|
1
|
Kohn AD and Moon RT: Wnt and calcium
signaling: β-catenin-independent pathways. Cell Calcium.
38:439–446. 2005.
|
|
2
|
Deroo BJ and Korach KS: Estrogen receptors
and human disease. J Clin Invest. 116:561–570. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Riggins RB, Schrecengost RS, Guerrero MS
and Bouton AH: Pathways to tamoxifen resistance. Cancer Lett.
256:1–24. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Mueller SO and Korach KS: Estrogen
receptors and endocrine diseases: lessons from estrogen receptor
knockout mice. Curr Opin Pharmacol. 1:613–619. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Henderson BE and Feigelson HS: Hormonal
carcinogenesis. Carcinogenesis. 21:427–433. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Kuiper GG, Enmark E, Pelto-Huikko M,
Nilsson S and Gustafsson JA: Cloning of a novel receptor expressed
in rat prostate and ovary. Proc Natl Acad Sci USA. 93:5925–5930.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Mosselman S, Polman J and Dijkema R: ERβ:
identification and characterization of a novel human estrogen
receptor. FEBS Lett. 392:49–53. 1996.
|
|
8
|
Dixon D, Couse JF and Korach KS:
Disruption of the estrogen receptor gene in mice. Toxicol Pathol.
25:518–520. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Elliston JF, Fawell SE, Klein-Hitpass L,
et al: Mechanism of estrogen receptor-dependent transcription in a
cell-free system. Mol Cell Biol. 10:6607–6612. 1990.PubMed/NCBI
|
|
10
|
Frasor J, Danes JM, Komm B, Chang KC,
Lyttle CR and Katzenellenbogen BS: Profiling of estrogen up- and
down-regulated gene expression in human breast cancer cells:
insights into gene networks and pathways underlying estrogenic
control of proliferation and cell phenotype. Endocrinology.
144:4562–4574. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Webb P, Lopez GN, Uht RM and Kushner PJ:
Tamoxifen activation of the estrogen receptor/AP-1 pathway:
potential origin for the cell-specific estrogen-like effects of
antiestrogens. Mol Endocrinol. 9:443–456. 1995.PubMed/NCBI
|
|
12
|
Kushner PJ, Agard DA, Greene GL, et al:
Estrogen receptor pathways to AP-1. J Steroid Biochem Mol Biol.
74:311–317. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Smith CL and O’Malley BW: Coregulator
function: a key to understanding tissue specificity of selective
receptor modulators. Endocr Rev. 25:45–71. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Osborne CK, Bardou V, Hopp TA, et al: Role
of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in
tamoxifen resistance in breast cancer. J Natl Cancer Inst.
95:353–361. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Saville B, Wormke M, Wang F, et al:
Ligand-, cell-, and estrogen receptor subtype (α/β)-dependent
activation at GC-rich (Sp1) promoter elements. J Biol Chem.
275:5379–5387. 2000.
|
|
16
|
Kelloff GJ, Lippman SM, Dannenberg AJ, et
al: Progress in chemoprevention drug development: the promise of
molecular biomarkers for prevention of intraepithelial neoplasia
and cancer - a plan to move forward. Clin Cancer Res. 12:3661–3697.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Schiff R, Massarweh SA, Shou J, Bharwani
L, Mohsin SK and Osborne CK: Cross-talk between estrogen receptor
and growth factor pathways as a molecular target for overcoming
endocrine resistance. Clin Cancer Res. 10:331S–336S. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Le Goff P, Montano MM, Schodin DJ and
Katzenellenbogen BS: Phosphorylation of the human estrogen
receptor. Identification of hormone-regulated sites and examination
of their influence on transcriptional activity. J Biol Chem.
269:4458–4466. 1994.PubMed/NCBI
|
|
19
|
Vyhlidal C, Samudio I, Kladde MP and Safe
S: Transcriptional activation of transforming growth factor α by
estradiol: requirement for both a GC-rich site and an estrogen
response element half-site. J Mol Endocrinol. 24:329–338. 2000.
|
|
20
|
Lee AV, Cui X and Oesterreich S:
Cross-talk among estrogen receptor, epidermal growth factor, and
insulin-like growth factor signaling in breast cancer. Clin Cancer
Res. 7(Suppl 12): S4429–S4435. 2001.PubMed/NCBI
|
|
21
|
Yarden RI, Wilson MA and Chrysogelos SA:
Estrogen suppression of EGFR expression in breast cancer cells: a
possible mechanism to modulate growth. J Cell Biochem. (Suppl 36):
232–246. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Bayliss J, Hilger A, Vishnu P, Diehl K and
El-Ashry D: Reversal of the estrogen receptor negative phenotype in
breast cancer and restoration of antiestrogen response. Clin Cancer
Res. 13:7029–7036. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Cui X, Zhang P, Deng W, et al:
Insulin-like growth factor-I inhibits progesterone receptor
expression in breast cancer cells via the phosphatidylinositol
3–kinase/Akt/mammalian target of rapamycin pathway: progesterone
receptor as a potential indicator of growth factor activity in
breast cancer. Mol Endocrinol. 17:575–588. 2003.PubMed/NCBI
|
|
24
|
Brinkman JA and El-Ashry D: ER
re-expression and re-sensitization to endocrine therapies in
ER-negative breast cancers. J Mammary Gland Biol Neoplasia.
14:67–78. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Levin ER and Pietras RJ: Estrogen
receptors outside the nucleus in breast cancer. Breast Cancer Res
Treat. 108:351–361. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Pedram A, Razandi M, Lubahn D, Liu J,
Vannan M and Levin ER: Estrogen inhibits cardiac hypertrophy: role
of estrogen receptor-β to inhibit calcineurin. Endocrinology.
149:3361–3369. 2008.PubMed/NCBI
|
|
27
|
Wu RC, Qin J, Yi P, et al: Selective
phosphorylations of the SRC-3/AIB1 coactivator integrate genomic
reponses to multiple cellular signaling pathways. Mol Cell.
15:937–949. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Pontiggia O, Rodriguez V, Fabris V, et al:
Establishment of an in vitro estrogen-dependent mouse mammary tumor
model: a new tool to understand estrogen responsiveness and
development of tamoxifen resistance in the context of
stromal-epithelial interactions. Breast Cancer Res Treat.
116:247–255. 2009. View Article : Google Scholar
|
|
29
|
Machuca TN, Hsin MK, Ott HC, et al:
Injury-specific ex vivo treatment of the donor lung: pulmonary
thrombolysis followed by successful lung transplantation. Am J
Respir Crit Care Med. 188:878–880. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Goetz MP, Rae JM, Suman VJ, et al:
Pharmacogenetics of tamoxifen biotransformation is associated with
clinical outcomes of efficacy and hot flashes. J Clin Oncol.
23:9312–9318. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Stearns V and Rae JM: Pharmacogenetics and
breast cancer endocrine therapy: CYP2D6 as a predictive factor for
tamoxifen metabolism and drug response? Expert Rev Mol Med.
10:e342008. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Jaiswal BS, Janakiraman V, Kljavin NM, et
al: Somatic mutations in p85α promote tumorigenesis through class
IA PI3K activation. Cancer Cell. 16:463–474. 2009.
|
|
33
|
Madeira M, Mattar A, Logullo AF, Soares FA
and Gebrim LH: Estrogen receptor alpha/beta ratio and estrogen
receptor beta as predictors of endocrine therapy responsiveness-a
randomized neoadjuvant trial comparison between anastrozole and
tamoxifen for the treatment of postmenopausal breast cancer. BMC
Cancer. 13:4252013. View Article : Google Scholar
|
|
34
|
McGuire WL: Current status of estrogen
receptors in human breast cancer. Cancer. 36:638–644. 1975.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Esslimani-Sahla M, Simony-Lafontaine J,
Kramar A, et al: Estrogen receptor β (ERβ) level but not its ERβcx
variant helps to predict tamoxifen resistance in breast cancer.
Clin Cancer Res. 10:5769–5776. 2004.
|
|
36
|
Hopp TA, Weiss HL, Parra IS, Cui Y,
Osborne CK and Fuqua SA: Low levels of estrogen receptor β protein
predict resistance to tamoxifen therapy in breast cancer. Clin
Cancer Res. 10:7490–7499. 2004.
|
|
37
|
Kuiper GG, Lemmen JG, Carlsson B, et al:
Interaction of estrogenic chemicals and phytoestrogens with
estrogen receptor β. Endocrinology. 139:4252–4263. 1998.
|
|
38
|
Yang X, Phillips DL, Ferguson AT, Nelson
WG, Herman JG and Davidson NE: Synergistic activation of functional
estrogen receptor (ER)-α by DNA methyltransferase and histone
deacetylase inhibition in human ER-α-negative breast cancer cells.
Cancer Res. 61:7025–7029. 2001.
|
|
39
|
Parl FF: Multiple mechanisms of estrogen
receptor gene repression contribute to ER-negative breast cancer.
Pharmacogenomics J. 3:251–253. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ottaviano YL, Issa JP, Parl FF, Smith HS,
Baylin SB and Davidson NE: Methylation of the estrogen receptor
gene CpG island marks loss of estrogen receptor expression in human
breast cancer cells. Cancer Res. 54:2552–2555. 1994.PubMed/NCBI
|
|
41
|
Robertson KD, Ait-Si-Ali S, Yokochi T,
Wade PA, Jones PL and Wolffe AP: DNMT1 forms a complex with Rb,
E2F1 and HDAC1 and represses transcription from E2F-responsive
promoters. Nat Genet. 25:338–342. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Fan J, Yin WJ, Lu JS, et al: ERα negative
breast cancer cells restore response to endocrine therapy by
combination treatment with both HDAC inhibitor and DNMT inhibitor.
J Cancer Res Clin Oncol. 134:883–890. 2008.
|
|
43
|
Zhou Q, Shaw PG and Davidson NE:
Inhibition of histone deacetylase suppresses EGF signaling pathways
by destabilizing EGFR mRNA in ER-negative human breast cancer
cells. Breast Cancer Res Treat. 117:443–451. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Sabnis GJ, Goloubeva O, Chumsri S, Nguyen
N, Sukumar S and Brodie AM: Functional activation of the estrogen
receptor-α and aromatase by the HDAC inhibitor entinostat
sensitizes ER-negative tumors to letrozole. Cancer Res.
71:1893–1903. 2011.
|
|
45
|
Mahfoudi A, Roulet E, Dauvois S, Parker MG
and Wahli W: Specific mutations in the estrogen receptor change the
properties of antiestrogens to full agonists. Proc Natl Acad Sci
USA. 92:4206–4210. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wolf DM and Jordan VC: The estrogen
receptor from a tamoxifen stimulated MCF-7 tumor variant contains a
point mutation in the ligand binding domain. Breast Cancer Res
Treat. 31:129–138. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
MacGregor Schafer J, Liu H, Bentrem DJ,
Zapf JW and Jordan VC: Allosteric silencing of activating function
1 in the 4-hydroxytamoxifen estrogen receptor complex is induced by
substituting glycine for aspartate at amino acid 351. Cancer Res.
60:5097–5105. 2000.
|
|
48
|
Thomas RS, Sarwar N, Phoenix F, Coombes RC
and Ali S: Phosphorylation at serines 104 and 106 by Erk1/2 MAPK is
important for estrogen receptor-α activity. J Mol Endocrinol.
40:173–184. 2008.PubMed/NCBI
|
|
49
|
Chen D, Washbrook E, Sarwar N, et al:
Phosphorylation of human estrogen receptor α at serine 118 by two
distinct signal transduction pathways revealed by
phosphorylation-specific antisera. Oncogene. 21:4921–4931.
2002.
|
|
50
|
Williams CC, Basu A, El-Gharbawy A,
Carrier LM, Smith CL and Rowan BG: Identification of four novel
phosphorylation sites in estrogen receptor α: impact on
receptor-dependent gene expression and phosphorylation by protein
kinase CK2. BMC Biochem. 10:362009.PubMed/NCBI
|
|
51
|
Rogatsky I, Trowbridge JM and Garabedian
MJ: Potentiation of human estrogen receptor α transcriptional
activation through phosphorylation of serines 104 and 106 by the
cyclin A-CDK2 complex. J Biol Chem. 274:22296–22302. 1999.
|
|
52
|
Michalides R, van Tinteren H, Balkenende
A, et al: Cyclin A is a prognostic indicator in early stage breast
cancer with and without tamoxifen treatment. Br J Cancer.
86:402–408. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Vendrell JA, Bieche I, Desmetz C, et al:
Molecular changes associated with the agonist activity of
hydroxy-tamoxifen and the hyper-response to estradiol in
hydroxy-tamoxifen-resistant breast cancer cell lines. Endocr Relat
Cancer. 12:75–92. 2005. View Article : Google Scholar
|
|
54
|
Likhite VS, Stossi F, Kim K,
Katzenellenbogen BS and Katzenellenbogen JA: Kinase-specific
phosphorylation of the estrogen receptor changes receptor
interactions with ligand, deoxyribonucleic acid, and coregulators
associated with alterations in estrogen and tamoxifen activity. Mol
Endocrinol. 20:3120–3132. 2006. View Article : Google Scholar
|
|
55
|
Kato S, Endoh H, Masuhiro Y, et al:
Activation of the estrogen receptor through phosphorylation by
mitogen-activated protein kinase. Science. 270:1491–1494. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Barone I, Brusco L and Fuqua SA: Estrogen
receptor mutations and changes in downstream gene expression and
signaling. Clin Cancer Res. 16:2702–2708. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
de Leeuw R, Neefjes J and Michalides R: A
role for estrogen receptor phosphorylation in the resistance to
tamoxifen. Int J Breast Cancer. 2011:2324352011.PubMed/NCBI
|
|
58
|
Osborne CK and Schiff R: Estrogen-receptor
biology: continuing progress and therapeutic implications. J Clin
Oncol. 23:1616–1622. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Girault I, Bièche I and Lidereau R: Role
of estrogen receptor α transcriptional coregulators in tamoxifen
resistance in breast cancer. Maturitas. 54:342–351. 2006.
|
|
60
|
Webb P, Nguyen P, Shinsako J, et al:
Estrogen receptor activation function 1 works by binding p160
coactivator proteins. Mol Endocrinol. 12:1605–1618. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Kressler D, Hock MB and Kralli A:
Coactivators PGC-1β and SRC-1 interact functionally to promote the
agonist activity of the selective estrogen receptor modulator
tamoxifen. J Biol Chem. 282:26897–26907. 2007.
|
|
62
|
Fuqua SA, Schiff R, Parra I, et al:
Estrogen receptor β protein in human breast cancer: correlation
with clinical tumor parameters. Cancer Res. 63:2434–2439. 2003.
|
|
63
|
Lavinsky RM, Jepsen K, Heinzel T, et al:
Diverse signaling pathways modulate nuclear receptor recruitment of
N-CoR and SMRT complexes. Proc Natl Acad Sci USA. 95:2920–2925.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kurokawa H, Lenferink AE, Simpson JF, et
al: Inhibition of HER2/neu (erbB-2) and
mitogen-activated protein kinases enhances tamoxifen action against
HER2-overexpressing, tamoxifen-resistant breast cancer cells.
Cancer Res. 60:5887–5894. 2000.
|
|
65
|
Massarweh S, Osborne CK, Creighton CJ, et
al: Tamoxifen resistance in breast tumors is driven by growth
factor receptor signaling with repression of classic estrogen
receptor genomic function. Cancer Res. 68:826–833. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Fagan DH, Uselman RR, Sachdev D and Yee D:
Acquired resistance to tamoxifen is associated with loss of the
type I insulin-like growth factor receptor: implications for breast
cancer treatment. Cancer Res. 72:3372–3380. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ciampolillo A, De Tullio C and Giorgino F:
The IGF-I/IGF-I receptor pathway: implications in the
pathophysiology of thyroid cancer. Curr Med Chem. 12:2881–2891.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Lee AV, Weng CN, Jackson JG and Yee D:
Activation of estrogen receptor-mediated gene transcription by
IGF-I in human breast cancer cells. J Endocrinol. 152:39–47. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Fagan DH and Yee D: Crosstalk between
IGF1R and estrogen receptor signaling in breast cancer. J Mammary
Gland Biol Neoplasia. 13:423–429. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Lee AV, Darbre P and King RJ: Processing
of insulin-like growth factor-II (IGF-II) by human breast cancer
cells. Mol Cell Endocrinol. 99:211–220. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Umayahara Y, Kawamori R, Watada H, et al:
Estrogen regulation of the insulin-like growth factor I gene
transcription involves an AP-1 enhancer. J Biol Chem.
269:16433–16442. 1994.PubMed/NCBI
|
|
72
|
Salerno M, Sisci D, Mauro L, Guvakova MA,
Ando S and Surmacz E: Insulin receptor substrate 1 is a target for
the pure antiestrogen ICI 182,780 in breast cancer cells. Int J
Cancer. 81:299–304. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Becker MA, Ibrahim YH, Cui X, Lee AV and
Yee D: The IGF pathway regulates ERα through a S6K1-dependent
mechanism in breast cancer cells. Mol Endocrinol. 25:516–528.
2011.
|
|
74
|
Campbell RA, Bhat-Nakshatri P, Patel NM,
Constantinidou D, Ali S and Nakshatri H: Phosphatidylinositol
3-kinase/AKT- mediated activation of estrogen receptor α: a new
model for anti-estrogen resistance. J Biol Chem. 276:9817–9824.
2001.
|
|
75
|
Ahn BY, Elwi AN, Lee B, et al: Genetic
screen identifies insulin-like growth factor binding protein 5 as a
modulator of tamoxifen resistance in breast cancer. Cancer Res.
70:3013–3019. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Beattie J, Allan GJ, Lochrie JD and Flint
DJ: Insulin-like growth factor-binding protein-5 (IGFBP-5): a
critical member of the IGF axis. Biochem J. 395:1–19. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Akkiprik M, Feng Y, Wang H, et al:
Multifunctional roles of insulin-like growth factor binding protein
5 in breast cancer. Breast Cancer Res. 10:2122008. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Bunone G, Briand PA, Miksicek RJ and
Picard D: Activation of the unliganded estrogen receptor by EGF
involves the MAP kinase pathway and direct phosphorylation. EMBO J.
15:2174–2183. 1996.PubMed/NCBI
|
|
79
|
Parisot JP, Hu XF, DeLuise M and Zalcberg
JR: Altered expression of the IGF-1 receptor in a
tamoxifen-resistant human breast cancer cell line. Br J Cancer.
79:693–700. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Knowlden JM, Hutcheson IR, Barrow D, Gee
JM and Nicholson RI: Insulin-like growth factor-I receptor
signaling in tamoxifen-resistant breast cancer: a supporting role
to the epidermal growth factor receptor. Endocrinology.
146:4609–4618. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Cohen BD, Baker DA, Soderstrom C, et al:
Combination therapy enhances the inhibition of tumor growth with
the fully human anti-type 1 insulin-like growth factor receptor
monoclonal antibody CP-751,871. Clin Cancer Res. 11:2063–2073.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Lu Y, Zi X, Zhao Y, Mascarenhas D and
Pollak M: Insulin-like growth factor-I receptor signaling and
resistance to trastuzumab (Herceptin). J Natl Cancer Inst.
93:1852–1857. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Bouton AH, Riggins RB and Bruce-Staskal
PJ: Functions of the adapter protein Cas: signal convergence and
the determination of cellular responses. Oncogene. 20:6448–6458.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Defilippi P, Di Stefano P and Cabodi S:
p130Cas: a versatile scaffold in signaling networks. Trends Cell
Biol. 16:257–263. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Lu Y, Mani S, Kandimalla ER, et al: The
Cockayne syndrome group B DNA repair protein as an anti-cancer
target. Int J Oncol. 19:1089–1097. 2001.PubMed/NCBI
|
|
86
|
Planas-Silva MD and Hamilton KN: Targeting
c-Src kinase enhances tamoxifen’s inhibitory effect on cell growth
by modulating expression of cell cycle and survival proteins.
Cancer Chemother Pharmacol. 60:535–543. 2007.PubMed/NCBI
|
|
87
|
Schuh NR, Guerrero MS, Schrecengost RS and
Bouton AH: BCAR3 regulates Src/p130 Cas association, Src kinase
activity, and breast cancer adhesion signaling. J Biol Chem.
285:2309–2317. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Gotoh T, Cai D, Tian X, Feig LA and Lerner
A: p130Cas regulates the activity of AND-34, a novel
Ral, Rap1, and R-Ras guanine nucleotide exchange factor. J Biol
Chem. 275:30118–30123. 2000.
|
|
89
|
Cai D, Iyer A, Felekkis KN, et al:
AND-34/BCAR3, a GDP exchange factor whose overexpression confers
antiestrogen resistance, activates Rac, PAK1, and the cyclin D1
promoter. Cancer Res. 63:6802–6808. 2003.PubMed/NCBI
|
|
90
|
van Agthoven T, van Agthoven TL, Dekker A,
van der Spek PJ, Vreede L and Dorssers LC: Identification of BCAR3
by a random search for genes involved in antiestrogen resistance of
human breast cancer cells. EMBO J. 17:2799–2808. 1998.PubMed/NCBI
|
|
91
|
Felekkis KN, Narsimhan RP, Near R, et al:
AND-34 activates phosphatidylinositol 3-kinase and induces
anti-estrogen resistance in a SH2 and GDP exchange factor-like
domain-dependent manner. Mol Cancer Res. 3:32–41. 2005.PubMed/NCBI
|
|
92
|
Liu P, Cheng H, Roberts TM and Zhao JJ:
Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev
Drug Discov. 8:627–644. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Miller TW, Balko JM and Arteaga CL:
Phosphatidylinositol 3-kinase and antiestrogen resistance in breast
cancer. J Clin Oncol. 29:4452–4461. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Fox EM, Arteaga CL and Miller TW:
Abrogating endocrine resistance by targeting ERα and PI3K in breast
cancer. Front Oncol. 2:1452012.
|
|
95
|
Turner N, Pearson A, Sharpe R, et al:
FGFR1 amplification drives endocrine therapy resistance and
is a therapeutic target in breast cancer. Cancer Res. 70:2085–2094.
2010. View Article : Google Scholar
|
|
96
|
van der Kaay J, Cullen PJ and Downes CP:
Phosphatidylinositol(3,4,5)trisphosphate
(Ptdins(3,4,5)P3) mass measurement using a radioligand
displacement assay. Methods Mol Biol. 105:109–125. 1998.
|
|
97
|
Maehama T and Dixon JE: The tumor
suppressor, PTEN/MMAC1, dephosphorylates the lipid second
messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem.
273:13375–13378. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Massarweh S and Schiff R: Unraveling the
mechanisms of endocrine resistance in breast cancer: new
therapeutic opportunities. Clin Cancer Res. 13:1950–1954. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Lewis-Wambi JS and Jordan VC: Estrogen
regulation of apoptosis: how can one hormone stimulate and inhibit?
Breast Cancer Res. 11:2062009. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Schiff R, Reddy P, Ahotupa M, et al:
Oxidative stress and AP-1 activity in tamoxifen-resistant breast
tumors in vivo. J Natl Cancer Inst. 92:1926–1934. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Nair BC and Vadlamudi RK: Regulation of
hormonal therapy resistance by cell cycle machinery. Gene Ther Mol
Biol. 12:3952008.PubMed/NCBI
|
|
102
|
Butt AJ, McNeil CM, Musgrove EA and
Sutherland RL: Downstream targets of growth factor and oestrogen
signalling and endocrine resistance: the potential roles of c-Myc,
cyclin D1 and cyclin E. Endocr Relat Cancer. 12(Suppl 10): S47–S59.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Kilker RL, Hartl MW, Rutherford TM and
Planas-Silva MD: Cyclin D1 expression is dependent on estrogen
receptor function in tamoxifen-resistant breast cancer cells. J
Steroid Biochem Mol Biol. 92:63–71. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Zwijsen RM, Wientjens E, Klompmaker R, van
der Sman J, Bernards R and Michalides RJ: CDK-independent
activation of estrogen receptor by cyclin D1. Cell. 88:405–415.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Wilcken NR, Prall OW, Musgrove EA and
Sutherland RL: Inducible overexpression of cyclin D1 in breast
cancer cells reverses the growth-inhibitory effects of
antiestrogens. Clin Cancer Res. 3:849–854. 1997.PubMed/NCBI
|
|
106
|
Osborne CK and Schiff R: Growth factor
receptor cross-talk with estrogen receptor as a mechanism for
tamoxifen resistance in breast cancer. Breast. 12:362–367. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Rudas M, Lehnert M, Huynh A, et al: Cyclin
D1 expression in breast cancer patients receiving adjuvant
tamoxifen-based therapy. Clin Cancer Res. 14:1767–1774. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Stendahl M, Kronblad A, Rydén L, Emdin S,
Bengtsson NO and Landberg G: Cyclin D1 overexpression is a negative
predictive factor for tamoxifen response in postmenopausal breast
cancer patients. Br J Cancer. 90:1942–1948. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Sieuwerts AM, Look MP, Meijer-van Gelder
ME, et al: Which cyclin E prevails as prognostic marker for breast
cancer? Results from a retrospective study involving 635 lymph
node-negative breast cancer patients. Clin Cancer Res.
12:3319–3328. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Bosco EE, Wang Y, Xu H, et al: The
retinoblastoma tumor suppressor modifies the therapeutic response
of breast cancer. J Clin Invest. 117:218–228. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Musgrove EA, Sergio CM, Anderson LR, et
al: Identification of downstream targets of estrogen and c-myc in
breast cancer cells. Adv Exp Med Biol. 617:445–451. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Dhillon NK and Mudryj M: Ectopic
expression of cyclin E in estrogen responsive cells abrogates
antiestrogen mediated growth arrest. Oncogene. 21:4626–4634. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Hui R, Finney GL, Carroll JS, Lee CS,
Musgrove EA and Sutherland RL: Constitutive overexpression of
cyclin D1 but not cyclin E confers acute resistance to
antiestrogens in T-47D breast cancer cells. Cancer Res.
62:6916–6923. 2002.PubMed/NCBI
|
|
114
|
Caldon CE, Sergio CM, Schütte J, et al:
Estrogen regulation of cyclin E2 requires cyclin D1 but not c-Myc.
Mol Cell Biol. 29:4623–4639. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Finn RS, Dering J, Conklin D, et al: PD
0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially
inhibits proliferation of luminal estrogen receptor-positive human
breast cancer cell lines in vitro. Breast Cancer Res. 11:R772009.
View Article : Google Scholar
|
|
116
|
Wang L, Wang J, Blaser BW, et al:
Pharmacologic inhibition of CDK4/6: mechanistic evidence for
selective activity or acquired resistance in acute myeloid
leukemia. Blood. 110:2075–2083. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Planas-Silva MD and Weinberg RA:
Estrogen-dependent cyclin E-cdk2 activation through p21
redistribution. Mol Cell Biol. 17:4059–4069. 1997.PubMed/NCBI
|
|
118
|
Cariou S, Donovan JC, Flanagan WM, Milic
A, Bhattacharya N and Slingerland JM: Down-regulation of
p21WAF1/CIP1 or p27Kip1 abrogates
antiestrogen-mediated cell cycle arrest in human breast cancer
cells. Proc Natl Acad Sci USA. 97:9042–9046. 2000.PubMed/NCBI
|
|
119
|
Bachman KE, Blair BG, Brenner K, et al:
p21WAF1/CIP1 mediates the growth response to TGF-β in
human epithelial cells. Cancer Biol Ther. 3:221–225. 2004.
|
|
120
|
Mokbel K: The evolving role of aromatase
inhibitors in breast cancer. Int J Clin Oncol. 7:279–283.
2002.PubMed/NCBI
|
|
121
|
Jordan VC: Tamoxifen (ICI46,474) as a
targeted therapy to treat and prevent breast cancer. Br J
Pharmacol. 147(Suppl 1): S269–S276. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Pohl G, Rudas M, Dietze O, et al: High
p27Kip1 expression predicts superior relapse-free and
overall survival for premenopausal women with early-stage breast
cancer receiving adjuvant treatment with tamoxifen plus goserelin.
J Clin Oncol. 21:3594–3600. 2003.
|
|
123
|
Abukhdeir AM and Park BH: P21 and p27:
roles in carcinogenesis and drug resistance. Expert Rev Mol Med.
10:e192008. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Ellis PA, Smith IE, Detre S, et al:
Reduced apoptosis and proliferation and increased Bcl-2 in residual
breast cancer following preoperative chemotherapy. Breast Cancer
Res Treat. 48:107–116. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Cannings E, Kirkegaard T, Tovey SM, Dunne
B, Cooke TG and Bartlett JM: Bad expression predicts outcome in
patients treated with tamoxifen. Breast Cancer Res Treat.
102:173–179. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Hur J, Chesnes J, Coser KR, et al: The Bik
BH3-only protein is induced in estrogen-starved and
antiestrogen-exposed breast cancer cells and provokes apoptosis.
Proc Natl Acad Sci USA. 101:2351–2356. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Fu Y, Li J and Lee AS: GRP78/BiP inhibits
endoplasmic reticulum BIK and protects human breast cancer cells
against estrogen starvation-induced apoptosis. Cancer Res.
67:3734–3740. 2007. View Article : Google Scholar
|
|
128
|
Viedma-Rodriguez R, Baiza-Gutman LA,
García-Carrancá A, Moreno-Fierros L, Salamanca-Gómez F and
Arenas-Aranda D: Suppression of the death gene BIK is a critical
factor for resistance to tamoxifen in MCF-7 breast cancer cells.
Int J Oncol. 43:1777–1786. 2013.PubMed/NCBI
|
|
129
|
Lopez J, Hesling C, Prudent J, et al: Src
tyrosine kinase inhibits apoptosis through the Erk1/2-dependent
degradation of the death accelerator Bik. Cell Death Differ.
19:1459–1469. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Schoenlein PV, Periyasamy-Thandavan S,
Samaddar JS, Jackson WH and Barrett JT: Autophagy facilitates the
progression of ERα-positive breast cancer cells to antiestrogen
resistance. Autophagy. 5:400–403. 2009.
|
|
131
|
Galluzzi L, Vicencio JM, Kepp O, Tasdemir
E, Maiuri MC and Kroemer G: To die or not to die: that is the
autophagic question. Curr Mol Med. 8:78–91. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Cully M, You H, Levine AJ and Mak TW:
Beyond PTEN mutations: the PI3K pathway as an integrator of
multiple inputs during tumorigenesis. Nat Rev Cancer. 6:184–192.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Shaw RJ and Cantley LC: Ras, PI(3)K and
mTOR signalling controls tumour cell growth. Nature. 441:424–430.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Degenhardt K, Mathew R, Beaudoin B, et al:
Autophagy promotes tumor cell survival and restricts necrosis,
inflammation, and tumorigenesis. Cancer Cell. 10:51–64. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Feng W, Huang S, Wu H and Zhang M:
Molecular basis of Bcl-xL’s target recognition versatility revealed
by the structure of Bcl-xL in complex with the BH3 domain of
Beclin-1. J Mol Biol. 372:223–235. 2007.
|
|
136
|
Ciechomska IA, Goemans GC, Skepper JN and
Tolkovsky AM: Bcl-2 complexed with Beclin-1 maintains full
anti-apoptotic function. Oncogene. 28:2128–2141. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Maiuri MC, Le Toumelin G, Criollo A, et
al: Functional and physical interaction between Bcl-XL
and a BH3-like domain in Beclin-1. EMBO J. 26:2527–2539. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Levine B, Sinha S and Kroemer G: Bcl-2
family members: dual regulators of apoptosis and autophagy.
Autophagy. 4:600–606. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Boyd JM, Gallo GJ, Elangovan B, et al:
Bik, a novel death-inducing protein shares a distinct sequence
motif with Bcl-2 family proteins and interacts with viral and
cellular survival-promoting proteins. Oncogene. 11:1921–1928.
1995.PubMed/NCBI
|
|
140
|
Naumann U, Bähr O, Wolburg H, et al:
Adenoviral expression of XIAP antisense RNA induces apoptosis in
glioma cells and suppresses the growth of xenografts in nude mice.
Gene Ther. 14:147–161. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Oppermann M, Geilen CC, Fecker LF,
Gillissen B, Daniel PT and Eberle J: Caspase-independent induction
of apoptosis in human melanoma cells by the proapoptotic
Bcl-2-related protein Nbk/Bik. Oncogene. 24:7369–7380. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Garcia N, Salamanca F, Astudillo-de la
Vega H, et al: A molecular analysis by gene expression profiling
reveals Bik/NBK overexpression in sporadic breast tumor
samples of Mexican females. BMC Cancer. 5:932005. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Hirsch DS, Shen Y, Dokmanovic M and Wu WJ:
pp60c-Src phosphorylates and activates vacuolar protein
sorting 34 to mediate cellular transformation. Cancer Res.
70:5974–5983. 2010.
|
|
144
|
Gao P, Bauvy C, Souquère S, et al: The
Bcl-2 homology domain 3 mimetic gossypol induces both Beclin
1-dependent and Beclin 1-independent cytoprotective autophagy in
cancer cells. J Biol Chem. 285:25570–25581. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Furuya N, Yu J, Byfield M, Pattingre S and
Levine B: The evolutionarily conserved domain of Beclin 1 is
required for Vps34 binding, autophagy and tumor suppressor
function. Autophagy. 1:46–52. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Musgrove EA and Sutherland RL: Biological
determinants of endocrine resistance in breast cancer. Nat Rev
Cancer. 9:631–643. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Dancey J: mTOR signaling and drug
development in cancer. Nat Rev Clin Oncol. 7:209–219. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Ciafrè SA, Galardi S, Mangiola A, et al:
Extensive modulation of a set of microRNAs in primary glioblastoma.
Biochem Biophys Res Commun. 334:1351–1358. 2005.PubMed/NCBI
|
|
149
|
Pallante P, Visone R, Ferracin M, et al:
MicroRNA deregulation in human thyroid papillary carcinomas. Endocr
Relat Cancer. 13:497–508. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Kondo N, Toyama T, Sugiura H, Fujii Y and
Yamashita H: miR-206 expression is down-regulated in estrogen
receptor α-positive human breast cancer. Cancer Res. 68:5004–5008.
2008.
|
|
151
|
Rao X, Di Leva G, Li M, et al:
MicroRNA-221/222 confers breast cancer fulvestrant resistance by
regulating multiple signaling pathways. Oncogene. 30:1082–1097.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Sachdeva M, Wu H, Ru P, Hwang L, Trieu V
and Mo YY: MicroRNA-101-mediated Akt activation and
estrogen-independent growth. Oncogene. 30:822–831. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Miller TE, Ghoshal K, Ramaswamy B, et al:
MicroRNA-221/222 confers tamoxifen resistance in breast cancer by
targeting p27Kip1. J Biol Chem. 283:29897–29903. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Kovalchuk O, Filkowski J, Meservy J, et
al: Involvement of microRNA-451 in resistance of the MCF-7 breast
cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther.
7:2152–2159. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Liang Z, Wu H, Xia J, et al: Involvement
of miR-326 in chemotherapy resistance of breast cancer through
modulating expression of multidrug resistance-associated protein 1.
Biochem Pharmacol. 79:817–824. 2010. View Article : Google Scholar
|
|
156
|
Xin F, Li M, Balch C, et al: Computational
analysis of microRNA profiles and their target genes suggests
significant involvement in breast cancer antiestrogen resistance.
Bioinformatics. 25:430–434. 2009. View Article : Google Scholar
|
|
157
|
Guardavaccaro D and Clevers H:
Wnt/β-catenin and MAPK signaling: allies and enemies in different
battlefields. Sci Signal. 5:pe152012.
|
|
158
|
Gabrovska PN, Smith RA, Tiang T, Weinstein
SR, Haupt LM and Griffiths LR: Development of an eight gene
expression profile implicating human breast tumours of all grade.
Mol Biol Rep. 39:3879–3892. 2012. View Article : Google Scholar
|
|
159
|
Khramtsov AI, Khramtsova GF, Tretiakova M,
Huo D, Olopade OI and Goss KH: Wnt/β-catenin pathway activation is
enriched in basal-like breast cancers and predicts poor outcome. Am
J Pathol. 176:2911–2920. 2010.
|
|
160
|
Loh YN, Hedditch EL, Baker LA, Jary E,
Ward RL and Ford CE: The Wnt signalling pathway is upregulated in
an in vitro model of acquired tamoxifen resistant breast cancer.
BMC Cancer. 13:1742013. View Article : Google Scholar : PubMed/NCBI
|
|
161
|
Katoh M: Comparative genomics on
Wnt3-Wnt9b gene cluster. Int J Mol Med. 15:743–747. 2005.PubMed/NCBI
|
|
162
|
Rubin JS, Bottaro DP, Chedid M, et al:
Keratinocyte growth factor. Cell Biol Int. 19:399–411. 1995.
View Article : Google Scholar
|
|
163
|
Rubin JS, Bottaro DP, Chedid M, et al:
Keratinocyte growth factor as a cytokine that mediates
mesenchymal-epithelial interaction. EXS. 74:191–214.
1995.PubMed/NCBI
|
|
164
|
Kumar V, Green S, Staub A and Chambon P:
Localisation of the oestradiol-binding and putative DNA-binding
domains of the human oestrogen receptor. EMBO J. 5:2231–2236.
1986.PubMed/NCBI
|
|
165
|
Berry M, Metzger D and Chambon P: Role of
the two activating domains of the oestrogen receptor in the
cell-type and promoter-context dependent agonistic activity of the
anti-oestrogen 4-hydroxytamoxifen. EMBO J. 9:2811–2818. 1990.
|
|
166
|
Mader S, Chambon P and White JH: Defining
a minimal estrogen receptor DNA binding domain. Nucleic Acids Res.
21:1125–1132. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
167
|
Wang Z, Li Y, Banerjee S and Sarkar FH:
Emerging role of Notch in stem cells and cancer. Cancer Lett.
279:8–12. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
168
|
Shi TP, Xu H, Wei JF, et al: Association
of low expression of notch-1 and jagged-1 in human papillary
bladder cancer and shorter survival. J Urol. 180:361–366. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
169
|
Al Saleh S, Sharaf LH and Luqmani YA:
Signalling pathways involved in endocrine resistance in breast
cancer and associations with epithelial to mesenchymal transition
(Review). Int J Oncol. 38:1197–1217. 2011.PubMed/NCBI
|
|
170
|
Dontu G, Jackson KW, McNicholas E,
Kawamura MJ, Abdallah WM and Wicha MS: Role of Notch signaling in
cell-fate determination of human mammary stem/progenitor cells.
Breast Cancer Res. 6:R605–R615. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
171
|
Stylianou S, Clarke RB and Brennan K:
Aberrant activation of notch signaling in human breast cancer.
Cancer Res. 66:1517–1525. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
172
|
Rizzo P, Miao H, D’Souza G, et al:
Cross-talk between notch and the estrogen receptor in breast cancer
suggests novel therapeutic approaches. Cancer Res. 68:5226–5235.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
173
|
Wang Z, Li Y, Ahmad A, et al: Targeting
Notch signaling pathway to overcome drug resistance for cancer
therapy. Biochim Biophys Acta. 1806:258–267. 2010.PubMed/NCBI
|
|
174
|
Hurvitz SA and Pietras RJ: Rational
management of endocrine resistance in breast cancer: a
comprehensive review of estrogen receptor biology, treatment
options, and future directions. Cancer. 113:2385–2397. 2008.
View Article : Google Scholar
|
|
175
|
Dibb NJ, Dilworth SM and Mol CD: Switching
on kinases: oncogenic activation of BRAF and the PDGFR family. Nat
Rev Cancer. 4:718–727. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
176
|
Weigel MT, Ghazoui Z, Dunbier A, Pancholi
S, Dowsett M and Martin LA: Preclinical and clinical studies of
estrogen deprivation support the PDGF/Abl pathway as a novel
therapeutic target for overcoming endocrine resistance in breast
cancer. Breast Cancer Res. 14:R782012. View Article : Google Scholar
|
|
177
|
Pancholi V: Multifunctional α-enolase: its
role in diseases. Cell Mol Life Sci. 58:902–920. 2001.
|
|
178
|
Jiang BH, Agani F, Passaniti A and Semenza
GL: V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1)
and transcription of genes encoding vascular endothelial growth
factor and enolase 1: involvement of HIF-1 in tumor progression.
Cancer Res. 57:5328–5335. 1997.
|
|
179
|
Wygrecka M, Marsh LM, Morty RE, et al:
Enolase-1 promotes plasminogen-mediated recruitment of monocytes to
the acutely inflamed lung. Blood. 113:5588–5598. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
180
|
Dudani AK, Cummings C, Hashemi S and Ganz
PR: Isolation of a novel 45 kDa plasminogen receptor from human
endothelial cells. Thromb Res. 69:185–196. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
181
|
Peebles KA, Duncan MW, Ruch RJ and
Malkinson AM: Proteomic analysis of a neoplastic mouse lung
epithelial cell line whose tumorigenicity has been abrogated by
transfection with the gap junction structural gene for connexin 43,
Gja1. Carcinogenesis. 24:651–657. 2003. View Article : Google Scholar
|
|
182
|
Wu W, Tang X, Hu W, Lotan R, Hong WK and
Mao L: Identification and validation of metastasis-associated
proteins in head and neck cancer cell lines by two-dimensional
electrophoresis and mass spectrometry. Clin Exp Metastasis.
19:319–326. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
183
|
Ray R and Miller DM: Cloning and
characterization of a human c-myc promoter-binding protein. Mol
Cell Biol. 11:2154–2161. 1991.PubMed/NCBI
|
|
184
|
Tu SH, Chang CC, Chen CS, et al: Increased
expression of enolase α in human breast cancer confers tamoxifen
resistance in human breast cancer cells. Breast Cancer Res Treat.
121:539–553. 2010.
|