|
1
|
Mitelman F, Johansson B and Mertens F: The
impact of translocations and gene fusions on cancer causation. Nat
Rev Cancer. 7:233–245. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Nambiar M, Kari V and Raghavan SC:
Chromosomal translocations in cancer. Biochim Biophys Acta.
1786:139–152. 2008.PubMed/NCBI
|
|
3
|
Fröhling S and Döhner H: Chromosomal
abnormalities in cancer. N Engl J Med. 359:722–734. 2008.
|
|
4
|
Pui CH, Relling MV and Downing JR: Acute
lymphoblastic leukemia. N Engl J Med. 350:1535–1548. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Aplan PD: Causes of oncogenic chromosomal
translocation. Trends Genet. 22:46–55. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Raghavan SC and Lieber MR: DNA structures
at chromosomal translocation sites. Bioessays. 28:480–494. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Hakim O, Resch W, Yamane A, et al: DNA
damage defines sites of recurrent chromosomal translocations in B
lymphocytes. Nature. 484:69–74. 2012.PubMed/NCBI
|
|
8
|
Meaburn KJ, Misteli T and Soutoglou E:
Spatial genome organization in the formation of chromosomal
translocations. Semin Cancer Biol. 17:80–90. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kozubek S, Lukásová E, Marecková A, et al:
The topological organization of chromosomes 9 and 22 in cell nuclei
has a determinative role in the induction of t(9,22) translocations
and in the pathogenesis of t(9,22) leukemias. Chromosoma.
108:426–435. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Neves H, Ramos C, da Silva MG, Parreira A
and Parreira L: The nuclear topography of ABL, BCR, PML, and RARα
genes: evidence for gene proximity in specific phases of the cell
cycle and stages of hematopoietic differentiation. Blood.
93:1197–1207. 1999.PubMed/NCBI
|
|
11
|
Collins SJ: Retinoic acid receptors,
hematopoiesis and leukemogenesis. Curr Opin Hematol. 15:346–351.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Roix JJ, McQueen PG, Munson PJ, Parada LA
and Misteli T: Spatial proximity of translocation-prone gene loci
in human lymphomas. Nat Genet. 34:287–291. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Misteli T: The inner life of the genome.
Sci Am. 304:66–73. 2011. View Article : Google Scholar
|
|
14
|
Osborne CS, Chakalova L, Mitchell JA, et
al: Myc dynamically and preferentially relocates to a
transcription factory occupied by Igh. PLoS Biol.
5:e1922007. View Article : Google Scholar
|
|
15
|
Cornfield DB, Mitchell DM, Almasri NM,
Anderson JB, Ahrens KP, Dooley EO and Braylan RC: Follicular
lymphoma can be distinguished from benign follicular hyperplasia by
flow cytometry using simultaneous staining of cytoplasmic bcl-2 and
cell surface CD20. Am J Clin Pathol. 114:258–263. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Welzel N, Le T, Marculescu R, et al:
Templated nucleotide addition and immunoglobulin
JH-gene utilization in t(11;14) junctions:
implications for the mechanism of translocation and the origin of
mantle cell lymphoma. Cancer Res. 61:1629–1636. 2001.PubMed/NCBI
|
|
17
|
Palmer RH, Vernersson E, Grabbe C and
Hallberg B: Anaplastic lymphoma kinase: signalling in development
and disease. Biochem J. 420:345–361. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Barreca A, Lasorsa E, Riera L, et al:
Anaplastic lymphoma kinase in human cancer. J Mol Endocrinol.
47:R11–R23. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Iwahara T, Fujimoto J, Wen D, et al:
Molecular characterization of ALK, a receptor tyrosine kinase
expressed specifically in the nervous system. Oncogene. 14:439–449.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Mathas S, Kreher S, Meaburn KJ, et al:
Gene deregulation and spatial genome reorganization near
breakpoints prior to formation of translocations in anaplastic
large cell lymphoma. Proc Natl Acad Sci USA. 106:5831–5836. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Gandhi M, Evdokimova V and Nikiforov YE:
Mechanisms of chromosomal rearrangements in solid tumors: the model
of papillary thyroid carcinoma. Mol Cell Endocrinol. 321:36–43.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Merolla F, Pentimalli F, Pacelli R,
Vecchio G, Fusco A, Grieco M and Celetti A: Involvement of
H4(D10S170) protein in ATM-dependent response to DNA damage.
Oncogene. 26:6167–6175. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Nikiforov YE: Thyroid carcinoma: molecular
pathways and therapeutic targets. Mod Pathol. 21(Suppl 2): S37–S43.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ciampi R, Giordano TJ, Wikenheiser-Brokamp
K, Koenig RJ and Nikiforov YE: HOOK3-RET: a novel type of RET/PTC
rearrangement in papillary thyroid carcinoma. Endocr Relat Cancer.
14:445–452. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Gandhi M, Medvedovic M, Stringer JR and
Nikiforov YE: Interphase chromosome folding determines spatial
proximity of genes participating in carcinogenic RET/PTC
rearrangements. Oncogene. 25:2360–2366. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Clark J, Merson S, Jhavar S, et al:
Diversity of TMPRSS2-ERG fusion transcripts in the human prostate.
Oncogene. 26:2667–2673. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Lin C, Yang L, Tanasa B, et al: Nuclear
receptor-induced chromosomal proximity and DNA breaks underlie
specific translocations in cancer. Cell. 139:1069–1083. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Squire JA, Park PC, Yoshimoto M, Alami J,
Williams JL, Evans A and Joshua AM: Prostate cancer as a model
system for genetic diversity in tumors. Adv Cancer Res.
112:183–216. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kumar-Sinha C, Tomlins SA and Chinnaiyan
AM: Recurrent gene fusions in prostate cancer. Nat Rev Cancer.
8:497–511. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Seth A and Watson DK: ETS transcription
factors and their emerging roles in human cancer. Eur J Cancer.
41:2462–2478. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Sankar S and Lessnick SL: Promiscuous
partnerships in Ewing’s sarcoma. Cancer Genet. 204:351–365.
2011.PubMed/NCBI
|
|
32
|
Patel M, Simon JM, Iglesia MD, Wu SB,
McFadden AW, Lieb JD and Davis IJ: Tumor-specific retargeting of an
oncogenic transcription factor chimera results in dysregulation of
chromatin and transcription. Genome Res. 22:259–270. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zelent A, Greaves M and Enver T: Role of
the TEL-AML1 fusion gene in the molecular pathogenesis of
childhood acute lymphoblastic leukaemia. Oncogene. 23:4275–4283.
2004.
|
|
34
|
Bohlander SK: ETV6: a versatile player in
leukemogenesis. Semin Cancer Biol. 15:162–174. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Li Z, Tognon CE, Godinho FJ, et al:
ETV6-NTRK3 fusion oncogene initiates breast cancer from
committed mammary progenitors via activation of AP1 complex. Cancer
Cell. 12:542–558. 2007. View Article : Google Scholar
|
|
36
|
Vaarala MH, Porvari K, Kyllönen A,
Lukkarinen O and Vihko P: The TMPRSS2 gene encoding
transmembrane serine protease is overexpressed in a majority of
prostate cancer patients: detection of mutated TMPRSS2 form
in a case of aggressive disease. Int J Cancer. 94:705–710.
2001.
|
|
37
|
Mani RS, Tomlins SA, Callahan K, et al:
Induced chromosomal proximity and gene fusions in prostate cancer.
Science. 326:12302009. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Bastus NC, Boyd LK, Mao X, et al:
Androgen-induced TMPRSS2:ERG fusion in nonmalignant prostate
epithelial cells. Cancer Res. 70:9544–9548. 2010.PubMed/NCBI
|
|
39
|
Hu Q, Kwon YS, Nunez E, et al: Enhancing
nuclear receptor-induced transcription requires nuclear motor and
LSD1-dependent gene networking in interchromatin granules. Proc
Natl Acad Sci USA. 105:19199–19204. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Soutoglou E, Dorn JF, Sengupta K, et al:
Positional stability of single double-strand breaks in mammalian
cells. Nat Cell Biol. 9:675–682. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Parada LA, McQueen PG and Misteli T:
Tissue-specific spatial organization of genomes. Genome Biol.
5:R442004. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ortiz de Mendíbil I, Vizmanos JL and Novo
FJ: Signatures of selection in fusion transcripts resulting from
chromosomal translocations in human cancer. PLoS One.
4:e48052009.PubMed/NCBI
|
|
43
|
Bickmore WA and Teague P: Influences of
chromosome size, gene density and nuclear position on the frequency
of constitutional translocations in the human population.
Chromosome Res. 10:707–715. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Narsing S, Jelsovsky Z, Mbah A and Blanck
G: Genes that contribute to cancer fusion genes are large and
evolutionarily conserved. Cancer Genet Cytogenet. 191:78–84. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Burrow AA, Williams LE, Pierce LC and Wang
YH: Over half of breakpoints in gene pairs involved in
cancer-specific recurrent translocations are mapped to human
chromosomal fragile sites. BMC Genomics. 10:592009. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Branco MR and Pombo A: Intermingling of
chromosome territories in interphase suggests role in
translocations and transcription-dependent associations. PLoS Biol.
4:e1382006. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Chiarle R, Zhang Y, Frock RL, et al:
Genome-wide translocation sequencing reveals mechanisms of
chromosome breaks and rearrangements in B cells. Cell. 147:107–119.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Obe G, Pfeiffer P, Savage JR, et al:
Chromosomal aberrations: formation, identification and
distribution. Mutat Res. 504:17–36. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Cowell IG, Sunter NJ, Singh PB, Austin CA,
Durkacz BW and Tilby MJ: γH2AX foci form preferentially in
euchromatin after ionising-radiation. PLoS One. 2:e10572007.
|
|
50
|
Lorat Y, Schanz S, Schuler N, Wennemuth G,
Rübe C and Rübe CE: Beyond repair foci: DNA double-strand break
repair in euchromatic and heterochromatic compartments analyzed by
transmission electron microscopy. PLoS One. 7:e381652012.
View Article : Google Scholar
|
|
51
|
Murray JM, Stiff T and Jeggo PA: DNA
double-strand break repair within heterochromatic regions. Biochem
Soc Trans. 40:173–178. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Turc-Carel C, Aurias A, Mugneret F, et al:
Chromosomes in Ewing’s sarcoma. I An evaluation of 85 cases of
remarkable consistency of t(11;22)(q24;q12). Cancer Genet
Cytogenet. 32:229–238. 1988.
|
|
53
|
Wang J, Cai Y, Ren C and Ittmann M:
Expression of variant TMPRSS2/ERG fusion messenger RNAs is
associated with aggressive prostate cancer. Cancer Res.
66:8347–8351. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wang J, Cai Y, Shao LJ, et al: Activation
of NF-κB by TMPRSS2/ERG fusion isoforms through toll-like
receptor-4. Cancer Res. 71:1325–1333. 2011.
|
|
55
|
Tomlins SA, Bjartell A, Chinnaiyan AM,
Jenster G, Nam RK, Rubin MA and Schalken JA: ETS gene fusions in
prostate cancer: from discovery to daily clinical practice. Eur
Urol. 56:275–286. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Yuan Y, Zhou L, Miyamoto T, et al:
AML1-ETO expression is directly involved in the development of
acute myeloid leukemia in the presence of additional mutations.
Proc Natl Acad Sci USA. 98:10398–10403. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Licht JD and Sternberg DW: The molecular
pathology of acute myeloid leukemia. Hematology Am Soc Hematol Educ
Program. 2005:137–142. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Rubnitz JE, Raimondi SC, Halbert AR, et
al: Characteristics and outcome of t(8;21)-positive childhood acute
myeloid leukemia: a single institution’s experience. Leukemia.
16:2072–2077. 2002.PubMed/NCBI
|
|
59
|
Okumura AJ, Peterson LF, Okumura F,
Boyapati A and Zhang DE: t(8;21)(q22;q22) Fusion proteins
preferentially bind to duplicated AML1/RUNX1 DNA-binding sequences
to differentially regulate gene expression. Blood. 112:1392–1401.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wang J, Wang M and Liu JM: Domains
involved in ETO and human N-CoR interaction and ETO transcription
repression. Leuk Res. 28:409–414. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wang L and Hiebert SW: TEL contacts
multiple co-repressors and specifically associates with histone
deacetylase-3. Oncogene. 20:3716–3725. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Mengeling BJ, Phan TQ, Goodson ML and
Privalsky ML: Aberrant corepressor interactions implicated in
PML-RARα and PLZF-RARα leukemogenesis reflect an altered
recruitment and release of specific NCoR and SMRT splice variants.
J Biol Chem. 286:4236–4247. 2011.PubMed/NCBI
|
|
63
|
Zhang XW, Yan XJ, Zhou ZR, et al: Arsenic
trioxide controls the fate of the PML-RARα oncoprotein by directly
binding PML. Science. 328:240–243. 2010.PubMed/NCBI
|
|
64
|
Mueller D, García-Cuéllar MP, Bach C, Buhl
S, Maethner E and Slany RK: Misguided transcriptional elongation
causes mixed lineage leukemia. PLoS Biol. 7:e10002492009.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Balgobind BV, Zwaan CM, Pieters R and Van
den Heuvel-Eibrink MM: The heterogeneity of pediatric
MLL-rearranged acute myeloid leukemia. Leukemia. 25:1239–1248.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Liu H, Cheng EH and Hsieh JJ: MLL fusions:
pathways to leukemia. Cancer Biol Ther. 8:1204–1211. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Krivtsov AV and Armstrong SA: MLL
translocations, histone modifications and leukaemia stem-cell
development. Nat Rev Cancer. 7:823–833. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Dobson CL, Warren AJ, Pannell R, Forster A
and Rabbitts TH: Tumorigenesis in mice with a fusion of the
leukaemia oncogene Mll and the bacterial lacZ gene.
EMBO J. 19:843–851. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Bernt KM, Zhu N, Sinha AU, et al:
MLL-rearranged leukemia is dependent on aberrant H3K79
methylation by DOT1L. Cancer Cell. 20:66–78. 2011. View Article : Google Scholar
|
|
70
|
Daigle SR, Olhava EJ, Therkelsen CA, et
al: Selective killing of mixed lineage leukemia cells by a potent
small-molecule DOT1L inhibitor. Cancer Cell. 20:53–65. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Liu H, Cheng EH and Hsieh JJ: Bimodal
degradation of MLL by SCFSkp2 and APCCdc20
assures cell cycle execution: a critical regulatory circuit lost in
leukemogenic MLL fusions. Genes Dev. 21:2385–2398. 2007.PubMed/NCBI
|
|
72
|
Ayton PM and Cleary ML: Transformation of
myeloid progenitors by MLL oncoproteins is dependent on
Hoxa7 and Hoxa9. Genes Dev. 17:2298–2307. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zeisig BB, Schreiner S, García-Cuéllar MP
and Slany RK: Transcriptional activation is a key function encoded
by MLL fusion partners. Leukemia. 17:359–365. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Okada Y, Feng Q, Lin Y, et al: hDOT1L
links histone methylation to leukemogenesis. Cell. 121:167–178.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Wong P, Iwasaki M, Somervaille TC, So CW
and Cleary ML: Meis1 is an essential and rate-limiting
regulator of MLL leukemia stem cell potential. Genes Dev.
21:2762–2774. 2007. View Article : Google Scholar
|
|
76
|
So CW, Lin M, Ayton PM, Chen EH and Cleary
ML: Dimerization contributes to oncogenic activation of MLL
chimeras in acute leukemias. Cancer Cell. 4:99–110. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
So CW and Cleary ML: Dimerization: a
versatile switch for oncogenesis. Blood. 104:919–922. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Bischof D, Pulford K, Mason DY and Morris
SW: Role of the nucleophosmin (NPM) portion of the non-Hodgkin’s
lymphoma-associated NPM-anaplastic lymphoma kinase fusion protein
in oncogenesis. Mol Cell Biol. 17:2312–2325. 1997.
|
|
79
|
Goldman JM and Melo JV: Chronic myeloid
leukemia - advances in biology and new approaches to treatment. N
Engl J Med. 349:1451–1464. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Ladanyi M and Cavalchire G: Molecular
variant of the NPM-ALK rearrangement of Ki-1 lymphoma involving a
cryptic ALK splice site. Genes Chromosomes Cancer. 15:173–177.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Jhiang SM: The RET proto-oncogene in human
cancers. Oncogene. 19:5590–5597. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhao X, Ghaffari S, Lodish H, Malashkevich
VN and Kim PS: Structure of the Bcr-Abl oncoprotein oligomerization
domain. Nat Struct Biol. 9:117–120. 2002.PubMed/NCBI
|
|
83
|
Alberti L, Carniti C, Miranda C, Roccato E
and Pierotti MA: RET and NTRK1 proto-oncogenes in human diseases. J
Cell Physiol. 195:168–186. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Mizuki M, Ueda S, Matsumura I, Ishiko J,
Schwäble J, Serve H and Kanakura Y: Oncogenic receptor tyrosine
kinase in leukemia. Cell Mol Biol. 49:907–922. 2003.PubMed/NCBI
|
|
85
|
Mano H: Non-solid oncogenes in solid
tumors: EML4-ALK fusion genes in lung cancer. Cancer Sci.
99:2349–2355. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Nagar B, Hantschel O, Seeliger M, Davies
JM, Weis WI, Superti-Furga G and Kuriyan J: Organization of the
SH3-SH2 unit in active and inactive forms of the c-Abl tyrosine
kinase. Mol Cell. 21:787–798. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Chen S, Dumitrescu TP, Smithgall TE and
Engen JR: Abl N-terminal cap stabilization of SH3 domain dynamics.
Biochemistry. 47:5795–5803. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Mian AA, Oancea C, Zhao Z, Ottmann OG and
Ruthardt M: Oligomerization inhibition, combined with allosteric
inhibition, abrogates the transformation potential of
T315I-positive BCR/ABL. Leukemia. 23:2242–2247. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
He Y, Wertheim JA, Xu L, Miller JP,
Karnell FG and Choi JK: The coiled-coil domain and Tyr177 of bcr
are required to induce a murine chronic myelogenous leukemia-like
disease by bcr/abl. Blood. 99:2957–2968. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Reddy EP and Aggarwal AK: The ins and outs
of bcr-abl inhibition. Genes Cancer. 3:447–454. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Tong Q, Xing S and Jhiang SM: Leucine
zipper-mediated dimerization is essential for the PTC1
oncogenic activity. J Biol Chem. 272:9043–9047. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Pillai RN and Ramalingam SS: The biology
and clinical features of non-small cell lung cancers with EML4-ALK
translocation. Curr Oncol Rep. 14:105–110. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Shaw AT, Yeap BY, Solomon BJ, et al:
Effect of crizotinib on overall survival in patients with advanced
non-small-cell lung cancer harbouring ALK gene rearrangement: a
retrospective analysis. Lancet Oncol. 12:1004–1012. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Willis TG and Dyer MJ: The role of
immunoglobulin translocations in the pathogenesis of B-cell
malignancies. Blood. 96:808–822. 2000.PubMed/NCBI
|
|
95
|
Dadi S, Le Noir S, Asnafi V, Beldjord K
and Macintyre EA: Normal and pathological V(D)J recombination:
contribution to the understanding of human lymphoid malignancies.
Adv Exp Med Biol. 650:180–194. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Martinez-Climent JA, Fontan L, Gascoyne
RD, Siebert R and Prosper F: Lymphoma stem cells: enough evidence
to support their existence? Haematologica. 95:293–302. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Graux C, Cools J, Michaux L, Vandenberghe
P and Hagemeijer A: Cytogenetics and molecular genetics of T-cell
acute lymphoblastic leukemia: from thymocyte to lymphoblast.
Leukemia. 20:1496–1510. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Van Vlierberghe P, van Grotel M, Beverloo
HB, et al: The cryptic chromosomal deletion del(11)(p12p13) as a
new activation mechanism of LMO2 in pediatric T-cell acute
lymphoblastic leukemia. Blood. 108:3520–3529. 2006.PubMed/NCBI
|
|
99
|
Brake RL, Kees UR and Watt PM: Multiple
negative elements contribute to repression of the HOX11
proto-oncogene. Oncogene. 17:1787–1795. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Riz I, Hawley TS, Johnston H and Hawley
RG: Role of TLX1 in T-cell acute lymphoblastic leukaemia
pathogenesis. Br J Haematol. 145:140–143. 2009.
|
|
101
|
Kees UR, Heerema NA, Kumar R, et al:
Expression of HOX11 in childhood T-lineage acute
lymphoblastic leukaemia can occur in the absence of cytogenetic
aberration at 10q24: a study from the Children’s Cancer Group
(CCG). Leukemia. 17:887–893. 2003.
|
|
102
|
Dadi S, Le Noir S, Payet-Bornet D, et al:
TLX homeodomain oncogenes mediate T cell maturation arrest in T-ALL
via interaction with ETS1 and suppression of TCRα gene expression.
Cancer Cell. 21:563–576. 2012.PubMed/NCBI
|
|
103
|
De Keersmaecker K, Marynen P and Cools J:
Genetic insights in the pathogenesis of T-cell acute lymphoblastic
leukemia. Haematologica. 90:1116–1127. 2005.
|
|
104
|
Grabher C, von Boehmer H and Look AT:
Notch 1 activation in the molecular pathogenesis of T-cell acute
lymphoblastic leukaemia. Nat Rev Cancer. 6:347–359. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
South AP, Cho RJ and Aster JC: The
double-edged sword of Notch signaling in cancer. Semin Cell Dev
Biol. 23:458–464. 2012. View Article : Google Scholar : PubMed/NCBI
|