|
1
|
Ferlay J, Shin HR, Bray F, Forman D,
Mathers C and Parkin DM: Estimates of worldwide burden of cancer in
2008: GLOBOCAN 2008. Int J Cancer. 127:2893–2917. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Wong DT, Todd R, Tsuji T and Donoff RB:
Molecular biology of human oral cancer. Crit Rev Oral Biol Med.
7:319–328. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Carvalho AL, Nishimoto IN, Califano JA and
Kowalski LP: Trends in incidence and prognosis for head and neck
cancer in the United States: a site-specific analysis of the SEER
database. Int J Cancer. 114:806–816. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Hinerman RW, Mendenhall WM, Morris CG,
Amdur RJ, Werning JW and Villaret DB: Postoperative irradiation for
squamous cell carcinoma of the oral cavity: 35-year experience.
Head Neck. 26:984–994. 2004.PubMed/NCBI
|
|
5
|
Aaltonen LA, Peltomaki P, Leach FS, et al:
Clues to the pathogenesis of familial colorectal cancer. Science.
260:812–816. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Greenman C, Stephens P, Smith R, et al:
Patterns of somatic mutation in human cancer genomes. Nature.
446:153–158. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Weber A, Langhanki L, Sommerer F,
Markwarth A, Wittekind C and Tannapfel A: Mutations of the BRAF
gene in squamous cell carcinoma of the head and neck. Oncogene.
22:4757–4759. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Matthaios D, Zarogoulidis P, Balgouranidou
I, Chatzaki E and Kakolyris S: Molecular pathogenesis of pancreatic
cancer and clinical perspectives. Oncology. 81:259–272. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Santarpia L, El-Naggar AK, Cote GJ, Myers
JN and Sherman SI: Phosphatidylinositol 3-kinase/akt and
ras/raf-mitogen-activated protein kinase pathway mutations in
anaplastic thyroid cancer. J Clin Endocrinol Metab. 93:278–284.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Rowe LR, Bentz BG and Bentz JS: Detection
of BRAF V600E activating mutation in papillary thyroid carcinoma
using PCR with allele-specific fluorescent probe melting curve
analysis. J Clin Pathol. 60:1211–1215. 2007. View Article : Google Scholar
|
|
11
|
Tie J, Gibbs P, Lipton L, et al:
Optimizing targeted therapeutic development: analysis of a
colorectal cancer patient population with the BRAF(V600E) mutation.
Int J Cancer. 128:2075–2084. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kullmann F, Hartmann A, Stohr R, et al:
KRAS mutation in metastatic pancreatic ductal adenocarcinoma:
results of a multicenter phase II study evaluating efficacy of
cetuximab plus gemcitabine/oxaliplatin (GEMOXCET) in first-line
therapy. Oncology. 81:3–8. 2011. View Article : Google Scholar
|
|
13
|
Rako I, Jakic-Razumovic J, Caban D, et al:
The role of KRAS gene mutation testing in colorectal cancer - a
predictive biomarker of response to EGFR inhibitors therapy. Lijec
Vjesn. 133:403–407. 2011.(In Croatian).
|
|
14
|
Smilek P, Neuwirthova J, Jarkovsky J, et
al: Epidermal growth factor receptor (EGFR) expression and
mutations in the EGFR signaling pathway in correlation with
anti-EGFR therapy in head and neck squamous cell carcinomas.
Neoplasma. 59:508–515. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Van Damme N, Deron P, Van Roy N, et al:
Epidermal growth factor receptor and K-RAS status in two cohorts of
squamous cell carcinomas. BMC Cancer. 10:1892010.PubMed/NCBI
|
|
16
|
Bruckman KC, Schonleben F, Qiu W, Woo VL
and Su GH: Mutational analyses of the BRAF, KRAS, and PIK3CA genes
in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol
Oral Radiol Endod. 110:632–637. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Rameh LE and Cantley LC: The role of
phosphoinositide 3-kinase lipid products in cell function. J Biol
Chem. 274:8347–8350. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Lee JW, Soung YH, Kim SY, et al: PIK3CA
gene is frequently mutated in breast carcinomas and hepatocellular
carcinomas. Oncogene. 24:1477–1480. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Levine DA, Bogomolniy F, Yee CJ, et al:
Frequent mutation of the PIK3CA gene in ovarian and breast cancers.
Clin Cancer Res. 11:2875–2878. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Phillips WA, Russell SE, Ciavarella ML, et
al: Mutation analysis of PIK3CA and PIK3CB in esophageal cancer and
Barrett's esophagus. Int J Cancer. 118:2644–2646. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Schonleben F, Qiu W, Ciau NT, et al:
PIK3CA mutations in intraductal papillary mucinous
neoplasm/carcinoma of the pancreas. Clin Cancer Res. 12:3851–3855.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Wu G, Mambo E, Guo Z, et al: Uncommon
mutation, but common amplifications, of the PIK3CA gene in thyroid
tumors. J Clin Endocrinol Metab. 90:4688–4693. 2005. View Article : Google Scholar
|
|
23
|
Constantinescu SN, Girardot M and Pecquet
C: Mining for JAK-STAT mutations in cancer. Trends Biochem Sci.
33:122–131. 2008. View Article : Google Scholar
|
|
24
|
Flex E, Petrangeli V, Stella L, et al:
Somatically acquired JAK1 mutations in adult acute lymphoblastic
leukemia. J Exp Med. 205:751–758. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Walters DK, Mercher T, Gu TL, et al:
Activating alleles of JAK3 in acute megakaryoblastic leukemia.
Cancer Cell. 10:65–75. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Melzner I, Bucur AJ, Bruderlein S, et al:
Biallelic mutation of SOCS-1 impairs JAK2 degradation and sustains
phospho-JAK2 action in the MedB-1 mediastinal lymphoma line. Blood.
105:2535–2542. 2005. View Article : Google Scholar
|
|
27
|
Jeong EG, Kim MS, Nam HK, et al: Somatic
mutations of JAK1 and JAK3 in acute leukemias and solid cancers.
Clin Cancer Res. 14:3716–3721. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Tokumo M, Toyooka S, Kiura K, et al: The
relationship between epidermal growth factor receptor mutations and
clinicopathologic features in non-small cell lung cancers. Clin
Cancer Res. 11:1167–1173. 2005.PubMed/NCBI
|
|
29
|
Rosell R, Moran T, Carcereny E, et al:
Non-small-cell lung cancer harbouring mutations in the EGFR kinase
domain. Clin Transl Oncol. 12:75–80. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Siddiqui AD and Piperdi B: KRAS mutation
in colon cancer: a marker of resistance to EGFR-I therapy. Ann Surg
Oncol. 17:1168–1176. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Licitra L, Mesia R, Rivera F, et al:
Evaluation of EGFR gene copy number as a predictive biomarker for
the efficacy of cetuximab in combination with chemotherapy in the
first-line treatment of recurrent and/or metastatic squamous cell
carcinoma of the head and neck: EXTREME study. Ann Oncol.
22:1078–1087. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Nikiforova MN, Kimura ET, Gandhi M, et al:
BRAF mutations in thyroid tumors are restricted to papillary
carcinomas and anaplastic or poorly differentiated carcinomas
arising from papillary carcinomas. J Clin Endocrinol Metab.
88:5399–5404. 2003. View Article : Google Scholar
|
|
33
|
Mathur A, Moses W, Rahbari R, et al:
Higher rate of BRAF mutation in papillary thyroid cancer over time:
a single-institution study. Cancer. 117:4390–4395. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Mori R, Ishiguro H, Kimura M, et al:
PIK3CA mutation status in Japanese esophageal squamous cell
carcinoma. J Surg Res. 145:320–326. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Hall TA: BioEdit: a user-friendly
biological sequence alignment editor and analysis program for
Windows 95/98/NT. Nucleic Acids Symposium Series. 41:95–98.
1999.
|
|
36
|
Ewing B, Hillier L, Wendl M and Green P:
Base-calling of automated sequencer traces using phred. I. Accuracy
assessment. Genome Res. 8:175–185. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Bianchini C, Ciorba A, Pelucchi S, Piva R
and Pastore A: Targeted therapy in head and neck cancer. Tumori.
97:137–141. 2011.PubMed/NCBI
|
|
38
|
Cohen EE, Kane MA, List MA, et al: Phase
II trial of gefitinib 250 mg daily in patients with recurrent
and/or metastatic squamous cell carcinoma of the head and neck.
Clin Cancer Res. 11:8418–8424. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Soulieres D, Senzer NN, Vokes EE, Hidalgo
M, Agarwala SS and Siu LL: Multicenter phase II study of erlotinib,
an oral epidermal growth factor receptor tyrosine kinase inhibitor,
in patients with recurrent or metastatic squamous cell cancer of
the head and neck. J Clin Oncol. 22:77–85. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Vermorken JB, Trigo J, Hitt R, et al:
Open-label, uncontrolled, multicenter phase II study to evaluate
the efficacy and toxicity of cetuximab as a single agent in
patients with recurrent and/or metastatic squamous cell carcinoma
of the head and neck who failed to respond to platinum-based
therapy. J Clin Oncol. 25:2171–2177. 2007.
|
|
41
|
Bonner JA, Harari PM, Giralt J, et al:
Radiotherapy plus cetuximab for squamous-cell carcinoma of the head
and neck. N Engl J Med. 354:567–578. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Burtness B, Goldwasser MA, Flood W, Mattar
B and Forastiere AA: Phase III randomized trial of cisplatin plus
placebo compared with cisplatin plus cetuximab in
metastatic/recurrent head and neck cancer: an Eastern Cooperative
Oncology Group study. J Clin Oncol. 23:8646–8654. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Bourhis J, Rivera F, Mesia R, et al: Phase
I/II study of cetuximab in combination with cisplatin or
carboplatin and fluorouracil in patients with recurrent or
metastatic squamous cell carcinoma of the head and neck. J Clin
Oncol. 24:2866–2872. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Loyo M, Li RJ, Bettegowda C, et al:
Lessons learned from next-generation sequencing in head and neck
cancer. Head Neck. 35:454–463. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Fujii S, Uryu H, Akashi K, et al: Clinical
significance of KRAS gene mutation and epidermal growth factor
receptor expression in Japanese patients with squamous cell
carcinoma of the larynx, oropharynx and hypopharynx. Int J Clin
Oncol. Mar 24–2012.(Epub ahead of print).
|
|
46
|
Chang SE, Bhatia P, Johnson NW, et al: Ras
mutations in United Kingdom examples of oral malignancies are
infrequent. Int J Cancer. 48:409–412. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Cohen Y, Goldenberg-Cohen N, Shalmon B, et
al: Mutational analysis of PTEN/PIK3CA/AKT pathway in oral squamous
cell carcinoma. Oral Oncol. 47:946–950. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Mercer KE and Pritchard CA: Raf proteins
and cancer: B-Raf is identified as a mutational target. Biochim
Biophys Acta. 1653:25–40. 2003.PubMed/NCBI
|
|
49
|
Lee JW, Yoo NJ, Soung YH, et al: BRAF
mutations in non-Hodgkin's lymphoma. Br J Cancer. 89:1958–1960.
2003. View Article : Google Scholar
|
|
50
|
Kobayashi M, Sonobe M, Takahashi T, et al:
Clinical significance of BRAF gene mutations in patients with
non-small cell lung cancer. Anticancer Res. 31:4619–4623.
2011.PubMed/NCBI
|
|
51
|
Agrawal N, Frederick MJ, Pickering CR, et
al: Exome sequencing of head and neck squamous cell carcinoma
reveals inactivating mutations in NOTCH1. Science. 333:1154–1157.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Stransky N, Egloff AM, Tward AD, et al:
The mutational landscape of head and neck squamous cell carcinoma.
Science. 333:1157–1160. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Qiu W, Schonleben F, Li X, et al: PIK3CA
mutations in head and neck squamous cell carcinoma. Clin Cancer
Res. 12:1441–1446. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kozaki K, Imoto I, Pimkhaokham A, et al:
PIK3CA mutation is an oncogenic aberration at advanced stages of
oral squamous cell carcinoma. Cancer Sci. 97:1351–1358. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Fenic I, Steger K, Gruber C, Arens C and
Woenckhaus J: Analysis of PIK3CA and Akt/protein kinase B in head
and neck squamous cell carcinoma. Oncol Rep. 18:253–259.
2007.PubMed/NCBI
|
|
56
|
Murugan AK, Hong NT, Fukui Y, Munirajan AK
and Tsuchida N: Oncogenic mutations of the PIK3CA gene in head and
neck squamous cell carcinomas. Int J Oncol. 32:101–111.
2008.PubMed/NCBI
|
|
57
|
Estilo CL, POC, Ngai I, et al: The role of
novel oncogenes squamous cell carcinoma-related oncogene and
phosphatidylinositol 3-kinase p110alpha in squamous cell carcinoma
of the oral tongue. Clin Cancer Res. 9:2300–2306. 2003.PubMed/NCBI
|
|
58
|
Freier K, Schwaenen C, Sticht C, et al:
Recurrent FGFR1 amplification and high FGFR1 protein expression in
oral squamous cell carcinoma (OSCC). Oral Oncol. 43:60–66. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Liu CJ, Lin SC, Chen YJ, Chang KM and
Chang KW: Array-comparative genomic hybridization to detect
genomewide changes in microdissected primary and metastatic oral
squamous cell carcinomas. Mol Carcinog. 45:721–731. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Hoa M, Davis SL, Ames SJ and Spanjaard RA:
Amplification of wild-type K-ras promotes growth of head and neck
squamous cell carcinoma. Cancer Res. 62:7154–7156. 2002.PubMed/NCBI
|
|
61
|
Lai SY and Johnson FM: Defining the role
of the JAK-STAT pathway in head and neck and thoracic malignancies:
implications for future therapeutic approaches. Drug Resist Updat.
13:67–78. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Baxter EJ, Scott LM, Campbell PJ, et al:
Acquired mutation of the tyrosine kinase JAK2 in human
myeloproliferative disorders. Lancet. 365:1054–1061. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Levine RL, Wadleigh M, Cools J, et al:
Activating mutation in the tyrosine kinase JAK2 in polycythemia
vera, essential thrombocythemia, and myeloid metaplasia with
myelofibrosis. Cancer Cell. 7:387–397. 2005. View Article : Google Scholar
|
|
64
|
Colaizzo D, Amitrano L, Tiscia GL,
Grandone E, Guardascione MA and Margaglione M: A new JAK2 gene
mutation in patients with polycythemia vera and splanchnic vein
thrombosis. Blood. 110:2768–2769. 2007. View Article : Google Scholar : PubMed/NCBI
|