|
1
|
Corte H, Manceau G, Blons H and
Laurent-Puig P: MicroRNA and colorectal cancer. Digest Liver Dis.
44:195–200. 2012. View Article : Google Scholar
|
|
2
|
Jemal A, Siegel R, Ward E, Hao YP, Xu JQ
and Thun MJ: Cancer Statistics, 2009. CA Cancer J Clin. 59:225–249.
2009. View Article : Google Scholar
|
|
3
|
Frost JK, Ball WC Jr, Levin ML, et al:
Early lung cancer detection: results of the initial (prevalence)
radiologic and cytologic screening in the Johns Hopkins study. Am
Rev Respir Dis. 130:549–554. 1984.PubMed/NCBI
|
|
4
|
Flehinger BJ, Kimmel M and Melamed MR: The
effect of surgical treatment on survival from early lung cancer.
Implications for screening. Chest. 101:1013–1018. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Patz EF Jr, Rossi S, Harpole DH Jr,
Herndon JE and Goodman PC: Correlation of tumor size and survival
in patients with stage IA non-small cell lung cancer. Chest.
117:1568–1571. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Yu L, Todd NW, Xing LX, et al: Early
detection of lung adenocarcinoma in sputum by a panel of microRNA
markers. Int J Cancer. 127:2870–2878. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Subramanian J and Simon R: Gene
expression-based prognostic signatures in lung cancer: ready for
clinical use? J Natl Cancer Inst. 102:464–474. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Greer KB and Cooper GS: Receipt of
colonoscopy is key to reduction of colorectal cancer mortality.
Gastrointest Endosc. 76:365–366. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Chang KC and Yew WW: What is the role of
autofluorescence bronchoscopy in screening lung cancer among
silicotic subjects? reply. Int J Tuberc Lung Dis. 15:1277–1278.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Blick CG, Nazir SA, Mallett S, et al:
Evaluation of diagnostic strategies for bladder cancer using
computed tomography (CT) urography, flexible cystoscopy and voided
urine cytology: results for 778 patients from a hospital haematuria
clinic. BJU Int. 110:84–94. 2012. View Article : Google Scholar
|
|
11
|
Ladabaum U and Song K: Projected national
impact of colorectal cancer screening on clinical and economic
outcomes and health services demand. Gastroenterology.
129:1151–1162. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Toloza EM, Harpole L and McCrory DC:
Noninvasive staging of non-small cell lung cancer: a review of the
current evidence. Chest. 123:137S–146S. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
van Rhijn BW, van der Poel HG and van der
Kwast TH: Urine markers for bladder cancer surveillance: a
systematic review. Eur Urol. 47:736–748. 2005.
|
|
14
|
Thunnissen FB: Sputum examination for
early detection of lung cancer. J Clin Pathol. 56:805–810. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Simon MA, Lokeshwar VB and Soloway MS:
Current bladder cancer tests: unnecessary or beneficial? Crit Rev
Oncol Hematol. 47:91–107. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bassi P, De Marco V, De Lisa A, et al:
Non-invasive diagnostic tests for bladder cancer: a review of the
literature. Urol Int. 75:193–200. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Esquela-Kerscher A and Slack FJ: Oncomirs
- microRNAs with a role in cancer. Nat Rev Cancer. 6:259–269. 2006.
View Article : Google Scholar
|
|
18
|
Shenouda SK and Alahari SK: MicroRNA
function in cancer: oncogene or a tumor suppressor? Cancer
Metastasis Rev. 28:369–378. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Patnaik SK, Kannisto E, Mallick R and
Yendamuri S: Overexpression of the lung cancer-prognostic
miR-146b microRNAs has a minimal and negative effect on the
malignant phenotype of A549 lung cancer cells. PLoS One.
6:e223792011.PubMed/NCBI
|
|
20
|
Kong YW, Ferland-McCollough D, Jackson TJ
and Bushell M: microRNAs in cancer management. Lancet Oncol.
13:E249–E258. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Calin GA and Croce CM: MicroRNA signatures
in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Bartel DP: MicroRNAs: genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Harfe BD: MicroRNAs in vertebrate
development. Curr Opin Genet Dev. 15:410–415. 2005. View Article : Google Scholar
|
|
24
|
Kloosterman WP and Plasterk RHA: The
diverse functions of microRNAs in animal development and disease.
Dev Cell. 11:441–450. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Mandke P, Wyatt N, Fraser J, Bates B,
Berberich SJ and Markey MP: MicroRNA-34a modulates MDM4 expression
via a target site in the open reading frame. PLoS One.
7:e420342012. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lewis BP, Burge CB and Bartel DP:
Conserved seed pairing, often flanked by adenosines, indicates that
thousands of human genes are microRNA targets. Cell. 120:15–20.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Chen X, Ba Y, Ma L, et al:
Characterization of microRNAs in serum: a novel class of biomarkers
for diagnosis of cancer and other diseases. Cell Res. 18:997–1006.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Mitchell PS, Parkin RK, Kroh EM, et al:
Circulating microRNAs as stable blood-based markers for cancer
detection. Proc Natl Acad Sci USA. 105:10513–10518. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Taylor DD and Gercel-Taylor C: MicroRNA
signatures of tumor-derived exosomes as diagnostic biomarkers of
ovarian cancer. Gynecol Oncol. 110:13–21. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ho AS, Huang X, Cao HB, et al: Circulating
miR-210 as a novel hypoxia marker in pancreatic cancer. Transl
Oncol. 3:109–113. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Wu CW, Ng SSM, Dong YJ, et al: Detection
of miR-92a and miR-21 in stool samples as potential screening
biomarkers for colorectal cancer and polyps. Gut. 61:739–745. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Xie Y, Todd NW, Liu ZQ, et al: Altered
miRNA expression in sputum for diagnosis of non-small cell lung
cancer. Lung Cancer. 67:170–176. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Brase JC, Wuttig D, Kuner R and Sultmann
H: Serum microRNAs as non-invasive biomarkers for cancer. Mol
Cancer. 9:3062010. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Caby MP, Lankar D, Vincendeau-Scherrer C,
Raposo G and Bonnerot C: Exosomal-like vesicles are present in
human blood plasma. Int Immunol. 17:879–887. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
van Niel G, Porto-Carreiro I, Simoes S and
Raposo G: Exosomes: a common pathway for a specialized function. J
Biochem. 140:13–21. 2006.PubMed/NCBI
|
|
36
|
Valadi H, Ekstrom K, Bossios A, Sjostrand
M, Lee JJ and Lotvall JO: Exosome-mediated transfer of mRNAs and
microRNAs is a novel mechanism of genetic exchange between cells.
Nat Cell Biol. 9:654–672. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Hunter MP, Ismail N, Zhang X, et al:
Detection of microRNA expression in human peripheral blood
microvesicles. PLoS One. 3:e36942008. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Rabinowits G, Gercel-Taylor C, Day JM,
Taylor DD and Kloecker GH: Exosomal microRNA: a diagnostic marker
for lung cancer. Clin Lung Cancer. 10:42–46. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Skog J, Wurdinger T, van Rijn S, et al:
Glioblastoma microvesicles transport RNA and proteins that promote
tumour growth and provide diagnostic biomarkers. Nat Cell Biol.
10:1470–1476. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Yu Z and Hecht NB: The DNA/RNA-binding
protein, translin, binds microRNA122a and increases its in vivo
stability. J Androl. 29:572–579. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Xie L, Chen X, Wang L, et al: Cell-free
miRNAs may indicate diagnosis and docetaxel sensitivity of tumor
cells in malignant effusions. BMC Cancer. 10:5912010. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Levine JS and Ahnen DJ: Clinical practice.
Adenomatous polyps of the colon. N Engl J Med. 355:2551–2557. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Levin B, Lieberman DA, McFarland B, et al:
Screening and surveillance for the early detection of colorectal
cancer and adenomatous polyps, 2008: a joint guideline from the
American Cancer Society, the US Multi-Society Task Force on
Colorectal Cancer, and the American College of Radiology.
Gastroenterology. 134:1570–1595. 2008. View Article : Google Scholar
|
|
44
|
Lieberman DA and Weiss DG: One-time
screening for colorectal cancer with combined fecal occult-blood
testing and examination of the distal colon. N Engl J Med.
345:555–560. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Imperiale TF, Ransohoff DF, Itzkowitz SH,
Turnbull BA and Ross ME: Fecal DNA versus fecal occult blood for
colorectal-cancer screening in an average-risk population. N Engl J
Med. 351:2704–2714. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Hewitson P, Glasziou P, Irwig L, Towler B
and Watson E: Screening for colorectal cancer using the faecal
occult blood test, Hemoccult. Cochrane Database Syst Rev.
CD0012162007. View Article : Google Scholar
|
|
47
|
Cotton PB, Durkalski VL, Benoit PC, et al:
Computed tomographic colonography (virtual colonoscopy): a
multicenter comparison with standard colonoscopy for detection of
colorectal neoplasia. JAMA. 291:1713–1719. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Mulhall BP, Veerappan GR and Jackson JL:
Meta-analysis: computed tomographic colonography. Ann Intern Med.
142:635–650. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Johnson CD, Chen MH, Toledano AY, et al:
Accuracy of CT colonography for detection of large adenomas and
cancers. New Engl J Med. 359:1207–1217. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Coady-Fariborzian L, Angel LP and
Procaccino JA: Perforated colon secondary to virtual colonoscopy:
report of a case. Dis Colon Rectum. 47:1247–1249. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kanaoka S, Yoshida K, Miura N, Sugimura H
and Kajimura M: Potential usefulness of detecting cyclooxygenase 2
messenger RNA in feces for colorectal cancer screening.
Gastroenterology. 127:422–427. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ahlquist DA, Sargent DJ, Loprinzi CL, et
al: Stool DNA and occult blood testing for screen detection of
colorectal neoplasia. Ann Intern Med. 149:441–450. W4812008.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Brand RE, Ross ME and Shuber AP:
Reproducibility of a multitarget stool-based DNA assay for
colorectal cancer detection. Am J Gastroenterol. 99:1338–1341.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Calistri D, Rengucci C, Bocchini R,
Saragoni L, Zoli W and Amadori D: Fecal multiple molecular tests to
detect colorectal cancer in stool. Clin Gastroenterol Hepatol.
1:377–383. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Yu YJ, Majumdar AP, Nechvatal JM, et al:
Exfoliated cells in stool: a source for reverse
transcription-PCR-based analysis of biomarkers of gastrointestinal
cancer. Cancer Epidemiol Biomarkers Prev. 17:455–458.
2008.PubMed/NCBI
|
|
56
|
Zauber AG, Levin TR, Jaffe CC, Galen BA,
Ransohoff DF and Brown ML: Implications of new colorectal cancer
screening technologies for primary care practice. Med Care.
46:S138–S146. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Aslam MI, Taylor K, Pringle JH and Jameson
JS: MicroRNAs are novel biomarkers of colorectal cancer. Br J Surg.
96:702–710. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ahmed FE, Jeffries CD, Vos PW, et al:
Diagnostic microRNA markers for screening sporadic human colon
cancer and active ulcerative colitis in stool and tissue. Cancer
Genomics Proteomics. 6:281–295. 2009.PubMed/NCBI
|
|
59
|
Link A, Balaguer F, Shen Y, et al: Fecal
MicroRNAs as novel biomarkers for colon cancer screening. Cancer
Epidemiol Biomarkers Prev. 19:1766–1774. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Kalimutho M, Del Vecchio Blanco G, Di
Cecilia S, et al: Differential expression of miR-144* as
a novel fecal-based diagnostic marker for colorectal cancer. J
Gastroenterol. 46:1391–1402. 2011.
|
|
61
|
Koga Y, Yasunaga M, Takahashi A, et al:
MicroRNA expression profiling of exfoliated colonocytes isolated
from feces for colorectal cancer screening. Cancer Prev Res.
3:1435–1442. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Li JM, Zhao RH, Li ST, et al:
Down-regulation of fecal miR-143 and miR-145 as potential markers
for colorectal cancer. Saudi Med J. 33:24–29. 2012.PubMed/NCBI
|
|
63
|
Kalimutho M, Di Cecilia S, Blanco GD, et
al: Epigenetically silenced miR-34b/c as a novel faecal-based
screening marker for colorectal cancer. Br J Cancer. 104:1770–1778.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Greenlee RT, Hill-Harmon MB, Murray T and
Thun M: Cancer statistics, 2001. CA Cancer J Clin. 51:15–36. 2001.
View Article : Google Scholar
|
|
65
|
Xing LX, Todd NW, Yu L, Fang HB and Jiang
F: Early detection of squamous cell lung cancer in sputum by a
panel of microRNA markers. Modern Pathol. 23:1157–1164. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Akira M: High-resolution CT in the
evaluation of occupational and environmental disease. Radiol Clin
North Am. 40:43–59. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Bastarrika G, Garcia-Velloso MJ, Lozano
MD, et al: Early lung cancer detection using spiral computed
tomography and positron emission tomography. Am J Respir Crit Care
Med. 171:1378–1383. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Gohagan JK, Marcus PM, Fagerstrom RM, et
al: Final results of the Lung Screening Study, a randomized
feasibility study of spiral CT versus chest X-ray screening for
lung cancer. Lung Cancer. 47:9–15. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Swensen SJ, Jett JR, Hartman TE, et al:
Lung cancer screening with CT: Mayo Clinic experience. Radiology.
226:756–761. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Koga H, Eguchi K, Shinkai T, et al:
Preliminary evaluation of the new tumor marker, CYFRA 21-1, in lung
cancer patients. Jpn J Clin Oncol. 24:263–268. 1994.PubMed/NCBI
|
|
71
|
Sun S, Schiller JH and Gazdar AF: Lung
cancer in never smokers: a different disease. Nat Rev Cancer.
7:778–790. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Hirsch FR, Franklin WA, Gazdar AF and Bunn
PA Jr: Early detection of lung cancer: clinical perspectives of
recent advances in biology and radiology. Clin Cancer Res. 7:5–22.
2001.PubMed/NCBI
|
|
73
|
Hassanein M, Callison JC, Callaway-Lane C,
Aldrich MC, Grogan EL and Massion PP: The state of molecular
biomarkers for the early detection of lung cancer. Cancer Prev Res.
5:992–1006. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Belinsky SA: Gene-promoter
hypermethylation as a biomarker in lung cancer. Nat Rev Cancer.
4:707–717. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Castro M, Grau L, Puerta P, et al:
Multiplexed methylation profiles of tumor suppressor genes and
clinical outcome in lung cancer. J Transl Med. 8:862010. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Halling KC, Rickman OB, Kipp BR, Harwood
AR, Doerr CH and Jett JR: A comparison of cytology and fluorescence
in situ hybridization for the detection of lung cancer in
bronchoscopic specimens. Chest. 130:694–701. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Beane J, Sebastiani P, Whitfield TH, et
al: A prediction model for lung cancer diagnosis that integrates
genomic and clinical features. Cancer Prev Res. 1:56–64. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Yanaihara N, Caplen N, Bowman E, et al:
Unique microRNA molecular profiles in lung cancer diagnosis and
prognosis. Cancer Cell. 9:189–198. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Greenberg AK, Rimal B, Felner K, et al:
S-adenosylmethionine as a biomarker for the early detection of lung
cancer. Chest. 132:1247–1252. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Showe MK, Vachani A, Kossenkov AV, et al:
Gene expression profiles in peripheral blood mononuclear cells can
distinguish patients with non-small cell lung cancer from patients
with nonmalignant lung disease. Cancer Res. 69:9202–9210. 2009.
View Article : Google Scholar
|
|
81
|
Lai CY, Yu SL, Hsieh MH, et al: MicroRNA
expression aberration as potential peripheral blood biomarkers for
schizophrenia. PLoS One. 6:e216352011. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Peck K, Sher YP, Shih JY, Roffler SR, Wu
CW and Yang PC: Detection and quantitation of circulating cancer
cells in the peripheral blood of lung cancer patients. Cancer Res.
58:2761–2765. 1998.PubMed/NCBI
|
|
83
|
van der Drift MA, Prinsen CFM, Hol BEA, et
al: Can free DNA be detected in sputum of lung cancer patients?
Lung Cancer. 61:385–390. 2008.PubMed/NCBI
|
|
84
|
Zhu S, Si ML, Wu H and Mo YY: MicroRNA-21
targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol
Chem. 282:14328–14336. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Neragi-Miandoab S: Malignant pleural
effusion, current and evolving approaches for its diagnosis and
management. Lung Cancer. 54:1–9. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Wang T, Lv M, Shen S, et al: Cell-free
microRNA expression profiles in malignant effusion associated with
patient survival in non-small cell lung cancer. PLoS One.
7:e432682012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Lee JH, Hong YS, Ryu JS and Chang JH: p53
and FHIT mutations and microsatellite alterations in
malignancy-associated pleural effusion. Lung Cancer. 44:33–42.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Spector M and Pollak JS: Management of
malignant pleural effusions. Semin Respir Crit Care Med.
29:405–413. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Topolcan O, Holubec L, Polivkova V, et al:
Tumor markers in pleural effusions. Anticancer Res. 27:1921–1924.
2007.PubMed/NCBI
|
|
90
|
Katayama H, Hiraki A, Aoe K, et al:
Aberrant promoter methylation in pleural fluid DNA for diagnosis of
malignant pleural effusion. Int J Cancer. 120:2191–2195. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Wang T, Qian X, Wang Z, et al: Detection
of cell-free BIRC5 mRNA in effusions and its potential diagnostic
value for differentiating malignant and benign effusions. Int J
Cancer. 125:1921–1925. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Nair VS, Maeda LS and Ioannidis JPA:
Clinical outcome prediction by microRNAs in human cancer: a
systematic review. J Natl Cancer Inst. 104:528–540. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Jemal A, Siegel R, Xu J and Ward E: Cancer
statistics, 2010. CA Cancer J Clin. 60:277–300. 2010. View Article : Google Scholar
|
|
94
|
Snowdon J, Boag S, Feilotter H, Izard J
and Siemens DR: A pilot study of urinary microRNA as a biomarker
for urothelial cancer. Can Urol Assoc J. 7:28–32. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Yamada Y, Enokida H, Kojima S, et al:
MiR-96 and miR-183 detection in urine serve as potential tumor
markers of urothelial carcinoma: correlation with stage and grade,
and comparison with urinary cytology. Cancer Sci. 102:522–529.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Ratliff TL: Urine markers for bladder
cancer surveillance: a systematic review. J Urol. 174:2065–2066.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Sarosdy MF, Hudson MA, Ellis WJ, et al:
Improved detection of recurrent bladder cancer using the Bard BTA
stat Test. Urology. 50:349–353. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Carpinito GA, Stadler WM, Briggman JV, et
al: Urinary nuclear matrix protein as a marker for transitional
cell carcinoma of the urinary tract. J Urol. 156:1280–1285. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Fradet Y and Lockhard C: Performance
characteristics of a new monoclonal antibody test for bladder
cancer: ImmunoCyt™. Can J Urol. 4:400–405. 1997.PubMed/NCBI
|
|
100
|
Greenlee RT, Murray T, Bolden S and Wingo
PA: Cancer statistics, 2000. CA Cancer J Clin. 50:7–33. 2000.
View Article : Google Scholar
|
|
101
|
Wang G, Chan ESY, Kwan BCH, et al:
Expression of microRNAs in the urine of patients with bladder
cancer. Clin Genitourin Cancer. 10:106–113. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Roos PH and Jakubowski N: Methods for the
discovery of low-abundance biomarkers for urinary bladder cancer in
biological fluids. Bioanalysis. 2:295–309. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Puerta-Gil P, Garcia-Baquero R, Jia AY, et
al: miR-143, miR-222, and miR-452 are useful as tumor
stratification and noninvasive diagnostic biomarkers for bladder
cancer. Am J Pathol. 180:1808–1815. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Hanke M, Hoefig K, Merz H, et al: A robust
methodology to study urine microRNA as tumor marker: microRNA-126
and microRNA-182 are related to urinary bladder cancer. Urol Oncol.
28:655–661. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Veerla S, Lindgren D, Kvist A, et al:
MiRNA expression in urothelial carcinomas: important roles of
miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and
metastasis, and frequent homozygous losses of miR-31. Int J Cancer.
124:2236–2242. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Han Y, Chen J, Zhao X, et al: MicroRNA
expression signatures of bladder cancer revealed by deep
sequencing. PLoS One. 6:e182862011. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Noguchi S, Mori T, Hoshino Y, et al:
MicroRNA-143 functions as a tumor suppressor in human bladder
cancer T24 cells. Cancer Lett. 307:211–220. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Kassouf W, Black PC, Tuziak T, et al:
Distinctive expression pattern of ErbB family receptors signifies
an aggressive variant of bladder cancer. J Urol. 179:353–358. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Junttila TT, Laato M, Vahlberg T, et al:
Identification of patients with transitional cell carcinoma of the
bladder overexpressing ErbB2, ErbB3, or specific ErbB4 isoforms:
real-time reverse transcription-PCR analysis in estimation of ErbB
receptor status from cancer patients. Clin Cancer Res. 9:5346–5357.
2003.
|
|
110
|
Cissell KA and Deo SK: Trends in microRNA
detection. Anal Bioanal Chem. 394:1109–1116. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
de Planell-Saguer M and Rodicio MC:
Analytical aspects of microRNA in diagnostics: a review. Anal Chim
Acta. 699:134–152. 2011.PubMed/NCBI
|
|
112
|
Ach RA, Wang H and Curry B: Measuring
microRNAs: comparisons of microarray and quantitative PCR
measurements, and of different total RNA prep methods. BMC
Biotechnol. 8:692008. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
de Planell-Saguer M and Rodicio MC:
Analytical aspects of microRNA in diagnostics: a review. Anal Chim
Acta. 699:134–152. 2011.PubMed/NCBI
|
|
114
|
Sarver AL: Toward understanding the
informatics and statistical aspects of micro-RNA profiling. J
Cardiovasc Transl Res. 3:204–211. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Valoczi A, Hornyik C, Varga N, Burgyan J,
Kauppinen S and Havelda Z: Sensitive and specific detection of
microRNAs by northern blot analysis using LNA-modified
oligonucleotide probes. Nucleic Acids Res. 32:e1752004. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Pall GS, Codony-Servat C, Byrne J, Ritchie
L and Hamilton A: Carbodiimide-mediated cross-linking of RNA to
nylon membranes improves the detection of siRNA, miRNA and piRNA by
northern blot. Nucleic Acids Res. 35:e602007. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Varallyay E, Burgyan J and Havelda Z:
MicroRNA detection by northern blotting using locked nucleic acid
probes. Nat Protoc. 3:190–196. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Chamnongpol S, Maroney PA and Nilsen TW: A
rapid, quantitative assay for direct detection of microRNAs and
other small RNAs using splinted ligation. Methods Mol Biol.
667:3–17. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Cissell KA, Rahimi Y, Shrestha S, Hunt EA
and Deo SK: Bioluminescence-based detection of microRNA, miR21 in
breast cancer cells. Anal Chem. 80:2319–2325. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Chen C, Ridzon DA, Broomer AJ, et al:
Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic
Acids Res. 33:e1792005. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Weaver S, Dube S, Mir A, et al: Taking
qPCR to a higher level: analysis of CNV reveals the power of high
throughput qPCR to enhance quantitative resolution. Methods.
50:271–276. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Raymond CK, Roberts BS, Garrett-Engele P,
Lim LP and Johnson JM: Simple, quantitative primer-extension PCR
assay for direct monitoring of microRNAs and short-interfering
RNAs. RNA. 11:1737–1744. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Neely LA, Patel S, Garver J, et al: A
single-molecule method for the quantitation of microRNA gene
expression. Nat Methods. 3:41–46. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Kloosterman WP, Wienholds E, de Bruijn E,
Kauppinen S and Plasterk RHA: In situ detection of miRNAs in animal
embryos using LNA-modified oligonucteotide probes. Nat Methods.
3:27–29. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
de Planell-Saguer M, Rodicio MC and
Mourelatos Z: Rapid in situ codetection of noncoding RNAs and
proteins in cells and formalin-fixed paraffin-embedded tissue
sections without protease treatment. Nat Protoc. 5:1061–1073.
2010.PubMed/NCBI
|
|
126
|
Obernosterer G, Martinez J and Alenius M:
Locked nucleic acid-based in situ detection of microRNAs in mouse
tissue sections. Nat Protoc. 2:1508–1514. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Nelson PT, Baldwin DA, Kloosterman WP,
Kauppinen S, Plasterk RHA and Mourelatos Z: RAKE and LNA-ISH reveal
microRNA expression and localization in archival human brain. RNA.
12:187–191. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Liu CG, Calin GA, Volinia S and Croce CM:
MicroRNA expression profiling using microarrays. Nat Protoc.
3:563–578. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Li W and Ruan KC: MicroRNA detection by
microarray. Anal Bioanal Chem. 394:1117–1124. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Nelson PT, Baldwin DA, Scearce LM,
Oberholtzer JC, Tobias JW and Mourelatos Z: Microarray-based,
high-throughput gene expression profiling of microRNAs. Nat
Methods. 1:155–161. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Takada S and Mano H: Profiling of microRNA
expression by mRAP. Nat Protoc. 2:3136–3145. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Volinia S, Calin GA, Liu CG, et al: A
microRNA expression signature of human solid tumors defines cancer
gene targets. Proc Natl Acad Sci USA. 103:2257–2261. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Weber JA, Baxter DH, Zhang SL, et al: The
microRNA spectrum in 12 body fluids. Clin Chem. 56:1733–1741. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Kanaan Z, Rai SN, Eichenberger MR, et al:
Plasma miR-21: a potential diagnostic marker of colorectal cancer.
Ann Surg. 256:544–551. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Li BS, Zhao YL, Guo G, et al: Plasma
microRNAs, miR-223, miR-21 and miR-218, as novel potential
biomarkers for gastric cancer detection. PLoS One. 7:e416292012.
View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Zhang X, Cui L, Ye G, et al: Gastric juice
microRNA-421 is a new biomarker for screening gastric cancer.
Tumour Biol. 33:2349–2355. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Janakiram NB and Rao CV: Molecular markers
and targets for colorectal cancer prevention. Acta Pharmacol Sin.
29:1–20. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Dong Y, Wu WK, Wu CW, Sung JJ, Yu J and Ng
SS: MicroRNA dysregulation in colorectal cancer: a clinical
perspective. Br J Cancer. 104:893–898. 2011. View Article : Google Scholar : PubMed/NCBI
|