and its analogues: implications for anticancer therapy. AAPS J. 7:E14–E19. 2005. View Article : Google Scholar : PubMed/NCBI

110 

Dredge K, Marriott JB, Macdonald CD, et al: Novel thalidomide analogues display anti-angiogenic activity independently of immunomodulatory effects. Br J Cancer. 87:1166–1172. 2002. View Article : Google Scholar : PubMed/NCBI

111 

Thomas DA, Estey E, Giles FJ, et al: Single agent thalidomide in patients with relapsed or refractory acute myeloid leukaemia. Br J Haematol. 123:436–441. 2003. View Article : Google Scholar : PubMed/NCBI

112 

Steins MB, Padró T, Bieker R, et al: Efficacy and safety of thalidomide in patients with acute myeloid leukemia. Blood. 99:834–839. 2002. View Article : Google Scholar : PubMed/NCBI

113 

Barr P, Fu P, Lazarus H, et al: Antiangiogenic activity of thalidomide in combination with fludarabine, carboplatin and topotecan for high-risk acute myelogenous leukemia. Leuk Lymphoma. 48:1940–1949. 2007. View Article : Google Scholar : PubMed/NCBI

114 

Drevs J, Müller-Driver R, Wittig C, et al: PTK787/ZK 222584, a specific vascular endothelial growth factor-receptor tyrosine kinase inhibitor, affects the anatomy of the tumor vascular bed and the functional vascular properties as detected by dynamic enhanced magnetic resonance imaging. Cancer Res. 62:4015–4022. 2002.

115 

Roboz GJ, Giles FJ, List AF, et al: Phase 1 study of PTK787/ZK 222584, a small molecule tyrosine kinase receptor inhibitor, for the treatment of acute myeloid leukemia and myelodysplastic syndrome. Leukemia. 20:952–957. 2006. View Article : Google Scholar : PubMed/NCBI

116 

Wedge SR, Kendrew J, Hennequin LF, et al: AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res. 65:4389–4400. 2005. View Article : Google Scholar : PubMed/NCBI

117 

Fiedler W, Mesters R, Heuser M, et al: An open-label, phase I study of cediranib (RECENTIN) in patients with acute myeloid leukemia. Leuk Res. 34:196–202. 2010. View Article : Google Scholar : PubMed/NCBI

118 

Raza A, Mehdi M, Mumtaz M, Ali F, Lascher S and Galili N: Combination of 5-azacytidine and thalidomide for the treatment of myelodysplastic syndromes and acute myeloid leukemia. Cancer. 113:1596–1604. 2008. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Song G, Li Y and Jiang G: Role of VEGF/VEGFR in the pathogenesis of leukemias and as treatment targets (Review). Oncol Rep 28: 1935-1944, 2012.
APA
Song, G., Li, Y., & Jiang, G. (2012). Role of VEGF/VEGFR in the pathogenesis of leukemias and as treatment targets (Review). Oncology Reports, 28, 1935-1944. https://doi.org/10.3892/or.2012.2045
MLA
Song, G., Li, Y., Jiang, G."Role of VEGF/VEGFR in the pathogenesis of leukemias and as treatment targets (Review)". Oncology Reports 28.6 (2012): 1935-1944.
Chicago
Song, G., Li, Y., Jiang, G."Role of VEGF/VEGFR in the pathogenesis of leukemias and as treatment targets (Review)". Oncology Reports 28, no. 6 (2012): 1935-1944. https://doi.org/10.3892/or.2012.2045
Copy and paste a formatted citation
x
Spandidos Publications style
Song G, Li Y and Jiang G: Role of VEGF/VEGFR in the pathogenesis of leukemias and as treatment targets (Review). Oncol Rep 28: 1935-1944, 2012.
APA
Song, G., Li, Y., & Jiang, G. (2012). Role of VEGF/VEGFR in the pathogenesis of leukemias and as treatment targets (Review). Oncology Reports, 28, 1935-1944. https://doi.org/10.3892/or.2012.2045
MLA
Song, G., Li, Y., Jiang, G."Role of VEGF/VEGFR in the pathogenesis of leukemias and as treatment targets (Review)". Oncology Reports 28.6 (2012): 1935-1944.
Chicago
Song, G., Li, Y., Jiang, G."Role of VEGF/VEGFR in the pathogenesis of leukemias and as treatment targets (Review)". Oncology Reports 28, no. 6 (2012): 1935-1944. https://doi.org/10.3892/or.2012.2045
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team