Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
July 2013 Volume 30 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July 2013 Volume 30 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Tumor suppressor genes associated with drug resistance in ovarian cancer (Review)

  • Authors:
    • Fuqiang Yin
    • Xia Liu
    • Danrong Li
    • Qi Wang
    • Wei Zhang
    • Li Li
  • View Affiliations / Copyright

    Affiliations: Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi 530021, P.R. China, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
  • Pages: 3-10
    |
    Published online on: May 9, 2013
       https://doi.org/10.3892/or.2013.2446
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ovarian cancer is a fatal gynecological cancer and a major cause of cancer-related mortality worldwide. The main limitation to a successful treatment for ovarian cancer is the development of drug resistance to combined chemotherapy. Tumor suppressor genes (TSGs) are wild-type alleles of genes which play regulatory roles in diverse cellular activities, and whose loss of function contributes to the development of cancer. It has been demonstrated that TSGs contribute to drug resistance in several types of solid tumors. However, an overview of the contribution of TSGs to drug resistance in ovarian cancer has not previously been reported. In this study, 15 TSGs responding to drug resistance in ovarian cancer were reviewed to determine the relationship of TSGs with ovarian cancer drug resistance. Furthermore, gene/protein-interaction and bio-association analysis were performed to demonstrate the associations of these TSGs and to mine the potential drug resistance-related genes in ovarian cancer. We observed that the 15 TSGs had close interactions with each other, suggesting that they may contribute to drug resistance in ovarian cancer as a group. Five pathways/processes consisting of DNA damage, apoptosis, cell cycle, DNA binding and methylation may be the key ways with which TSGs participate in the regulation of drug resistance. In addition, ubiquitin C (UBC) and six additional TSGs including the adenomatous polyposis coli gene (APC), death associated protein kinase gene (DAPK), pleiomorphic adenoma gene-like 1 (PLAGL1), retinoblastoma susceptibility gene (RB1), a gene encoding an apoptosis-associated speck-like protein (PYCARD/ASC) and tumor protein 63 (TP63), which had close interactions with the 15 TSGs, are potential drug resistance-related genes in ovarian cancer.
View Figures

Figure 1

View References

1 

Balch C, Huang TH, Brown R and Nephew KP: The epigenetics of ovarian cancer drug resistance and resensitization. Am J Obstet Gynecol. 191:1552–1572. 2004. View Article : Google Scholar : PubMed/NCBI

2 

Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T and Thun MJ: Cancer statistics, 2008. CA Cancer J Clin. 58:71–96. 2008. View Article : Google Scholar

3 

Sorrentino A, Liu CG, Addario A, Peschle C, Scambia G and Ferlini C: Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol Oncol. 111:478–486. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Gottesman MM: Mechanisms of cancer drug resistance. Annu Rev Med. 53:615–627. 2002. View Article : Google Scholar : PubMed/NCBI

5 

Johnson SW, Ozols RF and Hamilton TC: Mechanisms of drug resistance in ovarian cancer. Cancer. 71(Suppl 2): S644–S649. 1993. View Article : Google Scholar : PubMed/NCBI

6 

Fraser M, Leung BM, Yan X, Dan HC, Cheng JQ and Tsang BK: p53 is a determinant of X-linked inhibitor of apoptosis protein/Akt-mediated chemoresistance in human ovarian cancer cells. Cancer Res. 63:7081–7088. 2003.PubMed/NCBI

7 

Cheng JQ, Jiang X, Fraser M, Li M, Dan HC, Sun M and Tsang BK: Role of X-linked inhibitor of apoptosis protein in chemoresistance in ovarian cancer: possible involvement of the phosphoinositide-3 kinase/Akt pathway. Drug Resist Updat. 5:131–146. 2002. View Article : Google Scholar : PubMed/NCBI

8 

Sager R: Tumor suppressor genes: the puzzle and the promise. Science. 246:1406–1412. 1989. View Article : Google Scholar : PubMed/NCBI

9 

Sherr CJ: Principles of tumor suppression. Cell. 116:235–246. 2004. View Article : Google Scholar : PubMed/NCBI

10 

Shanker M, Jin J, Branch CD, Miyamoto S, Grimm EA, Roth JA and Ramesh R: Tumor suppressor gene-based nanotherapy: from test tube to the clinic. J Drug Deliv. 2011:4658452011. View Article : Google Scholar : PubMed/NCBI

11 

Kaur M, Radovanovic A, Essack M, et al: Database for exploration of functional context of genes implicated in ovarian cancer. Nucleic Acids Res. 37:D820–D823. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 474:609–615. 2011. View Article : Google Scholar

13 

Bast RC Jr, Hennessy B and Mills GB: The biology of ovarian cancer: new opportunities for translation. Nat Rev Cancer. 9:415–428. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Zhao M, Sun J and Zhao Z: Distinct and competitive regulatory patterns of tumor suppressor genes and oncogenes in ovarian cancer. PLoS One. 7:e441752012. View Article : Google Scholar : PubMed/NCBI

15 

Chen H, Hardy TM and Tollefsbol TO: Epigenomics of ovarian cancer and its chemoprevention. Front Genet. 2:672011. View Article : Google Scholar : PubMed/NCBI

16 

Matei D, Shen C, Fang F, et al: A phase II study of decitabine and carboplatin in recurrent platinum (Pt)-resistant ovarian cancer (OC). J Clin Oncol. 29(Suppl): abst 5011. 2011.

17 

Yang D, Khan S, Sun Y, Hess K, Shmulevich I, Sood AK and Zhang W: Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA. 306:1557–1565. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Zhou C, Smith JL and Liu J: Role of BRCA1 in cellular resistance to paclitaxel and ionizing radiation in an ovarian cancer cell line carrying a defective BRCA1. Oncogene. 22:2396–2404. 2003. View Article : Google Scholar : PubMed/NCBI

19 

Borst P, Rottenberg S and Jonkers J: How do real tumors become resistant to cisplatin? Cell Cycle. 7:1353–1359. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Wang Y, Wiltshire T, Senft J, Reed E and Wang W: Irofulven induces replication-dependent CHK2 activation related to p53 status. Biochem Pharmacol. 73:469–480. 2007. View Article : Google Scholar : PubMed/NCBI

21 

Zhang P, Gao W, Li H, Reed E and Chen F: Inducible degradation of checkpoint kinase 2 links to cisplatin-induced resistance in ovarian cancer cells. Biochem Biophys Res Commun. 328:567–572. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Chou JL, Su HY, Chen LY, et al: Promoter hypermethylation of FBXO32, a novel TGF-beta/SMAD4 target gene and tumor suppressor, is associated with poor prognosis in human ovarian cancer. Lab Invest. 90:414–425. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Plumb JA, Strathdee G, Sludden J, Kaye SB and Brown R: Reversal of drug resistance in human tumor xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res. 60:6039–6044. 2000.

24 

Strathdee G, MacKean MJ, Illand M and Brown R: A role for methylation of the hMLH1 promoter in loss of hMLH1 expression and drug resistance in ovarian cancer. Oncogene. 18:2335–2341. 1999. View Article : Google Scholar : PubMed/NCBI

25 

Staub J, Chien J, Pan Y, et al: Epigenetic silencing of HSulf-1 in ovarian cancer: implications in chemoresistance. Oncogene. 26:4969–4978. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Liu P, Gou M, Yi T, et al: Efficient inhibition of an intraperitoneal xenograft model of human ovarian cancer by HSulf-1 gene delivered by biodegradable cationic heparin-polyethyleneimine nanogels. Oncol Rep. 27:363–370. 2012.

27 

Gopalan B, Shanker M, Scott A, Branch CD, Chada S and Ramesh R: MDA-7/IL-24, a novel tumor suppressor/cytokine is ubiquitinated and regulated by the ubiquitin-proteasome system, and inhibition of MDA-7/IL-24 degradation enhances the antitumor activity. Cancer Gene Ther. 15:1–8. 2008. View Article : Google Scholar

28 

Xiong J, Peng ZL and Tan X: Effects of adenoviral-mediated mda-7/IL-24 gene infection on the growth and drug-resistance of drug-resistant. Sichuan Da Xue Xue Bao Yi Xue Ban. 38:433–436. 2007.(In Chinese).

29 

Kawakami Y, Hama S, Hiura M, et al: Adenovirus-mediated p16 gene transfer changes the sensitivity to taxanes and Vinca alkaloids of human ovarian cancer cells. Anticancer Res. 21:2537–2545. 2001.PubMed/NCBI

30 

Takai N and Narahara H: Histone deacetylase inhibitor therapy in epithelial ovarian cancer. J Oncol. 2010:4584312010. View Article : Google Scholar : PubMed/NCBI

31 

Xia X, Ma Q, Li X, et al: Cytoplasmic p21 is a potential predictor for cisplatin sensitivity in ovarian cancer. BMC Cancer. 11:3992011. View Article : Google Scholar : PubMed/NCBI

32 

Materna V, Surowiak P, Markwitz E, Spaczynski M, Drag-Zalesinska M, Zabel M and Lage H: Expression of factors involved in regulation of DNA mismatch repair- and apoptosis pathways in ovarian cancer patients. Oncol Rep. 17:505–516. 2007.PubMed/NCBI

33 

Cao Z, Yoon JH, Nam SW, Lee JY and Park WS: PDCD4 expression inversely correlated with miR-21 levels in gastric cancers. J Cancer Res Clin Oncol. 138:611–619. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Zhang X, Wang X, Song X, et al: Programmed cell death 4 enhances chemosensitivity of ovarian cancer cells by activating death receptor pathway in vitro and in vivo. Cancer Sci. 101:2163–2170. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Yang H, Kong W, He L, et al: MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 68:425–433. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Lee S, Choi EJ, Jin C and Kim DH: Activation of PI3K/Akt pathway by PTEN reduction and PIK3CA mRNA amplification contributes to cisplatin resistance in an ovarian cancer cell line. Gynecol Oncol. 97:26–34. 2005. View Article : Google Scholar : PubMed/NCBI

37 

Wu H, Cao Y, Weng D, et al: Effect of tumor suppressor gene PTEN on the resistance to cisplatin in human ovarian cancer cell lines and related mechanisms. Cancer Lett. 271:260–271. 2008. View Article : Google Scholar : PubMed/NCBI

38 

Yan X, Fraser M, Qiu Q and Tsang BK: Over-expression of PTEN sensitizes human ovarian cancer cells to cisplatin-induced apoptosis in a p53-dependent manner. Gynecol Oncol. 102:348–355. 2006. View Article : Google Scholar : PubMed/NCBI

39 

Kassler S, Donninger H, Birrer MJ and Clark GJ: RASSF1A and the Taxol response in ovarian cancer. Mol Biol Int. 2012:2632672012. View Article : Google Scholar : PubMed/NCBI

40 

Chmelarova M, Krepinska E, Spacek J, Laco J, Beranek M and Palicka V: Methylation in the p53 promoter in epithelial ovarian cancer. Clin Transl Oncol. 15:160–162. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Reles A, Wen WH, Schmider A, et al: Correlation of p53 mutations with resistance to platinum-based chemotherapy and shortened survival in ovarian cancer. Clin Cancer Res. 7:2984–2997. 2001.PubMed/NCBI

42 

Zhang YL, Guo XR, Shen DH, Cheng YX, Liang XD, Chen YX and Wang Y: Expression and promotor methylation of p73 gene in ovarian epithelial tumors. Zhonghua Bing Li Xue Za Zhi. 41:33–38. 2012.(In Chinese).

43 

Al-Bahlani S, Fraser M, Wong AY, Sayan BS, Bergeron R, Melino G and Tsang BK: P73 regulates cisplatin-induced apoptosis in ovarian cancer cells via a calcium/calpain-dependent mechanism. Oncogene. 30:4219–4230. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Yang W, Cui S, Ma J, Lu Q, Kong C, Liu T and Sun Z: Cigarette smoking extract causes hypermethylation and inactivation of WWOX gene in T-24 human bladder cancer cells. Neoplasma. 59:216–223. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Liu YY, Li L, Li DR, Zhang W and Wang Q: Suppression of WWOX gene by RNA interference reverses platinum resistance acquired in SKOV3/SB cells. Zhonghua Fu Chan Ke Za Zhi. 43:854–858. 2008.(In Chinese).

46 

Sharan R, Ulitsky I and Shamir R: Network-based prediction of protein function. Mol Syst Biol. 3:882007. View Article : Google Scholar : PubMed/NCBI

47 

Mostafavi S, Ray D, Warde-Farley D, Grouios C and Morris Q: GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol. 9(Suppl 1): S42008. View Article : Google Scholar : PubMed/NCBI

48 

Huang X and Guo B: Adenomatous polyposis coli determines sensitivity to histone deacetylase inhibitor-induced apoptosis in colon cancer cells. Cancer Res. 66:9245–9251. 2006. View Article : Google Scholar

49 

Ogawa T, Liggett TE, Melnikov AA, et al: Methylation of death-associated protein kinase is associated with cetuximab and erlotinib resistance. Cell Cycle. 11:1656–1663. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Berge EO, Knappskog S, Geisler S, et al: Identification and characterization of retinoblastoma gene mutations disturbing apoptosis in human breast cancers. Mol Cancer. 9:1732010. View Article : Google Scholar : PubMed/NCBI

51 

Ramachandran K, Gordian E and Singal R: 5-azacytidine reverses drug resistance in bladder cancer cells. Anticancer Res. 31:3757–3766. 2011.PubMed/NCBI

52 

Ramachandran K, Miller H, Gordian E, Rocha-Lima C and Singal R: Methylation-mediated silencing of TMS1 in pancreatic cancer and its potential contribution to chemosensitivity. Anticancer Res. 30:3919–3925. 2010.PubMed/NCBI

53 

Tomkova K, Tomka M and Zajac V: Contribution of p53, p63, and p73 to the developmental diseases and cancer. Neoplasma. 55:177–181. 2008.PubMed/NCBI

54 

Lo Nigro C, Monteverde M, Riba M, et al: Expression profiling and long lasting responses to chemotherapy in metastatic gastric cancer. Int J Oncol. 37:1219–1228. 2010.PubMed/NCBI

55 

Zhang X, Gu L, Li J, et al: Degradation of MDM2 by the interaction between berberine and DAXX leads to potent apoptosis in MDM2-overexpressing cancer cells. Cancer Res. 70:9895–9904. 2010. View Article : Google Scholar : PubMed/NCBI

56 

Poyurovsky MV, Katz C, Laptenko O, et al: The C terminus of p53 binds the N-terminal domain of MDM2. Nat Struct Mol Biol. 17:982–989. 2010. View Article : Google Scholar : PubMed/NCBI

57 

Mir R, Tortosa A, Martinez-Soler F, et al: Mdm2 antagonists induce apoptosis and synergize with cisplatin overcoming chemoresistance in TP53 wild-type ovarian cancer cells. Int J Cancer. 132:1525–1536. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Kanayama H, Tanaka K, Aki M, et al: Changes in expressions of proteasome and ubiquitin genes in human renal cancer cells. Cancer Res. 51:6677–6685. 1991.PubMed/NCBI

59 

Jiang RD, Zhang LX, Yue W, et al: Establishment of a human nasopharyngeal carcinoma drug-resistant cell line CNE2/DDP and screening of drug-resistant genes. Ai Zheng. 22:337–345. 2003.(In Chinese).

60 

Jenssen TK, Laegreid A, Komorowski J and Hovig E: A literature network of human genes for high-throughput analysis of gene expression. Nat Genet. 28:21–28. 2001. View Article : Google Scholar : PubMed/NCBI

61 

Casorelli I, Bossa C and Bignami M: DNA damage and repair in human cancer: molecular mechanisms and contribution to therapy-related leukemias. Int J Environ Res Public Health. 9:2636–2657. 2012. View Article : Google Scholar : PubMed/NCBI

62 

Li J, Feng Q, Kim JM, et al: Human ovarian cancer and cisplatin resistance: possible role of inhibitor of apoptosis proteins. Endocrinology. 142:370–380. 2001.PubMed/NCBI

63 

Shah MA and Schwartz GK: Cell cycle-mediated drug resistance: an emerging concept in cancer therapy. Clin Cancer Res. 7:2168–2181. 2001.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yin F, Liu X, Li D, Wang Q, Zhang W and Li L: Tumor suppressor genes associated with drug resistance in ovarian cancer (Review). Oncol Rep 30: 3-10, 2013.
APA
Yin, F., Liu, X., Li, D., Wang, Q., Zhang, W., & Li, L. (2013). Tumor suppressor genes associated with drug resistance in ovarian cancer (Review). Oncology Reports, 30, 3-10. https://doi.org/10.3892/or.2013.2446
MLA
Yin, F., Liu, X., Li, D., Wang, Q., Zhang, W., Li, L."Tumor suppressor genes associated with drug resistance in ovarian cancer (Review)". Oncology Reports 30.1 (2013): 3-10.
Chicago
Yin, F., Liu, X., Li, D., Wang, Q., Zhang, W., Li, L."Tumor suppressor genes associated with drug resistance in ovarian cancer (Review)". Oncology Reports 30, no. 1 (2013): 3-10. https://doi.org/10.3892/or.2013.2446
Copy and paste a formatted citation
x
Spandidos Publications style
Yin F, Liu X, Li D, Wang Q, Zhang W and Li L: Tumor suppressor genes associated with drug resistance in ovarian cancer (Review). Oncol Rep 30: 3-10, 2013.
APA
Yin, F., Liu, X., Li, D., Wang, Q., Zhang, W., & Li, L. (2013). Tumor suppressor genes associated with drug resistance in ovarian cancer (Review). Oncology Reports, 30, 3-10. https://doi.org/10.3892/or.2013.2446
MLA
Yin, F., Liu, X., Li, D., Wang, Q., Zhang, W., Li, L."Tumor suppressor genes associated with drug resistance in ovarian cancer (Review)". Oncology Reports 30.1 (2013): 3-10.
Chicago
Yin, F., Liu, X., Li, D., Wang, Q., Zhang, W., Li, L."Tumor suppressor genes associated with drug resistance in ovarian cancer (Review)". Oncology Reports 30, no. 1 (2013): 3-10. https://doi.org/10.3892/or.2013.2446
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team