|
1
|
Hammond SM: RNAi, microRNAs, and human
disease. Cancer Chemother Pharmacol. 58:S63–S68. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Tanzer A and Stadler PF: Molecular
evolution of a microRNA cluster. J Mol Biol. 339:327–335. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Mendell JT: miRiad roles for the miR-17-92
cluster in development and disease. Cell. 133:217–222. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ventura A, Young AG, Winslow MM, Lintault
L, Meissner A, Erkeland SJ, Newman J, Bronson RT, Crowley D, Stone
JR, Jaenisch R, Sharp PA and Jacks T: Targeted deletion reveals
essential and overlapping functions of the miR-17 through 92 family
of miRNA clusters. Cell. 132:875–886. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Tatsuguchi M, Seok HY, Callis TE, Thomson
JM, Chen JF, Newman M, Rojas M, Hammond SM and Wang DZ: Expression
of microRNAs is dynamically regulated during cardiomyocyte
hypertrophy. J Mol Cell Cardiol. 42:1137–1141. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Otaegui D, Baranzini SE, Armañanzas R,
Calvo B, Muñoz-Culla M, Khankhanian P, Inza I, Lozano JA,
Castillo-Triviño T, Asensio A, Olaskoaga J and López de Munain A:
Differential micro RNA expression in PBMC from múltiple sclerosis
patients. PloS One. 4:e63092009.PubMed/NCBI
|
|
7
|
Zhang ZZ, Liu X, Wang DQ, Teng MK, Niu LW,
Huang AL and Liang Z: Hepatitis B virus and hepatocellular
carcinoma at the miRNA level. World J Gastroenterol. 17:3353–3358.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Guo J, Miao Y, Xiao B, Huan R, Jiang Z,
Meng D and Wang Y: Differential expression of microRNA species in
human gastric cancer versus non-tumorous tissues. J Gastroenterol
Hepatol. 24:652–657. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kim TH, Kim YK, Kwon Y, Heo JH, Kang H,
Kim G and An HJ: Deregulation of miR-519a, 153, and 485-5p and its
clinicopathological relevance in ovarian epithelial tumours.
Histopathology. 57:734–743. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Sand M, Skrygan M, Sand D, Georgas D, Hahn
SA, Gambichler T, Altmeyer P and Bechara FG: Expression of
microRNAs in basal cell carcinoma. Br J Dermatol. 167:847–855.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Wang YX, Zhang XY, Zhang BF, Yang CQ, Chen
XM and Gao HJ: Initial study of microRNA expression profiles of
colonic cancer without lymph node metastasis. J Dig Dis. 11:50–54.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
He X, DiMeco F, Vescovi A, Heth J,
Muraszko K and Fan X: MIR-18b regulates glioblastoma neurosphere
growth through NOTCH2, NEDD9, and MEKK1. Neuro Oncol. 14(Suppl 6):
vi142–vi152. 2012.
|
|
13
|
Leivonen SK, Mäkelä R, Ostling P, Kohonen
P, Haapa-Paananen S, Kleivi K, Enerly E, Aakula A, Hellström K,
Sahlberg N, Kristensen VN, Børresen-Dale AL, Saviranta P, Perälä M
and Kallioniemi O: Protein lysate microarray analysis to identify
microRNAs regulating estrogen receptor signaling in breast cancer
cell lines. Oncogene. 28:3926–3936. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Yoshimoto N, Toyama T, Takahashi S,
Sugiura H, Endo Y, Iwasa M, Fujii Y and Yamashita H: Distinct
expressions of microRNAs that directly target estrogen receptor α
in human breast cancer. Breast Cancer Res Treat. 130:331–339.
2011.PubMed/NCBI
|
|
15
|
Cookson VJ, Bentley MA, Hogan BV, Horgan
K, Hayward BE, Hazelwood LD and Hughes TA: Circulating microRNA
profiles reflect the presence of breast tumours but not the
profiles of microRNA within the tumours. Cell Oncol. 35:301–308.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Simon A and Biot E: ANAIS: Analysis of
NimbleGen arrays interface. Bioinformatics. 26:2468–2469. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Kang N and Koo J: Olfactory receptors in
non-chemosensory tissues. BMB Rep. 5:612–622. 2012. View Article : Google Scholar
|
|
18
|
Neuhaus EM, Zhang W, Gelis L, Deng Y,
Noldus J and Hatt H: Activation of an olfactory receptor inhibits
proliferation of prostate cancer cells. J Biol Chem.
284:16218–16225. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zhang W, Edwards A, Fan W, Flemington EK
and Zhang K: miRNA-mRNA correlation-network modules in human
prostate cancer and the differences between primary and metastatic
tumor subtypes. PLoS One. 7:e401302012. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Betel D, Wilson M, Gabow A, Marks DS and
Sander C: The microRNA.org resource: targets and expression.
Nucleic Acids Res. 36:149–153. 2008.PubMed/NCBI
|
|
21
|
Plessy C, Pascarella G, Bertin N, Akalin
A, Carrieri C, Vassalli A, Lazarevic D, Severin J, Vlachouli C,
Simone R, Faulkner GJ, Kawai J, Daub CO, Zucchelli S, Hayashizaki
Y, Mombaerts P, Lenhard B, Gustincich S and Carninci P: Promoter
architecture of mouse olfactory receptor genes. Genome Res.
22:486–497. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Clements J, Ward G, Kaushal A, Hi SI,
Kennett C and Nicol D: A prostate-specific antigen-like protein
associated with renal cell carcinoma in women. Clin Cancer Res.
3:1427–1431. 1997.PubMed/NCBI
|
|
23
|
Majumdar S and Diamandis EP: The promoter
and the enhancer region of the KLK3 (prostate specific antigen)
gene is frequently mutated in breast tumours and in breast
carcinoma cell lines. Br J Cancer. 79:1594–1602. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Takeshita S, Kikuno R, Tezuka K and Amann
E: Osteoblast-specific factor 2: cloning of a putative bone
adhesion protein with homology with the insect protein fasciclin I.
Biochem J. 15:271–278. 1993.PubMed/NCBI
|
|
25
|
Horiuchi K, Amizuka N, Takeshita S,
Takamatsu H, Katsuura M, Ozawa H, Toyama Y, Bonewald LF and Kudo A:
Identification and characterization of a novel protein, periostin,
with restricted expression to periosteum and periodontal ligament
and increased expression by transforming growth factor beta. J Bone
Miner Res. 14:1239–1249. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Siriwardena BS, Kudo Y, Ogawa I, Kitagawa
M, Kitajima S, Hatano H, Tilakaratne WM, Miyauchi M and Takata T:
Periostin is frequently overexpressed and enhances invasion and
angiogenesis in oral cancer. Br J Cancer. 95:1396–1403. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Jonsdottir K, Janssen SR, Da Rosa FC,
Gudlaugsson E, Skaland I, Baak JP and Janssen EA: Validation of
expression patterns for nine miRNAs in 204 lymph-node negative
breast cancers. PLoS One. 7:e486922012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Fornier M and Fumoleau P: The paradox of
triple negative breast cancer: novel approaches to treatment.
Breast J. 1:41–51. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Dreyer WJ: The area code hypothesis
revisited: olfactory receptors and other related transmembrane
receptors may function as the last digits in a cell surface code
for assembling embryos. Proc Natl Acad Sci USA. 95:9072–9077. 1998.
View Article : Google Scholar
|
|
30
|
Goto T, Salpekar A and Monk M: Expression
of a testis-specific member of the olfactory receptor gene family
in human primordial germ cells. Mol Hum Reprod. 7:553–558. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Weng J, Wang J, Hu X, Wang F, Ittmann M
and Liu M: PSGR2, a novel G-protein coupled receptor, is
overexpressed in human prostate cancer. Int J Cancer.
118:1471–1480. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
McIntyre A, Summersgill B, Jafer O,
Rodriguez S, Zafarana G, Oosterhuis JW, Gillis AJ, Looijenga L,
Cooper C, Huddart R, Clark J and Shipley J: Defining minimum
genomic regions of imbalance involved in testicular germ cell
tumors of adolescents and adults through genome wide microarray
analysis of cDNA clones. Oncogene. 23:9142–9147. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Raish M, Khurshid M, Ansari MA, Chaturvedi
PK, Bae SM, Kim JH, Park EK, Park DC and Ahn WS: Analysis of
molecular cytogenetic alterations in uterine leiomyosarcoma by
array-based comparative genomic hybridization. J Cancer Res Clin
Oncol. 138:1173–1186. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Muranen TA, Greco D, Fagerholm R, et al:
Breast tumors from CHEK2 110delC-mutation carriers: genomic
landscape and clinical implications. Breast Cancer Res. 13:R902011.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wescott MP, Rovira M, Reichert M, von
Burstin J, Means A, Leach SD and Rustgi AK: Pancreatic ductal
morphogenesis and the Pdx1 homeodomain transcription factor. Mol
Biol Cell. 20:4838–4844. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Sakai H, Eishi Y, Li XL, Akiyama Y, Miyake
S, Takizawa T, Konishi N, Tatematsu M, Koike M and Yuasa Y: PDX1
homeobox protein expression in pseudopyloric glands and gastric
carcinomas. Gut. 53:323–330. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Ma J, Chen M, Wang J, Xia HH, Zhu S, Liang
Y, Gu Q, Qiao L, Dai Y, Zou B, Li Z, Zhang Y, Lan H and Wong BC:
Pancreatic duodenal homeobox-1 (PDX1) functions as a tumor
suppressor in gastric cancer. Carcinogenesis. 29:1327–1333. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Galmiche L, Sarnacki S, Verkarre V, Boizet
B, Duvillie B, Fabre M and Jaubert F: Transcription factors
involved in pancreas development are expressed in paediatric solid
pseudopapillary tumours. Histopathology. 53:318–324. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Park JY, Hong SM, Klimstra DS, Goggins MG,
Maitra A and Hruban RH: Pdx1 expression in pancreatic precursor
lesions and neoplasms. Appl Immunohistochem Mol Morphol.
19:444–449. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Nakata T, Kitamura Y, Shimizu K, Tanaka S,
Fujimori M, Yokoyama S, Ito K and Emi M: Fusion of a novel gene,
ELKS, to RET due to translocation t(10;12)(q11;p13) in a papillary
thyroid carcinoma. Genes Chromosomes Cancer. 25:97–103. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Bakker AB, Phillips JH, Figdor CG and
Lanier LL: Killer cell inhibitory receptors for MHC class I
molecules regulate lysis of melanoma cells mediated by NK cells,
gamma delta T cells, and antigen-specific CTL. J Immunol.
160:5239–5245. 1998.PubMed/NCBI
|
|
42
|
Maat W, van der Slik AR, Verhoeven DH,
Alizadeh BZ, Ly LV, Verduijn W, Luyten GP, Mulder A, van Hall T,
Koning F, Jager MJ and van Bergen J: Evidence for natural killer
cell-mediated protection from metastasis formation in uveal
melanoma patients. Invest Ophthalmol Vis Sci. 50:2888–2895. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Okada K, Hirota E, Mizutani Y, Fujioka T,
Shuin T, Miki T, Nakamura Y and Katagiri T: Oncogenic role of NALP7
in testicular seminomas. Cancer Sci. 95:949–954. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Ohno S, Kinoshita T, Ohno Y, Minamoto T,
Suzuki N, Inoue M and Suda T: Expression of NLRP7 (PYPAF3, NALP7)
protein in endometrial cancer tissues. Anticancer Res.
28:2493–2498. 2008.PubMed/NCBI
|
|
45
|
Coma M, Vicente R, Busquets S, Carbó N,
Tamkun MM, López-Soriano FJ, Argilés JM and Felipe A: Impaired
voltage-gated K+ channel expression in brain during
experimental cancer cachexia. FEBS Lett. 536:45–50. 2003.
|
|
46
|
Usami S, Motoyama S, Koyota S, Wang J,
Hayashi-Shibuya K, Maruyama K, Takahashi N, Saito H, Minamiya Y,
Takasawa S, Ogawa J and Sugiyama T: Regenerating gene I regulates
interleukin-6 production in squamous esophageal cancer cells.
Biochem Biophys Res Commun. 29:4–8. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Hayashi K, Motoyama S, Koyota S, Koizumi
Y, Wang J, Takasawa S, Itaya-Hironaka A, Sakuramoto-Tsuchida S,
Maruyama K, Saito H, Minamiya Y, Ogawa J and Sugiyama T: REG I
enhances chemo- and radiosensitivity in squamous cell esophageal
cancer cells. Cancer Sci. 99:2491–2495. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wiśniewski A, Jankowska R,
Passowicz-Muszyńska E, Wiśniewska E, Majorczyk E, Nowak I, Frydecka
I and Kuśnierczyk P: KIR2DL2/S2 and HLA-C C1C1 genotype is
associated with better response to treatment and prolonged survival
of patients with non-small cell lung cancer in a Polish Caucasian
population. Hum Immunol. 73:927–931. 2012.PubMed/NCBI
|
|
49
|
Almalte Z, Samarani S, Iannello A,
Debbeche O, Duval M, Infante-Rivard C, Amre DK, Sinnett D and Ahmad
A: Novel associations between activating killer-cell
immunoglobulin-like receptor genes and childhood leukemia. Blood.
118:1323–1328. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Cumming AP, Hopmans SN, Vukmirović-Popović
S and Duivenvoorden WC: PSA affects prostate cancer cell invasion
in vitro and induces an osteoblastic phenotype in bone in vivo.
Prostate Cancer Prostatic Dis. 14:286–294. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Mattsson JM, Närvänen A, Stenman UH and
Koistinen H: Peptides binding to prostate-specific antigen enhances
its antiangiogenic activity. Prostate. 72:1588–1594. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Saxena P, Trerotola M, Wang T, Li J,
Sayeed A, Vanoudenhove J, Adams DS, Fitzgerald TJ, Altieri DC and
Languino LR: PSA regulates androgen receptor expression in prostate
cancer cells. Prostate. 72:769–776. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
O'Mara TA, Nagle CM, Batra J, Kedda MA,
Clements JA and Spurdle AB: Kallikrein-related peptidase 3
(KLK3/PSA) single nucleotide polymorphisms and ovarían cancer
survival. Twin Res Hum Genet. 14:323–327. 2011.PubMed/NCBI
|
|
54
|
Black MH and Diamandis EP: The diagnostic
and prognostic utility of prostate-specific antigen for diseases of
the breast. Breast Cancer Res Treat. 59:1–14. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Szczepanski MJ, DeLeo AB, Łuczak M,
Molinska-Glura M, Misiak J, Szarzynska B, Dworacki G, Zagor M,
Rozwadowska N, Kurpisz M, Krzeski A, Kruk-Zagajewska A, Kopec T,
Banaszewski J and Whiteside TL: PRAME expression in head and neck
cancer correlates with markers of poor prognosis and might help in
selecting candidates for retinoid chemoprevention in pre-malignant
lesions. Oral Oncol. 49:144–151. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Español AJ and Sales MN: Different
muscarinic receptors are involved in the proliferation of murine
mammary adenocarcinoma cell lines. Int J Mol Med. 13:311–317.
2004.PubMed/NCBI
|
|
57
|
Fiszman GL, Middonno MC, de la Torre E,
Farina M, Español AJ and Sales ME: Activation of muscarinic
cholinergic receptors induces MCF-7 cells proliferation and
angiogenesis by stimulating nitric oxide synthase activity. Cancer
Biol Ther. 6:1106–1113. 2007. View Article : Google Scholar
|
|
58
|
Español AJ, de la Torre E, Fiszman GL and
Sales ME: Role of non-neuronal cholinergic system in breast cancer
progression. Life Sci. 80:2281–2285. 2007.PubMed/NCBI
|
|
59
|
Ferretti M, Fabbiano C, Di Bari M, Ponti
D, Calogero A and Tata AM: M2 muscarinic receptors inhibit cell
proliferation in human glioblastoma cell lines. Life Sci.
91:1134–1137. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Cabadak H, Aydin B and Kan B: Regulation
of M2, M3, and M4 muscarinic receptor expression in K562 chronic
myelogenous leukemic cells by carbachol. J Recept Signal Transduct
Res. 31:26–32. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Keenan J, Joyce H, Aherne S, O'Dea S,
Doolan P, Lynch V and Clynes M: Olfactomedin III expression
contributes to anoikis-resistance in clonal variants of a human
lung squamous carcinoma cell line. Exp Cell Res. 318:593–602. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Miljkovic-Licina M, Hammel P,
Garrido-Urbani S, Lee BP, Meguenani M, Chaabane C, Bochaton-Piallat
ML and Imhof BA: Targeting olfactomedin-like 3 inhibits tumor
growth by impairing angiogenesis and pericyte coverage. Mol Cancer
Ther. 11:2588–2599. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Rouget-Quermalet V, Giustiniani J,
Marie-Cardine A, Beaud G, Besnard F, Loyaux D, Ferrara P, Leroy K,
Shimizu N, Gaulard P, Bensussan A and Schmitt C: Protocadherin 15
(PCDH15): a new secreted isoform and a potential marker for NK/T
cell lymphomas. Oncogene. 25:2807–2811. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Adachi K, Toyota M, Sasaki Y, Yamashita T,
Ishida S, Ohe-Toyota M, Maruyama R, Hinoda Y, Saito T, Imai K, Kudo
R and Tokino T: Identification of SCN3B as a novel p53-inducible
proapoptotic gene. Oncogene. 23:7791–7798. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Rodrigues RG, Panizo-Santos A, Cashel JA,
Krutzsch HC, Merino MJ and Roberts DD: Semenogelins are ectopically
expressed in small cell lung carcinoma. Clin Cancer Res. 7:854–860.
2001.PubMed/NCBI
|
|
66
|
Zhang Y, Wang Z, Zhang J, Farmer B and Lim
SH: Semenogelin I expression in myeloma cells can be upregulated
pharmacologically. Leuk Res. 32:1889–1894. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hienonen T, Sammalkorpi H, Enholm S,
Alhopuro P, Barber TD, Lehtonen R, Nupponen NN, Lehtonen H,
Salovaara R, Mecklin JP, Järvinen H, Koistinen R, Arango D,
Launonen V, Vogelstein B, Karhu A and Aaltonen LA: Mutations in two
short noncoding mononucleotide repeats in most
microsatellite-unstable colorectal cancers. Cancer Res.
65:4607–4613. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Mitra A, Richardson RT and O'Rand MG:
Analysis of recombinant human semenogelin as an inhibitor of human
sperm motility. Biol Reprod. 82:489–496. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Canacci AM, Izumi K, Zheng Y, Gordetsky J,
Yao JL and Miyamoto H: Expression of semenogelins I and II and its
prognostic significance in human prostate cancer. Prostate.
71:1108–1114. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Santagata S, Maire CL, Idbaih A, Geffers
L, Correll M, Holton K, Quackenbush J and Ligon KL: CRX is a
diagnostic marker of retinal and pineal lineage tumors. PLoS One.
4:e79322009. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Glubrecht DD, Kim JH, Russell L, Bamforth
JS and Godbout R: Differential CRX and OTX2 expression in human
retina and retinoblastoma. J Neurochem. 111:250–263. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Terry J, Calicchio ML, Rodriguez-Galindo C
and Perez-Atayde AR: Immunohistochemical expression of CRX in
extracranial malignant small round cell tumors. Am J Surg Pathol.
36:1165–1169. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Yousef GM, Scorilas A, Jung K, Ashworth LK
and Diamandis EP: Molecular cloning of the human kallikrein 15 gene
(KLK15). J Biol Chem. 276:53–61. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Yousef GM, Scorilas A, Katsaros D,
Fracchioli S, Iskander L, Borgono C, Rigault de la Longrais IA,
Puopolo M, Massobrio M and Diamandis EP: Prognostic value of the
human kallikrein gene 15 expression in ovarian cancer. J Clin
Oncol. 21:3119–3126. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Rabien A, Fritzsche FR, Jung M, Tölle A,
Diamandis EP, Miller K, Jung K, Kristiansen G and Stephan C: KLK15
is a prognostic marker for progression-free survival in patients
with radical prostatectomy. Int J Cancer. 127:2386–2394. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Yousef GM, Scorilas A, Magklara A, Memari
N, Ponzone R, Sismondi P, Biglia N, Abd Ellatif M and Diamandis EP:
The androgen-regulated gene human kallikrein 15 (KLK15) is an
indpendent and favourable prognostic marker for breast cancer. Br J
Cancer. 87:1294–1300. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Kudo Y, Ogawa I, Kitajima S, Kitagawa M,
Kawai H, Gaffney PM, Miyauchi M and Takata T: Periotin promotes
invasion and anchorage-independent growth in the metastatic process
of head and neck cancer. Cancer Res. 66:6928–6935. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Malanchi I, Santamaria-Martínez A, Susanto
E, Peng H, Lehr HA, Delaloye JF and Huelsken J: Interactions
between cancer stem cells and their niche govern metastatic
colonization. Nature. 481:85–89. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Kanno A, Satoh K, Masamune A, Hirota M,
Kimura K, Umino J, Hamada S, Satoh A, Egawa S, Motoi F, Unno M and
Shimosegawa T: Periostin, secreted from stromal cells, has biphasic
effect on cell migration and correlates with the epitelial to
mesenchymal transition of human pancreatic cancer cells. Int J
Cancer. 22:2707–2718. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Kyutoku M, Taniyama Y, Katsuragi N,
Shimizu H, Kunugiza Y, Iekushi K, Koibuchi N, Sanada F, Oshita Y
and Morishita R: Role of periostin in cancer progression and
metastasis: Inhibition of breast progression and metastasis by
anti-periostin antibody in a murine model. Int J Mol Med.
28:181–186. 2011.PubMed/NCBI
|
|
81
|
Carter H, Samayoa J, Hruban RH and Karchin
R: Prioritization of driver mutations in pancreatic cancer using
cancer-specific high-throughput annotation of somatic mutations
(CHASM). Cancer Biol Ther. 10:582–587. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Li Q and Wang L, Tan W, Peng Z, Luo Y,
Zhang Y, Zhang G, Na D, Jin P, Shi T, Ma D and Wang L:
Identification of C1qTNF-related protein 4 as a potential cytokine
that stimulates the STAT3 and NF-κB pathways and promotes cell
survival in human cancer cells. Cancer Lett. 28:203–214.
2011.PubMed/NCBI
|
|
83
|
Belirgen M, Berrak SG, Ozdag H, Bozkurt
SU, Eksioglu-Demiralp E and Ozek MM: Biologic tumor behavior in
pilocytic astrocytomas. Childs Nerv Syst. 28:375–389. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Huang YW, Jansen RA, Fabbri E, Potter D,
Liyanarachchi S, Chan MW, Liu JC, Crijns AP, Brown R, Nephew KP,
van der Zee AG, Cohn DE, Yan PS, Huang TH and Lin HJ:
Identification of candidate epigenetic biomarkers for ovarian
cancer detection. Oncol Rep. 22:853–861. 2009.PubMed/NCBI
|
|
85
|
Heller G, Babinsky VN, Ziegler B,
Weinzierl M, Noll C, Altenberger C, Müllauer L, Dekan G, Grin Y,
Lang G, End-Pfützenreuter A, Steiner I, Zehetmayer S, Döme B, Arns
BM, Fong KM, Wright CM, Yang IA, Klepetko W, Posch M, Zielinski CC
and Zöchbauer-Müller S: Genome-wide CpG island methylation analyses
in non-small cell lung cancer patients. Carcinogenesis. 34:513–521.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Wirth T, Soeth E, Czubayko F and Juhl H:
Inhibition of endogenous carcinoembryonic antigen (CEA) increases
the apoptotic rate of colon cancer cells and inhibits metastatic
tumor growth. Clin Exp Metastasis. 19:155–160. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Arrieta O, Saavedra-Perez D, Kuri R,
Aviles-Salas A, Martinez L, Mendoza-Posada D, Castillo P, Astorga
A, Guzman E and de la Garza J: Brain metastasis development and
poor survival associated with carcinoembryonic antigen (CEA) level
in advanced non-small cell lung cancer: a prospective analysis. BMC
Cancer. 9:119–128. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Liebhardt S, Ditsch N, Nieuwland R, Rank
A, Jeschke U, Von Koch F, Friese K and Toth B: CEA-, Her2/neu-,
BCRP- and Hsp27-positive microparticles in breast cancer patients.
Anticancer Res. 30:1707–1712. 2010.PubMed/NCBI
|