Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
March 2013 Volume 29 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March 2013 Volume 29 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Retinoic acid inhibits the cytoproliferative response to weak 50‑Hz magnetic fields in neuroblastoma cells

  • Authors:
    • María Ángeles Trillo
    • María Antonia Martínez
    • María Antonia Cid
    • Alejandro Úbeda
  • View Affiliations / Copyright

    Affiliations: Department of Research-BEM, IRYCIS, Hospital Ramon y Cajal, 28034 Madrid, Spain
    Copyright: © Trillo et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].
  • Pages: 885-894
    |
    Published online on: December 24, 2012
       https://doi.org/10.3892/or.2012.2212
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

We previously reported that intermittent exposure to a 50‑Hz magnetic field (MF) at 100 µT stimulates cell proliferation in the human neuroblastoma cell line NB69. The present study aimed to investigate whether the magnetic field-induced growth promotion also occurs at a lower magnetic flux density of 10 µT. To this purpose, NB69 cells were subjected for 42 h to intermittent exposure, 3 h on/3 h off, to a 50‑Hz MF at a 10 or 100 µT magnetic flux density. The field exposure took place either in the presence or in the absence of the antiproliferative agent retinoic acid. At the end of the treatment and/or incubation period, the cell growth was estimated by hemocytometric counting and spectrophotometric analysis of total protein and DNA contents. Potential changes in DNA synthesis were also assessed through proliferating cell nuclear antigen (PCNA) immunolabeling. The results confirmed previously reported data that a 42-h exposure to a 50‑Hz sine wave MF at 100 µT promotes cell growth in the NB69 cell line, and showed that 10 µT induces a similar proliferative response. This effect, which was significantly associated and linearly correlated with PCNA expression, was abolished by the presence of retinoic acid in the culture medium.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Kheifets LI, Afifi AA, Buffler PA and Zhang ZW: Occupational electric and magnetic field exposure and brain cancer: a meta-analysis. J Occup Environ Med. 37:1327–1341. 1995. View Article : Google Scholar : PubMed/NCBI

2 

Kliukiene J, Tynes T and Andersen A: Residential and occupational exposures to 50-Hz magnetic fields and breast cancer in women: a population-based study. Am J Epidemiol. 159:852–861. 2004. View Article : Google Scholar : PubMed/NCBI

3 

Davanipour Z and Sobel E: Long-term exposure to magnetic fields and the risks of Alzheimer’s disease and breast cancer: further biological research. Pathophysiology. 16:149–156. 2009.

4 

Hakansson N, Gustavsson P, Johansen C and Floderus B: Neurodegenerative diseases in welders and other workers exposed to high levels of magnetic fields. Epidemiology. 14:420–426. 2003. View Article : Google Scholar : PubMed/NCBI

5 

Huss A, Spoerri A, Egger M and Röösli M: Residence near power lines and mortality from neurodegenerative diseases: longitudinal study of the Swiss population. Am J Epidemiol. 169:167–175. 2009. View Article : Google Scholar : PubMed/NCBI

6 

Feychting M and Forssen U: Electromagnetic fields and female breast cancer. Cancer Causes Control. 17:553–558. 2006. View Article : Google Scholar : PubMed/NCBI

7 

Kheifets L, Bowman JD, Checkoway H, Feychting M, Harrington JM, Kavet R, Marsh G, Mezei G, Renew DC and van Wijngaarden E: Future needs of occupational epidemiology of extremely low frequency electric and magnetic fields: review and recommendations. Occup Environ Med. 66:72–80. 2009. View Article : Google Scholar : PubMed/NCBI

8 

International Agency for Research of Cancer (IARC). IARC monograph on the evaluation of carcinogenic risks to humans. 80:Non-ionizing radiation, Part 1: Static and extremely low-frequency (ELF) electric and magnetic fields. IARC Press; Lyon, France: 2002, Retrieved from: http://monographs.iarc.fr/ENG/Monographs/vol80/mono80.pdf. Last accessed 1 August 2012

9 

International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for limiting exposure to time varying electric, magnetic and electromagnetic fields. Health Phys. 74:494–522. 1998.PubMed/NCBI

10 

International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for limiting exposure to time varying electric and magnetic fields (1 Hz to 100 kHz). Health Phys. 99:818–836. 2010.PubMed/NCBI

11 

Fedrowitz M and Loscher W: Exposure of Fischer 344 rats to a weak power frequency magnetic field facilitates mammary tumorigenesis in the DMBA model of breast cancer. Carcinogenesis. 29:186–193. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Jiménez-García MN, Arellanes-Robledo J, Aparicio-Bautista DI, Rodríguez-Segura MA, Villa-Trevino S and Godina-Nava JJ: Anti-proliferative effect of extremely low frequency electromagnetic field on preneoplastic lesions formation in the rat liver. BMC Cancer. 10:159–170. 2010.PubMed/NCBI

13 

Wen J, Jiang S and Chen B: The effect of 100 Hz magnetic field combined with X-ray on hepatoma-implanted mice. Bioelectromagnetics. 32:322–324. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Juutilainen J: Do electromagnetic fields enhance the effects of environmental carcinogens? Radiat Prot Dosimetry. 132:228–231. 2008. View Article : Google Scholar : PubMed/NCBI

15 

Santini MT, Rainaldi G and Indovina PL: Cellular effects of extremely low frequency (ELF) electromagnetic fields. Int J Radiat Biol. 85:294–313. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Li H, Zeng Q, Weng Y, Lu D, Jiang H and Xu Z: Effects of ELF magnetic fields on protein expression profile of human breast cancer cells MCF7. Sci China C Life Sci. 48:506–514. 2005. View Article : Google Scholar : PubMed/NCBI

17 

Lupke M, Frahm J, Lantow M, Maercker C, Remondini D, Bersani F and Simko M: Gene expression analysis of ELF-MF exposed human monocytes indicating the involvement of the alternative activation pathway. Biochim Biophys Acta. 1763:402–412. 2006. View Article : Google Scholar : PubMed/NCBI

18 

Vianale G, Reale M, Amerio P, Stefanachi M, Di Luzio S and Muraro R: Extremely low frequency electromagnetic field enhances human keratinocyte cell growth and decreases proinflammatory chemokine production. Br J Dermatol. 158:1189–1196. 2008. View Article : Google Scholar

19 

Simko M, Kriehuber R, Weiss DG and Luben RA: Effects of 50 Hz EMF exposure on micronucleus formation and apoptosis in transformed and non-transformed human cell lines. Bioelectromagnetics. 19:85–91. 1998. View Article : Google Scholar : PubMed/NCBI

20 

Nikolova T, Czyz J, Rolletschek A, Blyszczuk P, Fuchs J, Jovtchev G, Schuderer J, Kuster N and Wobus AM: Electromagnetic fields affect transcript levels of apoptosis-related genes in embryonic stem cell-derived neural progenitor cells. FASEB J. 19:1686–1688. 2005.PubMed/NCBI

21 

Manikonda PK, Rajendra P, Devendranath D, Gunasekaran B, Channakeshava, Aradhya RS, Sashidhar RB and Subramanyam C: Influence of extremely low frequency magnetic fields on Ca2+ signaling and NMDA receptor functions in rat hippocampus. Neurosci Lett. 413:145–149. 2007. View Article : Google Scholar : PubMed/NCBI

22 

Gaetani R, Ledda M, Barile L, Chimenti I, De Carlo F, Forte E, Ionta V, Giuliani L, D’Emilia E, Frati G, Miraldi F, Pozzi D, Messina E, Grimaldi S, Giacomello A and Lisi A: Differentiation of human adult cardiac stem cells exposed to extremely low-frequency electromagnetic fields. Cardiovasc Res. 82:411–420. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Di Loreto S, Falone S, Caracciolo V, Sebastiani P, D’Alessandro A, Mirabilio A, Zimmitti V and Amicarelli F: Fifty hertz extremely low-frequency magnetic field exposure elicits redox and trophic response in rat-cortical neurons. J Cell Physiol. 219:334–343. 2009.PubMed/NCBI

24 

Pirozzoli MC, Marino C, Lovisolo GA, Laconi C, Mosiello L and Negroni A: Effects of 50 Hz electromagnetic field exposure on apoptosis and differentiation in a neuroblastoma cell line. Bioelectromagnetics. 24:510–516. 2003. View Article : Google Scholar : PubMed/NCBI

25 

Falone S, Grossi MR, Cinque B, D’Angelo B, Tettamanti E, Cimini A, Di Ilio C and Amicarelli F: Fifty hertz extremely low-frequency electromagnetic field causes changes in redox and differentiative status in neuroblastoma cells. Int J Biochem Cell Biol. 39:2093–2106. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Eleuteri AM, Amici M, Bonfili L, Cecarini V, Cuccioloni M, Grimaldi S, Giuliani L, Angeletti M and Fioretti E: 50 Hz extremely low frequency electromagnetic fields enhance protein carbonyl groups content in cancer cells: effects on proteasomal systems. J Biomed Biotechnol. 2009:8342392009. View Article : Google Scholar

27 

Simko M, Kriehuber R and Lange S: Micronucleus formation in human amnion cells after exposure to 50 Hz MF applied horizontally and vertically. Mutat Res. 418:101–111. 1998. View Article : Google Scholar : PubMed/NCBI

28 

Ivancsits S, Diem E, Pilger A, Rudiger HW and Jahn O: Induction of DNA strand breaks by intermittent exposure to extremely-low-frequency electromagnetic fields in human diploid fibroblasts. Mutat Res. 519:1–13. 2002. View Article : Google Scholar : PubMed/NCBI

29 

Ivancsits S, Diem E, Jahn O and Rudiger HW: Intermittent extremely low frequency electromagnetic fields cause DNA damage in a dose-dependent way. Int Arch Occup Environ Health. 76:431–436. 2003. View Article : Google Scholar : PubMed/NCBI

30 

Ivancsits S, Diem E, Jahn O and Rudiger HW: Age-related effects on induction of DNA strand breaks by intermittent exposure to electromagnetic fields. Mech Ageing Dev. 124:847–850. 2003. View Article : Google Scholar : PubMed/NCBI

31 

Fatigoni C, Dominici L, Moretti M, Villarini M and Monarca S: Genotoxic effects of extremely low frequency (ELF) magnetic fields (MF) evaluated by the Tradescantia-micronucleus assay. Environ Toxicol. 20:585–591. 2005. View Article : Google Scholar : PubMed/NCBI

32 

Simko M and Mattsson MO: Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: possible immune cell activation. J Cell Biochem. 93:83–92. 2004. View Article : Google Scholar : PubMed/NCBI

33 

Mannerling AC, Simkó M, Mild KH and Mattsson MO: Effects of 50-Hz magnetic field exposure on superoxide radical anion formation and HSP70 induction in human K562 cells. Radiat Environ Biophys. 49:731–741. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Trillo MA, Martínez MA, Cid MA, Leal J and Úbeda A: Influence of a 50 Hz magnetic field and of all-trans-retinol on the proliferation of human cancer cell lines. Int J Oncol. 40:1405–1413. 2012.PubMed/NCBI

35 

Tulachan SS, Doi R, Kawaguchi Y, Tsuji S, Nakajima S, Masui T, Koizumi M, Toyoda E, Mori T, Ito D, Kami K, Fujimoto K and Imamura M: All-trans retinoic acid induces differentiation of ducts and endocrine cells by mesenchymal/epithelial interactions in embryonic pancreas. Diabetes. 52:76–84. 2003. View Article : Google Scholar

36 

Schenk T, Chen WC, Göllner S, Howell L, Jin L, Hebestreit K, Klein HU, Popescu AC, Burnett A, Mills K, Casero RA Jr, Marton L, Woster P, Minden MD, Dugas M, Wang JC, Dick JE, Müller-Tidow C, Petrie K and Zelent A: Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nat Med. 18:605–611. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Yang QJ, Zhou LY, Mu YQ, Zhou QX, Luo JY, Cheng L, Deng ZL, He TC, Haydon RC and He BC: All-trans retinoic acid inhibits tumor growth of human osteosarcoma by activating Smad signaling-induced osteogenic differentiation. Int J Oncol. 41:153–160. 2012.PubMed/NCBI

38 

Handler A, Lobo MD, Alonso FJ, Paíno CL and Mena MA: Functional implications of the noradrenergic-cholinergic switch induced by retinoic acid in NB69 neuroblastoma cells. J Neurosci Res. 60:311–320. 2000. View Article : Google Scholar : PubMed/NCBI

39 

Hölzel M, Huang S, Koster J, Ora I, Lakeman A, Caron H, Nijkamp W, Xie J, Callens T, Asgharzadeh S, Seeger RC, Messiaen L, Versteeg R and Bernards R: NF1 is a tumor suppressor in neuroblastoma that determines retinoic acid response and disease outcome. Cell. 142:218–229. 2010.PubMed/NCBI

40 

Shih YY, Lee H, Nakagawara A, Juan HF, Jeng YM, Tsay YG, Lin DT, Hsieh FJ, Pan CY, Hsu WM and Liao YF: Nuclear GRP75 binds retinoic acid receptors to promote neuronal differentiation of neuroblastoma. PLoS One. 6:e262362011. View Article : Google Scholar : PubMed/NCBI

41 

Di Nallo AM, Strigari L, Giliberti C, Bedini A, Palomba R and Benassi M: Monitoring of people and workers exposure to the electric, magnetic and electromagnetic fields in an Italian National Cancer Institute. J Exp Clin Cancer Res. 27:162008.PubMed/NCBI

42 

Blackman CF, Benane SG and House DE: Evidence for direct effect of magnetic fields on neurite outgrowth. FASEB J. 7:801–806. 1993.PubMed/NCBI

43 

Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein dye-binding. Anal Biochem. 72:248–254. 1976. View Article : Google Scholar : PubMed/NCBI

44 

Burton K: Study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 62:315–323. 1956.PubMed/NCBI

45 

Woods AL, Hall PA, Shepherd NA, Hanby AM, Waseem NH, Lane DP and Levison DA: The assessment of proliferating cell nuclear antigen (PCNA) immunostaining in primary gastrointestinal lymphomas and its relationship to histological grade, S+G2+M phase fraction (flow cytometric analysis) and prognosis. Histopathology. 19:21–27. 1991.

46 

Tan Z, Wortman M, Dillehay KL, Seibel WL, Evelyn CR, Smith SJ, Malkas LH, Zheng Y, Lu S and Dong Z: Small molecule targeting of PCNA chromatin association inhibits tumor cell growth. Mol Pharmacol. 81:811–819. 2012. View Article : Google Scholar : PubMed/NCBI

47 

Martínez MA, Úbeda A, Cid MA and Trillo MA: The proliferative response of NB69 human neuroblastoma cells to a 50 Hz magnetic field is mediated by ERK1/2 signaling. Cell Physiol Biochem. 29:675–686. 2012.PubMed/NCBI

48 

Kawasaki H, Mukai K, Yajima S, Tanaka R, Takayama J, Takasaki Y and Ohira M: Prognostic value of proliferating cell nuclear antigen (PCNA) immunostaining in neuroblastoma. Med Pediatr Oncol. 24:300–304. 1995. View Article : Google Scholar : PubMed/NCBI

49 

Stoimenov I and Helleday T: PCNA on the crossroad of cancer. Biochem Soc Trans. 37:605–613. 2009. View Article : Google Scholar : PubMed/NCBI

50 

Delle Monache S, Alessandro R, Iorio R, Gualtieri G and Colonna R: Extremely low frequency electromagnetic fields (ELF-EMFs) induce in vitro angiogenesis process in human endothelial cells. Bioelectromagnetics. 29:640–648. 2008.PubMed/NCBI

51 

Wolf FI, Torsello A, Tedesco B, Fasanella S, Boninsegna A, D’Ascenzo M, Grassi C, Azzena GB and Cittadini A: 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism. Biochim Biophys Acta. 1743:120–129. 2005. View Article : Google Scholar : PubMed/NCBI

52 

Sulpizio M, Falone S, Amicarelli F, Marchisio M, Di Giuseppe F, Eleuterio E, Di Ilio C and Angelucci S: Molecular basis underlying the biological effects elicited by extremely low-frequency magnetic field (ELF-MF) on neuroblastoma cells. J Cell Biochem. 112:3797–3806. 2011. View Article : Google Scholar : PubMed/NCBI

53 

Yoshizawa H, Tsuchiya T, Mizoe H, Ozeki H, Kanao S, Yomori H, Sakane C, Hasebe S, Motomura T, Yamakawa T, Mizuno F, Hirose H and Otaka Y: No effect of extremely low-frequency magnetic field observed on cell growth or initial response of cell proliferation in human cancer cell lines. Bioelectromagnetics. 23:355–368. 2002. View Article : Google Scholar : PubMed/NCBI

54 

Grassi C, D’Ascenzo M, Torsello A, Martinotti G, Wolf F, Cittadini A and Azzena GB: Effects of 50 Hz electromagnetic fields on voltage-gated Ca2+ channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium. 35:307–315. 2004.PubMed/NCBI

55 

Bułdak RJ, Polaniak R, Bułdak L, Zwirska-Korczala K, Skonieczna M, Monsiol A, Kukla M, Duława-Bułdak A and Birkner E: Short-term exposure to 50 Hz ELF-EMF alters the cisplatin-induced oxidative response in AT478 murine squamous cell carcinoma cells. Bioelectromagnetics. 33:641–651. 2012.PubMed/NCBI

56 

Hong MN, Han NK, Lee HC, Ko YK, Chi SG, Lee YS, Gimm YM, Myung SH and Lee JS: Extremely low frequency magnetic fields do not elicit oxidative stress in MCF10A cells. J Radiat Res. 53:79–86. 2012. View Article : Google Scholar

57 

Ivancsits S, Pilger A, Diem E, Jahn O and Rüdiger HW: Cell type-specific genotoxic effects of intermittent extremely low-frequency electromagnetic fields. Mutat Res. 583:184–188. 2005.PubMed/NCBI

58 

Focke F, Schuermann D, Kuster N and Schär P: DNA fragmentation in human fibroblasts under extremely low frequency electromagnetic field exposure. Mutat Res. 683:74–83. 2010. View Article : Google Scholar : PubMed/NCBI

59 

Repacholi M: Concern that ‘EMF’ magnetic fields from power lines cause cancer. Sci Total Environ. 426:454–458. 2012.

60 

Ba F, Pang PK and Benishin CG: The establishment of a reliable cytotoxic system with SK-N-SH neuroblastoma cell culture. J Neurosci Methods. 123:11–22. 2003. View Article : Google Scholar : PubMed/NCBI

61 

Úbeda A, Trillo MA, House DE and Blackman CF: A 50 Hz magnetic field blocks melatonin-induced enhancement of junctional transfer in normal C3H/10T1/2 cells. Carcinogenesis. 16:2945–2949. 1995.PubMed/NCBI

62 

Blackman CF, Benane SG and House DE: The influence of 1.2 microT, 60 Hz magnetic fields on melatonin- and tamoxifen-induced inhibition of MCF-7 cell growth. Bioelectromagnetics. 22:122–128. 2001. View Article : Google Scholar : PubMed/NCBI

63 

Tonini R, Baroni MD, Masala E, Micheletti M, Ferroni A and Mazzanti M: Calcium protects differentiating neuroblastoma cells during 50 Hz electromagnetic radiation. Biophys J. 81:2580–2589. 2001. View Article : Google Scholar : PubMed/NCBI

64 

Reynolds CP, Matthay KK, Villablanca JG and Maurer BJ: Retinoid therapy of high-risk neuroblastoma. Cancer Lett. 197:185–192. 2003. View Article : Google Scholar : PubMed/NCBI

65 

Kanemaru KK, Tuthill MC, Takeuchi KK, Sidell N and Wada RK: Retinoic acid induced downregulation of MYCN is not mediated through changes in Sp1/Sp3. Pediatr Blood Cancer. 50:806–811. 2008. View Article : Google Scholar : PubMed/NCBI

66 

Tanaka K, Tamiya-Koizumi K, Hagiwara K, Ito H, Takagi A, Kojima T, Suzuki M, Iwaki S, Fujii S, Nakamura M, Banno Y, Kannagi R, Tsurumi T, Kyogashima M and Murate T: Role of down-regulated neutral ceramidase during all-trans retinoic acid-induced neuronal differentiation in SH-SY5Y neuroblastoma cells. J Biochem. 151:611–620. 2012. View Article : Google Scholar : PubMed/NCBI

67 

Cetinkaya C, Hultquist A, Su Y, Wu S, Bahram F, Påhlman S, Guzhova I and Larsson LG: Combined IFN-gamma and retinoic acid treatment targets the N-Myc/Max/Mad1 network resulting in repression of N-Myc target genes in MYCN-amplified neuroblastoma cells. Mol Cancer Ther. 6:2634–2641. 2007. View Article : Google Scholar : PubMed/NCBI

68 

Masiá S, Alvarez S, de Lera AR and Barettino D: Rapid, nongenomic actions of retinoic acid on phosphatidylinositol-3-kinase signaling pathway mediated by the retinoic acid receptor. Mol Endocrinol. 21:2391–2402. 2007.PubMed/NCBI

69 

Wegert J, Bausenwein S, Kneitz S, Roth S, Graf N, Geissinger E and Gessler M: Retinoic acid pathway activity in Wilms tumors and characterization of biological responses in vitro. Mol Cancer. 10:1362011. View Article : Google Scholar : PubMed/NCBI

70 

Jiao RQ, Li G and Chiu JF: Comparative proteomic analysis of differentiation of mouse F9 embryonic carcinoma cells induced by retinoic acid. J Cell Biochem. 113:1811–1819. 2012. View Article : Google Scholar : PubMed/NCBI

71 

Li X, Li H, Bi J, Chen Y, Jain S and Zhao Y: Human cord blood-derived multipotent stem cells (CB-SCs) treated with all-trans-retinoic acid (ATRA) give rise to dopamine neurons. Biochem Biophys Res Commun. 419:110–116. 2012.

72 

Marzinke MA and Clagett-Dame M: The all-trans retinoic acid (atRA)-regulated gene Calmin (Clmn) regulates cell cycle exit and neurite outgrowth in murine neuroblastoma (Neuro2a) cells. Exp Cell Res. 318:85–93. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Marcantonio P, Del Re B, Franceschini A, Capri M, Lukas S, Bersani F and Giorgi G: Synergic effect of retinoic acid and extremely low frequency magnetic field exposure on human neuroblastoma cell line BE(2)C. Bioelectromagnetics. 31:425–433. 2010.PubMed/NCBI

74 

Lin H, Head M, Blank M, Han L, Jin M and Goodman R: Myc-mediated transactivation of HSP70 expression following exposure to magnetic fields. J Cell Biochem. 69:181–188. 1998. View Article : Google Scholar : PubMed/NCBI

75 

Shaul YD and Seger R: The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta. 1773:1213–1226. 2007. View Article : Google Scholar : PubMed/NCBI

76 

Karsy M, Albert L, Tobias ME, Murali R and Jhanwar-Uniyal M: All-trans retinoic acid modulates cancer stem cells of glioblastoma multiforme in an MAPK-dependent manner. Anticancer Res. 30:4915–4920. 2010.PubMed/NCBI

77 

De Melo M, Gerbase MW, Curran J and Pache JC: Phosphorylated extracellular signal-regulated kinases are significantly increased in malignant mesothelioma. J Histochem Cytochem. 54:855–861. 2006.PubMed/NCBI

78 

Menakongka A and Suthiphongchai T: Involvement of PI3K and ERK1/2 pathways in hepatocyte growth factor-induced cholangiocarcinoma cell invasion. World J Gastroenterol. 16:713–722. 2010. View Article : Google Scholar : PubMed/NCBI

79 

Webster B, Hansen L, Adame A, Crews L, Torrance M, Thal L and Masliah E: Astroglial activation of extracellular-regulated kinase in early stages of Alzheimer disease. J Neuropathol Exp Neurol. 65:142–151. 2006. View Article : Google Scholar : PubMed/NCBI

80 

Dagda RK, Zhu J, Kulich SM and Chu CT: Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson’s disease. Autophagy. 4:770–782. 2008.PubMed/NCBI

81 

Kawamata J and Shimohama S: Stimulating nicotinic receptors trigger multiple pathways attenuating cytotoxicity in models of Alzheimer’s and Parkinson’s diseases. J Alzheimers Dis. 24(Suppl 2): 95–109. 2011.PubMed/NCBI

82 

Jin M, Blank M and Goodman R: ERK1/2 phosphorylation, induced by electromagnetic fields, diminishes during neoplastic transformation. J Cell Biochem. 78:371–379. 2000. View Article : Google Scholar : PubMed/NCBI

83 

Friedman J, Kraus S, Hauptman Y, Schiff Y and Seger R: Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem J. 405:559–568. 2007. View Article : Google Scholar : PubMed/NCBI

84 

Schmidt-Ullrich RK, Contessa JN, Lammering G, Amorino G and Lin PS: ERBB receptor tyrosine kinases and cellular radiation responses. Oncogene. 22:5855–5865. 2003. View Article : Google Scholar : PubMed/NCBI

85 

Winker R, Ivancsits S, Pilger A, Adlkofer F and Rudiger HW: Chromosomal damage in human diploid fibroblasts by intermittent exposure to extremely low-frequency electromagnetic fields. Mutat Res. 585:43–49. 2005. View Article : Google Scholar : PubMed/NCBI

86 

Wahab MA, Podd JV, Rapley BI and Rowland RE: Elevated sister chromatid exchange frequencies in dividing human peripheral blood lymphocytes exposed to 50 Hz magnetic fields. Bioelectromagnetics. 28:281–288. 2007. View Article : Google Scholar

87 

Stronati L, Testa A, Villani P, Marino C, Lovisolo GA, Conti D, Russo F, Fresegna AM and Cordelli E: Absence of genotoxicity in human blood cells exposed to 50 Hz magnetic fields as assessed by comet assay, chromosome aberration, micronucleus, and sister chromatid exchange analyses. Bioelectromagnetics. 25:41–48. 2004. View Article : Google Scholar

88 

Scarfi MR, Sannino A, Perrotta A, Sarti M, Mesirca P and Bersani F: Evaluation of genotoxic effects in human fibroblasts after intermittent exposure to 50 Hz electromagnetic fields: a confirmatory study. Radiat Res. 164:270–276. 2005. View Article : Google Scholar : PubMed/NCBI

89 

Adair RK: Extremely low frequency electromagnetic fields do not interact directly with DNA. Bioelectromagnetics. 19:136–138. 1998. View Article : Google Scholar : PubMed/NCBI

90 

Wan C, Fiebig T, Schiemann O, Barton JK and Zewail AH: Femtosecond direct observation of charge transfer between bases in DNA. Proc Natl Acad Sci USA. 97:14052–14055. 2000. View Article : Google Scholar : PubMed/NCBI

91 

Porath D, Bezryadin A, De Vries S and Dekker C: Direct measurement of electrical transport through DNA molecules. Nature. 403:635–638. 2000. View Article : Google Scholar : PubMed/NCBI

92 

Giese B: Electron transfer through DNA and peptides. Bioorg Med Chem. 14:6139–6143. 2006. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Trillo MÁ, Martínez MA, Cid MA and Úbeda A: Retinoic acid inhibits the cytoproliferative response to weak 50‑Hz magnetic fields in neuroblastoma cells. Oncol Rep 29: 885-894, 2013.
APA
Trillo, M.Á., Martínez, M.A., Cid, M.A., & Úbeda, A. (2013). Retinoic acid inhibits the cytoproliferative response to weak 50‑Hz magnetic fields in neuroblastoma cells. Oncology Reports, 29, 885-894. https://doi.org/10.3892/or.2012.2212
MLA
Trillo, M. Á., Martínez, M. A., Cid, M. A., Úbeda, A."Retinoic acid inhibits the cytoproliferative response to weak 50‑Hz magnetic fields in neuroblastoma cells". Oncology Reports 29.3 (2013): 885-894.
Chicago
Trillo, M. Á., Martínez, M. A., Cid, M. A., Úbeda, A."Retinoic acid inhibits the cytoproliferative response to weak 50‑Hz magnetic fields in neuroblastoma cells". Oncology Reports 29, no. 3 (2013): 885-894. https://doi.org/10.3892/or.2012.2212
Copy and paste a formatted citation
x
Spandidos Publications style
Trillo MÁ, Martínez MA, Cid MA and Úbeda A: Retinoic acid inhibits the cytoproliferative response to weak 50‑Hz magnetic fields in neuroblastoma cells. Oncol Rep 29: 885-894, 2013.
APA
Trillo, M.Á., Martínez, M.A., Cid, M.A., & Úbeda, A. (2013). Retinoic acid inhibits the cytoproliferative response to weak 50‑Hz magnetic fields in neuroblastoma cells. Oncology Reports, 29, 885-894. https://doi.org/10.3892/or.2012.2212
MLA
Trillo, M. Á., Martínez, M. A., Cid, M. A., Úbeda, A."Retinoic acid inhibits the cytoproliferative response to weak 50‑Hz magnetic fields in neuroblastoma cells". Oncology Reports 29.3 (2013): 885-894.
Chicago
Trillo, M. Á., Martínez, M. A., Cid, M. A., Úbeda, A."Retinoic acid inhibits the cytoproliferative response to weak 50‑Hz magnetic fields in neuroblastoma cells". Oncology Reports 29, no. 3 (2013): 885-894. https://doi.org/10.3892/or.2012.2212
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team