Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
November 2013 Volume 30 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November 2013 Volume 30 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Oncogenic chromosomal translocations and human cancer (Review)

  • Authors:
    • Jie Zheng
  • View Affiliations / Copyright

    Affiliations: Department of Pathology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
  • Pages: 2011-2019
    |
    Published online on: August 20, 2013
       https://doi.org/10.3892/or.2013.2677
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Chromosomal translocations are very common in human cancer. The molecular mechanisms of chromosomal translocations are complex and are not fully understood. Recent studies showed organization of genomes is higher-order in the nucleus and every chromosome or chromatin has its preferential position and territory. These findings suggest the spatial arrangements of chromosomes and gene loci in the interphase nucleus are responsible for non-random chromosomal translocations in human cancer. Chromosomal translocations are favored in neighboring chromosomes or genes in spatial proximity within the nucleus. Chromosomal translocations leading to cancer are generally via two ways, formation of oncogenic fusion protein or oncogene activation by a new promoter or enhancer. This review focuses mainly on the recent advances in oncogenic chromosomal translocations in human cancer.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Mitelman F, Johansson B and Mertens F: The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer. 7:233–245. 2007. View Article : Google Scholar : PubMed/NCBI

2 

Nambiar M, Kari V and Raghavan SC: Chromosomal translocations in cancer. Biochim Biophys Acta. 1786:139–152. 2008.PubMed/NCBI

3 

Fröhling S and Döhner H: Chromosomal abnormalities in cancer. N Engl J Med. 359:722–734. 2008.

4 

Pui CH, Relling MV and Downing JR: Acute lymphoblastic leukemia. N Engl J Med. 350:1535–1548. 2004. View Article : Google Scholar : PubMed/NCBI

5 

Aplan PD: Causes of oncogenic chromosomal translocation. Trends Genet. 22:46–55. 2006. View Article : Google Scholar : PubMed/NCBI

6 

Raghavan SC and Lieber MR: DNA structures at chromosomal translocation sites. Bioessays. 28:480–494. 2006. View Article : Google Scholar : PubMed/NCBI

7 

Hakim O, Resch W, Yamane A, et al: DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes. Nature. 484:69–74. 2012.PubMed/NCBI

8 

Meaburn KJ, Misteli T and Soutoglou E: Spatial genome organization in the formation of chromosomal translocations. Semin Cancer Biol. 17:80–90. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Kozubek S, Lukásová E, Marecková A, et al: The topological organization of chromosomes 9 and 22 in cell nuclei has a determinative role in the induction of t(9,22) translocations and in the pathogenesis of t(9,22) leukemias. Chromosoma. 108:426–435. 1999. View Article : Google Scholar : PubMed/NCBI

10 

Neves H, Ramos C, da Silva MG, Parreira A and Parreira L: The nuclear topography of ABL, BCR, PML, and RARα genes: evidence for gene proximity in specific phases of the cell cycle and stages of hematopoietic differentiation. Blood. 93:1197–1207. 1999.PubMed/NCBI

11 

Collins SJ: Retinoic acid receptors, hematopoiesis and leukemogenesis. Curr Opin Hematol. 15:346–351. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Roix JJ, McQueen PG, Munson PJ, Parada LA and Misteli T: Spatial proximity of translocation-prone gene loci in human lymphomas. Nat Genet. 34:287–291. 2003. View Article : Google Scholar : PubMed/NCBI

13 

Misteli T: The inner life of the genome. Sci Am. 304:66–73. 2011. View Article : Google Scholar

14 

Osborne CS, Chakalova L, Mitchell JA, et al: Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol. 5:e1922007. View Article : Google Scholar

15 

Cornfield DB, Mitchell DM, Almasri NM, Anderson JB, Ahrens KP, Dooley EO and Braylan RC: Follicular lymphoma can be distinguished from benign follicular hyperplasia by flow cytometry using simultaneous staining of cytoplasmic bcl-2 and cell surface CD20. Am J Clin Pathol. 114:258–263. 2000. View Article : Google Scholar : PubMed/NCBI

16 

Welzel N, Le T, Marculescu R, et al: Templated nucleotide addition and immunoglobulin JH-gene utilization in t(11;14) junctions: implications for the mechanism of translocation and the origin of mantle cell lymphoma. Cancer Res. 61:1629–1636. 2001.PubMed/NCBI

17 

Palmer RH, Vernersson E, Grabbe C and Hallberg B: Anaplastic lymphoma kinase: signalling in development and disease. Biochem J. 420:345–361. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Barreca A, Lasorsa E, Riera L, et al: Anaplastic lymphoma kinase in human cancer. J Mol Endocrinol. 47:R11–R23. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Iwahara T, Fujimoto J, Wen D, et al: Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene. 14:439–449. 1997. View Article : Google Scholar : PubMed/NCBI

20 

Mathas S, Kreher S, Meaburn KJ, et al: Gene deregulation and spatial genome reorganization near breakpoints prior to formation of translocations in anaplastic large cell lymphoma. Proc Natl Acad Sci USA. 106:5831–5836. 2009. View Article : Google Scholar : PubMed/NCBI

21 

Gandhi M, Evdokimova V and Nikiforov YE: Mechanisms of chromosomal rearrangements in solid tumors: the model of papillary thyroid carcinoma. Mol Cell Endocrinol. 321:36–43. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Merolla F, Pentimalli F, Pacelli R, Vecchio G, Fusco A, Grieco M and Celetti A: Involvement of H4(D10S170) protein in ATM-dependent response to DNA damage. Oncogene. 26:6167–6175. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Nikiforov YE: Thyroid carcinoma: molecular pathways and therapeutic targets. Mod Pathol. 21(Suppl 2): S37–S43. 2008. View Article : Google Scholar : PubMed/NCBI

24 

Ciampi R, Giordano TJ, Wikenheiser-Brokamp K, Koenig RJ and Nikiforov YE: HOOK3-RET: a novel type of RET/PTC rearrangement in papillary thyroid carcinoma. Endocr Relat Cancer. 14:445–452. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Gandhi M, Medvedovic M, Stringer JR and Nikiforov YE: Interphase chromosome folding determines spatial proximity of genes participating in carcinogenic RET/PTC rearrangements. Oncogene. 25:2360–2366. 2006. View Article : Google Scholar : PubMed/NCBI

26 

Clark J, Merson S, Jhavar S, et al: Diversity of TMPRSS2-ERG fusion transcripts in the human prostate. Oncogene. 26:2667–2673. 2007. View Article : Google Scholar : PubMed/NCBI

27 

Lin C, Yang L, Tanasa B, et al: Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell. 139:1069–1083. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Squire JA, Park PC, Yoshimoto M, Alami J, Williams JL, Evans A and Joshua AM: Prostate cancer as a model system for genetic diversity in tumors. Adv Cancer Res. 112:183–216. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Kumar-Sinha C, Tomlins SA and Chinnaiyan AM: Recurrent gene fusions in prostate cancer. Nat Rev Cancer. 8:497–511. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Seth A and Watson DK: ETS transcription factors and their emerging roles in human cancer. Eur J Cancer. 41:2462–2478. 2005. View Article : Google Scholar : PubMed/NCBI

31 

Sankar S and Lessnick SL: Promiscuous partnerships in Ewing’s sarcoma. Cancer Genet. 204:351–365. 2011.PubMed/NCBI

32 

Patel M, Simon JM, Iglesia MD, Wu SB, McFadden AW, Lieb JD and Davis IJ: Tumor-specific retargeting of an oncogenic transcription factor chimera results in dysregulation of chromatin and transcription. Genome Res. 22:259–270. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Zelent A, Greaves M and Enver T: Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia. Oncogene. 23:4275–4283. 2004.

34 

Bohlander SK: ETV6: a versatile player in leukemogenesis. Semin Cancer Biol. 15:162–174. 2005. View Article : Google Scholar : PubMed/NCBI

35 

Li Z, Tognon CE, Godinho FJ, et al: ETV6-NTRK3 fusion oncogene initiates breast cancer from committed mammary progenitors via activation of AP1 complex. Cancer Cell. 12:542–558. 2007. View Article : Google Scholar

36 

Vaarala MH, Porvari K, Kyllönen A, Lukkarinen O and Vihko P: The TMPRSS2 gene encoding transmembrane serine protease is overexpressed in a majority of prostate cancer patients: detection of mutated TMPRSS2 form in a case of aggressive disease. Int J Cancer. 94:705–710. 2001.

37 

Mani RS, Tomlins SA, Callahan K, et al: Induced chromosomal proximity and gene fusions in prostate cancer. Science. 326:12302009. View Article : Google Scholar : PubMed/NCBI

38 

Bastus NC, Boyd LK, Mao X, et al: Androgen-induced TMPRSS2:ERG fusion in nonmalignant prostate epithelial cells. Cancer Res. 70:9544–9548. 2010.PubMed/NCBI

39 

Hu Q, Kwon YS, Nunez E, et al: Enhancing nuclear receptor-induced transcription requires nuclear motor and LSD1-dependent gene networking in interchromatin granules. Proc Natl Acad Sci USA. 105:19199–19204. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Soutoglou E, Dorn JF, Sengupta K, et al: Positional stability of single double-strand breaks in mammalian cells. Nat Cell Biol. 9:675–682. 2007. View Article : Google Scholar : PubMed/NCBI

41 

Parada LA, McQueen PG and Misteli T: Tissue-specific spatial organization of genomes. Genome Biol. 5:R442004. View Article : Google Scholar : PubMed/NCBI

42 

Ortiz de Mendíbil I, Vizmanos JL and Novo FJ: Signatures of selection in fusion transcripts resulting from chromosomal translocations in human cancer. PLoS One. 4:e48052009.PubMed/NCBI

43 

Bickmore WA and Teague P: Influences of chromosome size, gene density and nuclear position on the frequency of constitutional translocations in the human population. Chromosome Res. 10:707–715. 2002. View Article : Google Scholar : PubMed/NCBI

44 

Narsing S, Jelsovsky Z, Mbah A and Blanck G: Genes that contribute to cancer fusion genes are large and evolutionarily conserved. Cancer Genet Cytogenet. 191:78–84. 2009. View Article : Google Scholar : PubMed/NCBI

45 

Burrow AA, Williams LE, Pierce LC and Wang YH: Over half of breakpoints in gene pairs involved in cancer-specific recurrent translocations are mapped to human chromosomal fragile sites. BMC Genomics. 10:592009. View Article : Google Scholar : PubMed/NCBI

46 

Branco MR and Pombo A: Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol. 4:e1382006. View Article : Google Scholar : PubMed/NCBI

47 

Chiarle R, Zhang Y, Frock RL, et al: Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell. 147:107–119. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Obe G, Pfeiffer P, Savage JR, et al: Chromosomal aberrations: formation, identification and distribution. Mutat Res. 504:17–36. 2002. View Article : Google Scholar : PubMed/NCBI

49 

Cowell IG, Sunter NJ, Singh PB, Austin CA, Durkacz BW and Tilby MJ: γH2AX foci form preferentially in euchromatin after ionising-radiation. PLoS One. 2:e10572007.

50 

Lorat Y, Schanz S, Schuler N, Wennemuth G, Rübe C and Rübe CE: Beyond repair foci: DNA double-strand break repair in euchromatic and heterochromatic compartments analyzed by transmission electron microscopy. PLoS One. 7:e381652012. View Article : Google Scholar

51 

Murray JM, Stiff T and Jeggo PA: DNA double-strand break repair within heterochromatic regions. Biochem Soc Trans. 40:173–178. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Turc-Carel C, Aurias A, Mugneret F, et al: Chromosomes in Ewing’s sarcoma. I An evaluation of 85 cases of remarkable consistency of t(11;22)(q24;q12). Cancer Genet Cytogenet. 32:229–238. 1988.

53 

Wang J, Cai Y, Ren C and Ittmann M: Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res. 66:8347–8351. 2006. View Article : Google Scholar : PubMed/NCBI

54 

Wang J, Cai Y, Shao LJ, et al: Activation of NF-κB by TMPRSS2/ERG fusion isoforms through toll-like receptor-4. Cancer Res. 71:1325–1333. 2011.

55 

Tomlins SA, Bjartell A, Chinnaiyan AM, Jenster G, Nam RK, Rubin MA and Schalken JA: ETS gene fusions in prostate cancer: from discovery to daily clinical practice. Eur Urol. 56:275–286. 2009. View Article : Google Scholar : PubMed/NCBI

56 

Yuan Y, Zhou L, Miyamoto T, et al: AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA. 98:10398–10403. 2001. View Article : Google Scholar : PubMed/NCBI

57 

Licht JD and Sternberg DW: The molecular pathology of acute myeloid leukemia. Hematology Am Soc Hematol Educ Program. 2005:137–142. 2005. View Article : Google Scholar : PubMed/NCBI

58 

Rubnitz JE, Raimondi SC, Halbert AR, et al: Characteristics and outcome of t(8;21)-positive childhood acute myeloid leukemia: a single institution’s experience. Leukemia. 16:2072–2077. 2002.PubMed/NCBI

59 

Okumura AJ, Peterson LF, Okumura F, Boyapati A and Zhang DE: t(8;21)(q22;q22) Fusion proteins preferentially bind to duplicated AML1/RUNX1 DNA-binding sequences to differentially regulate gene expression. Blood. 112:1392–1401. 2008. View Article : Google Scholar : PubMed/NCBI

60 

Wang J, Wang M and Liu JM: Domains involved in ETO and human N-CoR interaction and ETO transcription repression. Leuk Res. 28:409–414. 2004. View Article : Google Scholar : PubMed/NCBI

61 

Wang L and Hiebert SW: TEL contacts multiple co-repressors and specifically associates with histone deacetylase-3. Oncogene. 20:3716–3725. 2001. View Article : Google Scholar : PubMed/NCBI

62 

Mengeling BJ, Phan TQ, Goodson ML and Privalsky ML: Aberrant corepressor interactions implicated in PML-RARα and PLZF-RARα leukemogenesis reflect an altered recruitment and release of specific NCoR and SMRT splice variants. J Biol Chem. 286:4236–4247. 2011.PubMed/NCBI

63 

Zhang XW, Yan XJ, Zhou ZR, et al: Arsenic trioxide controls the fate of the PML-RARα oncoprotein by directly binding PML. Science. 328:240–243. 2010.PubMed/NCBI

64 

Mueller D, García-Cuéllar MP, Bach C, Buhl S, Maethner E and Slany RK: Misguided transcriptional elongation causes mixed lineage leukemia. PLoS Biol. 7:e10002492009. View Article : Google Scholar : PubMed/NCBI

65 

Balgobind BV, Zwaan CM, Pieters R and Van den Heuvel-Eibrink MM: The heterogeneity of pediatric MLL-rearranged acute myeloid leukemia. Leukemia. 25:1239–1248. 2011. View Article : Google Scholar : PubMed/NCBI

66 

Liu H, Cheng EH and Hsieh JJ: MLL fusions: pathways to leukemia. Cancer Biol Ther. 8:1204–1211. 2009. View Article : Google Scholar : PubMed/NCBI

67 

Krivtsov AV and Armstrong SA: MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer. 7:823–833. 2007. View Article : Google Scholar : PubMed/NCBI

68 

Dobson CL, Warren AJ, Pannell R, Forster A and Rabbitts TH: Tumorigenesis in mice with a fusion of the leukaemia oncogene Mll and the bacterial lacZ gene. EMBO J. 19:843–851. 2000. View Article : Google Scholar : PubMed/NCBI

69 

Bernt KM, Zhu N, Sinha AU, et al: MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell. 20:66–78. 2011. View Article : Google Scholar

70 

Daigle SR, Olhava EJ, Therkelsen CA, et al: Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell. 20:53–65. 2011. View Article : Google Scholar : PubMed/NCBI

71 

Liu H, Cheng EH and Hsieh JJ: Bimodal degradation of MLL by SCFSkp2 and APCCdc20 assures cell cycle execution: a critical regulatory circuit lost in leukemogenic MLL fusions. Genes Dev. 21:2385–2398. 2007.PubMed/NCBI

72 

Ayton PM and Cleary ML: Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev. 17:2298–2307. 2003. View Article : Google Scholar : PubMed/NCBI

73 

Zeisig BB, Schreiner S, García-Cuéllar MP and Slany RK: Transcriptional activation is a key function encoded by MLL fusion partners. Leukemia. 17:359–365. 2003. View Article : Google Scholar : PubMed/NCBI

74 

Okada Y, Feng Q, Lin Y, et al: hDOT1L links histone methylation to leukemogenesis. Cell. 121:167–178. 2005. View Article : Google Scholar : PubMed/NCBI

75 

Wong P, Iwasaki M, Somervaille TC, So CW and Cleary ML: Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. Genes Dev. 21:2762–2774. 2007. View Article : Google Scholar

76 

So CW, Lin M, Ayton PM, Chen EH and Cleary ML: Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias. Cancer Cell. 4:99–110. 2003. View Article : Google Scholar : PubMed/NCBI

77 

So CW and Cleary ML: Dimerization: a versatile switch for oncogenesis. Blood. 104:919–922. 2004. View Article : Google Scholar : PubMed/NCBI

78 

Bischof D, Pulford K, Mason DY and Morris SW: Role of the nucleophosmin (NPM) portion of the non-Hodgkin’s lymphoma-associated NPM-anaplastic lymphoma kinase fusion protein in oncogenesis. Mol Cell Biol. 17:2312–2325. 1997.

79 

Goldman JM and Melo JV: Chronic myeloid leukemia - advances in biology and new approaches to treatment. N Engl J Med. 349:1451–1464. 2003. View Article : Google Scholar : PubMed/NCBI

80 

Ladanyi M and Cavalchire G: Molecular variant of the NPM-ALK rearrangement of Ki-1 lymphoma involving a cryptic ALK splice site. Genes Chromosomes Cancer. 15:173–177. 1996. View Article : Google Scholar : PubMed/NCBI

81 

Jhiang SM: The RET proto-oncogene in human cancers. Oncogene. 19:5590–5597. 2000. View Article : Google Scholar : PubMed/NCBI

82 

Zhao X, Ghaffari S, Lodish H, Malashkevich VN and Kim PS: Structure of the Bcr-Abl oncoprotein oligomerization domain. Nat Struct Biol. 9:117–120. 2002.PubMed/NCBI

83 

Alberti L, Carniti C, Miranda C, Roccato E and Pierotti MA: RET and NTRK1 proto-oncogenes in human diseases. J Cell Physiol. 195:168–186. 2003. View Article : Google Scholar : PubMed/NCBI

84 

Mizuki M, Ueda S, Matsumura I, Ishiko J, Schwäble J, Serve H and Kanakura Y: Oncogenic receptor tyrosine kinase in leukemia. Cell Mol Biol. 49:907–922. 2003.PubMed/NCBI

85 

Mano H: Non-solid oncogenes in solid tumors: EML4-ALK fusion genes in lung cancer. Cancer Sci. 99:2349–2355. 2008. View Article : Google Scholar : PubMed/NCBI

86 

Nagar B, Hantschel O, Seeliger M, Davies JM, Weis WI, Superti-Furga G and Kuriyan J: Organization of the SH3-SH2 unit in active and inactive forms of the c-Abl tyrosine kinase. Mol Cell. 21:787–798. 2006. View Article : Google Scholar : PubMed/NCBI

87 

Chen S, Dumitrescu TP, Smithgall TE and Engen JR: Abl N-terminal cap stabilization of SH3 domain dynamics. Biochemistry. 47:5795–5803. 2008. View Article : Google Scholar : PubMed/NCBI

88 

Mian AA, Oancea C, Zhao Z, Ottmann OG and Ruthardt M: Oligomerization inhibition, combined with allosteric inhibition, abrogates the transformation potential of T315I-positive BCR/ABL. Leukemia. 23:2242–2247. 2009. View Article : Google Scholar : PubMed/NCBI

89 

He Y, Wertheim JA, Xu L, Miller JP, Karnell FG and Choi JK: The coiled-coil domain and Tyr177 of bcr are required to induce a murine chronic myelogenous leukemia-like disease by bcr/abl. Blood. 99:2957–2968. 2002. View Article : Google Scholar : PubMed/NCBI

90 

Reddy EP and Aggarwal AK: The ins and outs of bcr-abl inhibition. Genes Cancer. 3:447–454. 2012. View Article : Google Scholar : PubMed/NCBI

91 

Tong Q, Xing S and Jhiang SM: Leucine zipper-mediated dimerization is essential for the PTC1 oncogenic activity. J Biol Chem. 272:9043–9047. 1997. View Article : Google Scholar : PubMed/NCBI

92 

Pillai RN and Ramalingam SS: The biology and clinical features of non-small cell lung cancers with EML4-ALK translocation. Curr Oncol Rep. 14:105–110. 2012. View Article : Google Scholar : PubMed/NCBI

93 

Shaw AT, Yeap BY, Solomon BJ, et al: Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol. 12:1004–1012. 2011. View Article : Google Scholar : PubMed/NCBI

94 

Willis TG and Dyer MJ: The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood. 96:808–822. 2000.PubMed/NCBI

95 

Dadi S, Le Noir S, Asnafi V, Beldjord K and Macintyre EA: Normal and pathological V(D)J recombination: contribution to the understanding of human lymphoid malignancies. Adv Exp Med Biol. 650:180–194. 2009. View Article : Google Scholar : PubMed/NCBI

96 

Martinez-Climent JA, Fontan L, Gascoyne RD, Siebert R and Prosper F: Lymphoma stem cells: enough evidence to support their existence? Haematologica. 95:293–302. 2010. View Article : Google Scholar : PubMed/NCBI

97 

Graux C, Cools J, Michaux L, Vandenberghe P and Hagemeijer A: Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia. 20:1496–1510. 2006. View Article : Google Scholar : PubMed/NCBI

98 

Van Vlierberghe P, van Grotel M, Beverloo HB, et al: The cryptic chromosomal deletion del(11)(p12p13) as a new activation mechanism of LMO2 in pediatric T-cell acute lymphoblastic leukemia. Blood. 108:3520–3529. 2006.PubMed/NCBI

99 

Brake RL, Kees UR and Watt PM: Multiple negative elements contribute to repression of the HOX11 proto-oncogene. Oncogene. 17:1787–1795. 1998. View Article : Google Scholar : PubMed/NCBI

100 

Riz I, Hawley TS, Johnston H and Hawley RG: Role of TLX1 in T-cell acute lymphoblastic leukaemia pathogenesis. Br J Haematol. 145:140–143. 2009.

101 

Kees UR, Heerema NA, Kumar R, et al: Expression of HOX11 in childhood T-lineage acute lymphoblastic leukaemia can occur in the absence of cytogenetic aberration at 10q24: a study from the Children’s Cancer Group (CCG). Leukemia. 17:887–893. 2003.

102 

Dadi S, Le Noir S, Payet-Bornet D, et al: TLX homeodomain oncogenes mediate T cell maturation arrest in T-ALL via interaction with ETS1 and suppression of TCRα gene expression. Cancer Cell. 21:563–576. 2012.PubMed/NCBI

103 

De Keersmaecker K, Marynen P and Cools J: Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia. Haematologica. 90:1116–1127. 2005.

104 

Grabher C, von Boehmer H and Look AT: Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer. 6:347–359. 2006. View Article : Google Scholar : PubMed/NCBI

105 

South AP, Cho RJ and Aster JC: The double-edged sword of Notch signaling in cancer. Semin Cell Dev Biol. 23:458–464. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zheng J: Oncogenic chromosomal translocations and human cancer (Review). Oncol Rep 30: 2011-2019, 2013.
APA
Zheng, J. (2013). Oncogenic chromosomal translocations and human cancer (Review). Oncology Reports, 30, 2011-2019. https://doi.org/10.3892/or.2013.2677
MLA
Zheng, J."Oncogenic chromosomal translocations and human cancer (Review)". Oncology Reports 30.5 (2013): 2011-2019.
Chicago
Zheng, J."Oncogenic chromosomal translocations and human cancer (Review)". Oncology Reports 30, no. 5 (2013): 2011-2019. https://doi.org/10.3892/or.2013.2677
Copy and paste a formatted citation
x
Spandidos Publications style
Zheng J: Oncogenic chromosomal translocations and human cancer (Review). Oncol Rep 30: 2011-2019, 2013.
APA
Zheng, J. (2013). Oncogenic chromosomal translocations and human cancer (Review). Oncology Reports, 30, 2011-2019. https://doi.org/10.3892/or.2013.2677
MLA
Zheng, J."Oncogenic chromosomal translocations and human cancer (Review)". Oncology Reports 30.5 (2013): 2011-2019.
Chicago
Zheng, J."Oncogenic chromosomal translocations and human cancer (Review)". Oncology Reports 30, no. 5 (2013): 2011-2019. https://doi.org/10.3892/or.2013.2677
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team