Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
July-2014 Volume 32 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2014 Volume 32 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer (Review)

  • Authors:
    • Rubí Viedma-Rodríguez
    • Luis Baiza-Gutman
    • Fabio Salamanca‑Gómez
    • Mariana Diaz‑Zaragoza
    • Guadalupe Martínez-Hernández
    • Ruth Ruiz Esparza‑Garrido
    • Miguel Angel Velázquez-Flores
    • Diego Arenas-Aranda
  • View Affiliations / Copyright

    Affiliations: Molecular Genetics Laboratory, Medical Research Unit in Human Genetics, Pediatric Hospital, National Medical Center Century XXI (CMN-SXXI), Mexican Social Security Institute (IMSS), Mexico City, Mexico, Unit of Morphology and Function, Faculty of Higher Studies (FES) Iztacala, National Autonomous University of Mexico (UNAM), Los Reyes Iztacala, State of Mexico, Mexico, Biomedical Research Institute (IIBM), UNAM, Mexico City, Mexico
  • Pages: 3-15
    |
    Published online on: May 16, 2014
       https://doi.org/10.3892/or.2014.3190
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Anti-estrogens such as tamoxifen are widely used in the clinic to treat estrogen receptor-positive breast tumors. Patients with estrogen receptor-positive breast cancer initially respond to treatment with anti-hormonal agents such as tamoxifen, but remissions are often followed by the acquisition of resistance and, ultimately, disease relapse. The development of a rationale for the effective treatment of tamoxifen-resistant breast cancer requires an understanding of the complex signal transduction mechanisms. In the present study, we explored some mechanisms associated with resistance to tamoxifen, such as pharmacologic mechanisms, loss or modification in estrogen receptor expression, alterations in co-regulatory proteins and the regulation of the different signaling pathways that participate in different cellular processes such as survival, proliferation, stress, cell cycle, inhibition of apoptosis regulated by the Bcl-2 family, autophagy, altered expression of microRNA, and signaling pathways that regulate the epithelial-mesenchymal transition in the tumor microenvironment. Delineation of the molecular mechanisms underlying the development of resistance may aid in the development of treatment strategies to enhance response and compromise resistance.
View Figures

Figure 1

View References

1 

Kohn AD and Moon RT: Wnt and calcium signaling: β-catenin-independent pathways. Cell Calcium. 38:439–446. 2005.

2 

Deroo BJ and Korach KS: Estrogen receptors and human disease. J Clin Invest. 116:561–570. 2006. View Article : Google Scholar : PubMed/NCBI

3 

Riggins RB, Schrecengost RS, Guerrero MS and Bouton AH: Pathways to tamoxifen resistance. Cancer Lett. 256:1–24. 2007. View Article : Google Scholar : PubMed/NCBI

4 

Mueller SO and Korach KS: Estrogen receptors and endocrine diseases: lessons from estrogen receptor knockout mice. Curr Opin Pharmacol. 1:613–619. 2001. View Article : Google Scholar : PubMed/NCBI

5 

Henderson BE and Feigelson HS: Hormonal carcinogenesis. Carcinogenesis. 21:427–433. 2000. View Article : Google Scholar : PubMed/NCBI

6 

Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S and Gustafsson JA: Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA. 93:5925–5930. 1996. View Article : Google Scholar : PubMed/NCBI

7 

Mosselman S, Polman J and Dijkema R: ERβ: identification and characterization of a novel human estrogen receptor. FEBS Lett. 392:49–53. 1996.

8 

Dixon D, Couse JF and Korach KS: Disruption of the estrogen receptor gene in mice. Toxicol Pathol. 25:518–520. 1997. View Article : Google Scholar : PubMed/NCBI

9 

Elliston JF, Fawell SE, Klein-Hitpass L, et al: Mechanism of estrogen receptor-dependent transcription in a cell-free system. Mol Cell Biol. 10:6607–6612. 1990.PubMed/NCBI

10 

Frasor J, Danes JM, Komm B, Chang KC, Lyttle CR and Katzenellenbogen BS: Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype. Endocrinology. 144:4562–4574. 2003. View Article : Google Scholar : PubMed/NCBI

11 

Webb P, Lopez GN, Uht RM and Kushner PJ: Tamoxifen activation of the estrogen receptor/AP-1 pathway: potential origin for the cell-specific estrogen-like effects of antiestrogens. Mol Endocrinol. 9:443–456. 1995.PubMed/NCBI

12 

Kushner PJ, Agard DA, Greene GL, et al: Estrogen receptor pathways to AP-1. J Steroid Biochem Mol Biol. 74:311–317. 2000. View Article : Google Scholar : PubMed/NCBI

13 

Smith CL and O’Malley BW: Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr Rev. 25:45–71. 2004. View Article : Google Scholar : PubMed/NCBI

14 

Osborne CK, Bardou V, Hopp TA, et al: Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst. 95:353–361. 2003. View Article : Google Scholar : PubMed/NCBI

15 

Saville B, Wormke M, Wang F, et al: Ligand-, cell-, and estrogen receptor subtype (α/β)-dependent activation at GC-rich (Sp1) promoter elements. J Biol Chem. 275:5379–5387. 2000.

16 

Kelloff GJ, Lippman SM, Dannenberg AJ, et al: Progress in chemoprevention drug development: the promise of molecular biomarkers for prevention of intraepithelial neoplasia and cancer - a plan to move forward. Clin Cancer Res. 12:3661–3697. 2006. View Article : Google Scholar : PubMed/NCBI

17 

Schiff R, Massarweh SA, Shou J, Bharwani L, Mohsin SK and Osborne CK: Cross-talk between estrogen receptor and growth factor pathways as a molecular target for overcoming endocrine resistance. Clin Cancer Res. 10:331S–336S. 2004. View Article : Google Scholar : PubMed/NCBI

18 

Le Goff P, Montano MM, Schodin DJ and Katzenellenbogen BS: Phosphorylation of the human estrogen receptor. Identification of hormone-regulated sites and examination of their influence on transcriptional activity. J Biol Chem. 269:4458–4466. 1994.PubMed/NCBI

19 

Vyhlidal C, Samudio I, Kladde MP and Safe S: Transcriptional activation of transforming growth factor α by estradiol: requirement for both a GC-rich site and an estrogen response element half-site. J Mol Endocrinol. 24:329–338. 2000.

20 

Lee AV, Cui X and Oesterreich S: Cross-talk among estrogen receptor, epidermal growth factor, and insulin-like growth factor signaling in breast cancer. Clin Cancer Res. 7(Suppl 12): S4429–S4435. 2001.PubMed/NCBI

21 

Yarden RI, Wilson MA and Chrysogelos SA: Estrogen suppression of EGFR expression in breast cancer cells: a possible mechanism to modulate growth. J Cell Biochem. (Suppl 36): 232–246. 2001. View Article : Google Scholar : PubMed/NCBI

22 

Bayliss J, Hilger A, Vishnu P, Diehl K and El-Ashry D: Reversal of the estrogen receptor negative phenotype in breast cancer and restoration of antiestrogen response. Clin Cancer Res. 13:7029–7036. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Cui X, Zhang P, Deng W, et al: Insulin-like growth factor-I inhibits progesterone receptor expression in breast cancer cells via the phosphatidylinositol 3–kinase/Akt/mammalian target of rapamycin pathway: progesterone receptor as a potential indicator of growth factor activity in breast cancer. Mol Endocrinol. 17:575–588. 2003.PubMed/NCBI

24 

Brinkman JA and El-Ashry D: ER re-expression and re-sensitization to endocrine therapies in ER-negative breast cancers. J Mammary Gland Biol Neoplasia. 14:67–78. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Levin ER and Pietras RJ: Estrogen receptors outside the nucleus in breast cancer. Breast Cancer Res Treat. 108:351–361. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Pedram A, Razandi M, Lubahn D, Liu J, Vannan M and Levin ER: Estrogen inhibits cardiac hypertrophy: role of estrogen receptor-β to inhibit calcineurin. Endocrinology. 149:3361–3369. 2008.PubMed/NCBI

27 

Wu RC, Qin J, Yi P, et al: Selective phosphorylations of the SRC-3/AIB1 coactivator integrate genomic reponses to multiple cellular signaling pathways. Mol Cell. 15:937–949. 2004. View Article : Google Scholar : PubMed/NCBI

28 

Pontiggia O, Rodriguez V, Fabris V, et al: Establishment of an in vitro estrogen-dependent mouse mammary tumor model: a new tool to understand estrogen responsiveness and development of tamoxifen resistance in the context of stromal-epithelial interactions. Breast Cancer Res Treat. 116:247–255. 2009. View Article : Google Scholar

29 

Machuca TN, Hsin MK, Ott HC, et al: Injury-specific ex vivo treatment of the donor lung: pulmonary thrombolysis followed by successful lung transplantation. Am J Respir Crit Care Med. 188:878–880. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Goetz MP, Rae JM, Suman VJ, et al: Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol. 23:9312–9318. 2005. View Article : Google Scholar : PubMed/NCBI

31 

Stearns V and Rae JM: Pharmacogenetics and breast cancer endocrine therapy: CYP2D6 as a predictive factor for tamoxifen metabolism and drug response? Expert Rev Mol Med. 10:e342008. View Article : Google Scholar : PubMed/NCBI

32 

Jaiswal BS, Janakiraman V, Kljavin NM, et al: Somatic mutations in p85α promote tumorigenesis through class IA PI3K activation. Cancer Cell. 16:463–474. 2009.

33 

Madeira M, Mattar A, Logullo AF, Soares FA and Gebrim LH: Estrogen receptor alpha/beta ratio and estrogen receptor beta as predictors of endocrine therapy responsiveness-a randomized neoadjuvant trial comparison between anastrozole and tamoxifen for the treatment of postmenopausal breast cancer. BMC Cancer. 13:4252013. View Article : Google Scholar

34 

McGuire WL: Current status of estrogen receptors in human breast cancer. Cancer. 36:638–644. 1975. View Article : Google Scholar : PubMed/NCBI

35 

Esslimani-Sahla M, Simony-Lafontaine J, Kramar A, et al: Estrogen receptor β (ERβ) level but not its ERβcx variant helps to predict tamoxifen resistance in breast cancer. Clin Cancer Res. 10:5769–5776. 2004.

36 

Hopp TA, Weiss HL, Parra IS, Cui Y, Osborne CK and Fuqua SA: Low levels of estrogen receptor β protein predict resistance to tamoxifen therapy in breast cancer. Clin Cancer Res. 10:7490–7499. 2004.

37 

Kuiper GG, Lemmen JG, Carlsson B, et al: Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology. 139:4252–4263. 1998.

38 

Yang X, Phillips DL, Ferguson AT, Nelson WG, Herman JG and Davidson NE: Synergistic activation of functional estrogen receptor (ER)-α by DNA methyltransferase and histone deacetylase inhibition in human ER-α-negative breast cancer cells. Cancer Res. 61:7025–7029. 2001.

39 

Parl FF: Multiple mechanisms of estrogen receptor gene repression contribute to ER-negative breast cancer. Pharmacogenomics J. 3:251–253. 2003. View Article : Google Scholar : PubMed/NCBI

40 

Ottaviano YL, Issa JP, Parl FF, Smith HS, Baylin SB and Davidson NE: Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res. 54:2552–2555. 1994.PubMed/NCBI

41 

Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL and Wolffe AP: DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet. 25:338–342. 2000. View Article : Google Scholar : PubMed/NCBI

42 

Fan J, Yin WJ, Lu JS, et al: ERα negative breast cancer cells restore response to endocrine therapy by combination treatment with both HDAC inhibitor and DNMT inhibitor. J Cancer Res Clin Oncol. 134:883–890. 2008.

43 

Zhou Q, Shaw PG and Davidson NE: Inhibition of histone deacetylase suppresses EGF signaling pathways by destabilizing EGFR mRNA in ER-negative human breast cancer cells. Breast Cancer Res Treat. 117:443–451. 2009. View Article : Google Scholar : PubMed/NCBI

44 

Sabnis GJ, Goloubeva O, Chumsri S, Nguyen N, Sukumar S and Brodie AM: Functional activation of the estrogen receptor-α and aromatase by the HDAC inhibitor entinostat sensitizes ER-negative tumors to letrozole. Cancer Res. 71:1893–1903. 2011.

45 

Mahfoudi A, Roulet E, Dauvois S, Parker MG and Wahli W: Specific mutations in the estrogen receptor change the properties of antiestrogens to full agonists. Proc Natl Acad Sci USA. 92:4206–4210. 1995. View Article : Google Scholar : PubMed/NCBI

46 

Wolf DM and Jordan VC: The estrogen receptor from a tamoxifen stimulated MCF-7 tumor variant contains a point mutation in the ligand binding domain. Breast Cancer Res Treat. 31:129–138. 1994. View Article : Google Scholar : PubMed/NCBI

47 

MacGregor Schafer J, Liu H, Bentrem DJ, Zapf JW and Jordan VC: Allosteric silencing of activating function 1 in the 4-hydroxytamoxifen estrogen receptor complex is induced by substituting glycine for aspartate at amino acid 351. Cancer Res. 60:5097–5105. 2000.

48 

Thomas RS, Sarwar N, Phoenix F, Coombes RC and Ali S: Phosphorylation at serines 104 and 106 by Erk1/2 MAPK is important for estrogen receptor-α activity. J Mol Endocrinol. 40:173–184. 2008.PubMed/NCBI

49 

Chen D, Washbrook E, Sarwar N, et al: Phosphorylation of human estrogen receptor α at serine 118 by two distinct signal transduction pathways revealed by phosphorylation-specific antisera. Oncogene. 21:4921–4931. 2002.

50 

Williams CC, Basu A, El-Gharbawy A, Carrier LM, Smith CL and Rowan BG: Identification of four novel phosphorylation sites in estrogen receptor α: impact on receptor-dependent gene expression and phosphorylation by protein kinase CK2. BMC Biochem. 10:362009.PubMed/NCBI

51 

Rogatsky I, Trowbridge JM and Garabedian MJ: Potentiation of human estrogen receptor α transcriptional activation through phosphorylation of serines 104 and 106 by the cyclin A-CDK2 complex. J Biol Chem. 274:22296–22302. 1999.

52 

Michalides R, van Tinteren H, Balkenende A, et al: Cyclin A is a prognostic indicator in early stage breast cancer with and without tamoxifen treatment. Br J Cancer. 86:402–408. 2002. View Article : Google Scholar : PubMed/NCBI

53 

Vendrell JA, Bieche I, Desmetz C, et al: Molecular changes associated with the agonist activity of hydroxy-tamoxifen and the hyper-response to estradiol in hydroxy-tamoxifen-resistant breast cancer cell lines. Endocr Relat Cancer. 12:75–92. 2005. View Article : Google Scholar

54 

Likhite VS, Stossi F, Kim K, Katzenellenbogen BS and Katzenellenbogen JA: Kinase-specific phosphorylation of the estrogen receptor changes receptor interactions with ligand, deoxyribonucleic acid, and coregulators associated with alterations in estrogen and tamoxifen activity. Mol Endocrinol. 20:3120–3132. 2006. View Article : Google Scholar

55 

Kato S, Endoh H, Masuhiro Y, et al: Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science. 270:1491–1494. 1995. View Article : Google Scholar : PubMed/NCBI

56 

Barone I, Brusco L and Fuqua SA: Estrogen receptor mutations and changes in downstream gene expression and signaling. Clin Cancer Res. 16:2702–2708. 2010. View Article : Google Scholar : PubMed/NCBI

57 

de Leeuw R, Neefjes J and Michalides R: A role for estrogen receptor phosphorylation in the resistance to tamoxifen. Int J Breast Cancer. 2011:2324352011.PubMed/NCBI

58 

Osborne CK and Schiff R: Estrogen-receptor biology: continuing progress and therapeutic implications. J Clin Oncol. 23:1616–1622. 2005. View Article : Google Scholar : PubMed/NCBI

59 

Girault I, Bièche I and Lidereau R: Role of estrogen receptor α transcriptional coregulators in tamoxifen resistance in breast cancer. Maturitas. 54:342–351. 2006.

60 

Webb P, Nguyen P, Shinsako J, et al: Estrogen receptor activation function 1 works by binding p160 coactivator proteins. Mol Endocrinol. 12:1605–1618. 1998. View Article : Google Scholar : PubMed/NCBI

61 

Kressler D, Hock MB and Kralli A: Coactivators PGC-1β and SRC-1 interact functionally to promote the agonist activity of the selective estrogen receptor modulator tamoxifen. J Biol Chem. 282:26897–26907. 2007.

62 

Fuqua SA, Schiff R, Parra I, et al: Estrogen receptor β protein in human breast cancer: correlation with clinical tumor parameters. Cancer Res. 63:2434–2439. 2003.

63 

Lavinsky RM, Jepsen K, Heinzel T, et al: Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc Natl Acad Sci USA. 95:2920–2925. 1998. View Article : Google Scholar : PubMed/NCBI

64 

Kurokawa H, Lenferink AE, Simpson JF, et al: Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. Cancer Res. 60:5887–5894. 2000.

65 

Massarweh S, Osborne CK, Creighton CJ, et al: Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Res. 68:826–833. 2008. View Article : Google Scholar : PubMed/NCBI

66 

Fagan DH, Uselman RR, Sachdev D and Yee D: Acquired resistance to tamoxifen is associated with loss of the type I insulin-like growth factor receptor: implications for breast cancer treatment. Cancer Res. 72:3372–3380. 2012. View Article : Google Scholar : PubMed/NCBI

67 

Ciampolillo A, De Tullio C and Giorgino F: The IGF-I/IGF-I receptor pathway: implications in the pathophysiology of thyroid cancer. Curr Med Chem. 12:2881–2891. 2005. View Article : Google Scholar : PubMed/NCBI

68 

Lee AV, Weng CN, Jackson JG and Yee D: Activation of estrogen receptor-mediated gene transcription by IGF-I in human breast cancer cells. J Endocrinol. 152:39–47. 1997. View Article : Google Scholar : PubMed/NCBI

69 

Fagan DH and Yee D: Crosstalk between IGF1R and estrogen receptor signaling in breast cancer. J Mammary Gland Biol Neoplasia. 13:423–429. 2008. View Article : Google Scholar : PubMed/NCBI

70 

Lee AV, Darbre P and King RJ: Processing of insulin-like growth factor-II (IGF-II) by human breast cancer cells. Mol Cell Endocrinol. 99:211–220. 1994. View Article : Google Scholar : PubMed/NCBI

71 

Umayahara Y, Kawamori R, Watada H, et al: Estrogen regulation of the insulin-like growth factor I gene transcription involves an AP-1 enhancer. J Biol Chem. 269:16433–16442. 1994.PubMed/NCBI

72 

Salerno M, Sisci D, Mauro L, Guvakova MA, Ando S and Surmacz E: Insulin receptor substrate 1 is a target for the pure antiestrogen ICI 182,780 in breast cancer cells. Int J Cancer. 81:299–304. 1999. View Article : Google Scholar : PubMed/NCBI

73 

Becker MA, Ibrahim YH, Cui X, Lee AV and Yee D: The IGF pathway regulates ERα through a S6K1-dependent mechanism in breast cancer cells. Mol Endocrinol. 25:516–528. 2011.

74 

Campbell RA, Bhat-Nakshatri P, Patel NM, Constantinidou D, Ali S and Nakshatri H: Phosphatidylinositol 3-kinase/AKT- mediated activation of estrogen receptor α: a new model for anti-estrogen resistance. J Biol Chem. 276:9817–9824. 2001.

75 

Ahn BY, Elwi AN, Lee B, et al: Genetic screen identifies insulin-like growth factor binding protein 5 as a modulator of tamoxifen resistance in breast cancer. Cancer Res. 70:3013–3019. 2010. View Article : Google Scholar : PubMed/NCBI

76 

Beattie J, Allan GJ, Lochrie JD and Flint DJ: Insulin-like growth factor-binding protein-5 (IGFBP-5): a critical member of the IGF axis. Biochem J. 395:1–19. 2006. View Article : Google Scholar : PubMed/NCBI

77 

Akkiprik M, Feng Y, Wang H, et al: Multifunctional roles of insulin-like growth factor binding protein 5 in breast cancer. Breast Cancer Res. 10:2122008. View Article : Google Scholar : PubMed/NCBI

78 

Bunone G, Briand PA, Miksicek RJ and Picard D: Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J. 15:2174–2183. 1996.PubMed/NCBI

79 

Parisot JP, Hu XF, DeLuise M and Zalcberg JR: Altered expression of the IGF-1 receptor in a tamoxifen-resistant human breast cancer cell line. Br J Cancer. 79:693–700. 1999. View Article : Google Scholar : PubMed/NCBI

80 

Knowlden JM, Hutcheson IR, Barrow D, Gee JM and Nicholson RI: Insulin-like growth factor-I receptor signaling in tamoxifen-resistant breast cancer: a supporting role to the epidermal growth factor receptor. Endocrinology. 146:4609–4618. 2005. View Article : Google Scholar : PubMed/NCBI

81 

Cohen BD, Baker DA, Soderstrom C, et al: Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871. Clin Cancer Res. 11:2063–2073. 2005. View Article : Google Scholar : PubMed/NCBI

82 

Lu Y, Zi X, Zhao Y, Mascarenhas D and Pollak M: Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst. 93:1852–1857. 2001. View Article : Google Scholar : PubMed/NCBI

83 

Bouton AH, Riggins RB and Bruce-Staskal PJ: Functions of the adapter protein Cas: signal convergence and the determination of cellular responses. Oncogene. 20:6448–6458. 2001. View Article : Google Scholar : PubMed/NCBI

84 

Defilippi P, Di Stefano P and Cabodi S: p130Cas: a versatile scaffold in signaling networks. Trends Cell Biol. 16:257–263. 2006. View Article : Google Scholar : PubMed/NCBI

85 

Lu Y, Mani S, Kandimalla ER, et al: The Cockayne syndrome group B DNA repair protein as an anti-cancer target. Int J Oncol. 19:1089–1097. 2001.PubMed/NCBI

86 

Planas-Silva MD and Hamilton KN: Targeting c-Src kinase enhances tamoxifen’s inhibitory effect on cell growth by modulating expression of cell cycle and survival proteins. Cancer Chemother Pharmacol. 60:535–543. 2007.PubMed/NCBI

87 

Schuh NR, Guerrero MS, Schrecengost RS and Bouton AH: BCAR3 regulates Src/p130 Cas association, Src kinase activity, and breast cancer adhesion signaling. J Biol Chem. 285:2309–2317. 2010. View Article : Google Scholar : PubMed/NCBI

88 

Gotoh T, Cai D, Tian X, Feig LA and Lerner A: p130Cas regulates the activity of AND-34, a novel Ral, Rap1, and R-Ras guanine nucleotide exchange factor. J Biol Chem. 275:30118–30123. 2000.

89 

Cai D, Iyer A, Felekkis KN, et al: AND-34/BCAR3, a GDP exchange factor whose overexpression confers antiestrogen resistance, activates Rac, PAK1, and the cyclin D1 promoter. Cancer Res. 63:6802–6808. 2003.PubMed/NCBI

90 

van Agthoven T, van Agthoven TL, Dekker A, van der Spek PJ, Vreede L and Dorssers LC: Identification of BCAR3 by a random search for genes involved in antiestrogen resistance of human breast cancer cells. EMBO J. 17:2799–2808. 1998.PubMed/NCBI

91 

Felekkis KN, Narsimhan RP, Near R, et al: AND-34 activates phosphatidylinositol 3-kinase and induces anti-estrogen resistance in a SH2 and GDP exchange factor-like domain-dependent manner. Mol Cancer Res. 3:32–41. 2005.PubMed/NCBI

92 

Liu P, Cheng H, Roberts TM and Zhao JJ: Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 8:627–644. 2009. View Article : Google Scholar : PubMed/NCBI

93 

Miller TW, Balko JM and Arteaga CL: Phosphatidylinositol 3-kinase and antiestrogen resistance in breast cancer. J Clin Oncol. 29:4452–4461. 2011. View Article : Google Scholar : PubMed/NCBI

94 

Fox EM, Arteaga CL and Miller TW: Abrogating endocrine resistance by targeting ERα and PI3K in breast cancer. Front Oncol. 2:1452012.

95 

Turner N, Pearson A, Sharpe R, et al: FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res. 70:2085–2094. 2010. View Article : Google Scholar

96 

van der Kaay J, Cullen PJ and Downes CP: Phosphatidylinositol(3,4,5)trisphosphate (Ptdins(3,4,5)P3) mass measurement using a radioligand displacement assay. Methods Mol Biol. 105:109–125. 1998.

97 

Maehama T and Dixon JE: The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 273:13375–13378. 1998. View Article : Google Scholar : PubMed/NCBI

98 

Massarweh S and Schiff R: Unraveling the mechanisms of endocrine resistance in breast cancer: new therapeutic opportunities. Clin Cancer Res. 13:1950–1954. 2007. View Article : Google Scholar : PubMed/NCBI

99 

Lewis-Wambi JS and Jordan VC: Estrogen regulation of apoptosis: how can one hormone stimulate and inhibit? Breast Cancer Res. 11:2062009. View Article : Google Scholar : PubMed/NCBI

100 

Schiff R, Reddy P, Ahotupa M, et al: Oxidative stress and AP-1 activity in tamoxifen-resistant breast tumors in vivo. J Natl Cancer Inst. 92:1926–1934. 2000. View Article : Google Scholar : PubMed/NCBI

101 

Nair BC and Vadlamudi RK: Regulation of hormonal therapy resistance by cell cycle machinery. Gene Ther Mol Biol. 12:3952008.PubMed/NCBI

102 

Butt AJ, McNeil CM, Musgrove EA and Sutherland RL: Downstream targets of growth factor and oestrogen signalling and endocrine resistance: the potential roles of c-Myc, cyclin D1 and cyclin E. Endocr Relat Cancer. 12(Suppl 10): S47–S59. 2005. View Article : Google Scholar : PubMed/NCBI

103 

Kilker RL, Hartl MW, Rutherford TM and Planas-Silva MD: Cyclin D1 expression is dependent on estrogen receptor function in tamoxifen-resistant breast cancer cells. J Steroid Biochem Mol Biol. 92:63–71. 2004. View Article : Google Scholar : PubMed/NCBI

104 

Zwijsen RM, Wientjens E, Klompmaker R, van der Sman J, Bernards R and Michalides RJ: CDK-independent activation of estrogen receptor by cyclin D1. Cell. 88:405–415. 1997. View Article : Google Scholar : PubMed/NCBI

105 

Wilcken NR, Prall OW, Musgrove EA and Sutherland RL: Inducible overexpression of cyclin D1 in breast cancer cells reverses the growth-inhibitory effects of antiestrogens. Clin Cancer Res. 3:849–854. 1997.PubMed/NCBI

106 

Osborne CK and Schiff R: Growth factor receptor cross-talk with estrogen receptor as a mechanism for tamoxifen resistance in breast cancer. Breast. 12:362–367. 2003. View Article : Google Scholar : PubMed/NCBI

107 

Rudas M, Lehnert M, Huynh A, et al: Cyclin D1 expression in breast cancer patients receiving adjuvant tamoxifen-based therapy. Clin Cancer Res. 14:1767–1774. 2008. View Article : Google Scholar : PubMed/NCBI

108 

Stendahl M, Kronblad A, Rydén L, Emdin S, Bengtsson NO and Landberg G: Cyclin D1 overexpression is a negative predictive factor for tamoxifen response in postmenopausal breast cancer patients. Br J Cancer. 90:1942–1948. 2004. View Article : Google Scholar : PubMed/NCBI

109 

Sieuwerts AM, Look MP, Meijer-van Gelder ME, et al: Which cyclin E prevails as prognostic marker for breast cancer? Results from a retrospective study involving 635 lymph node-negative breast cancer patients. Clin Cancer Res. 12:3319–3328. 2006. View Article : Google Scholar : PubMed/NCBI

110 

Bosco EE, Wang Y, Xu H, et al: The retinoblastoma tumor suppressor modifies the therapeutic response of breast cancer. J Clin Invest. 117:218–228. 2007. View Article : Google Scholar : PubMed/NCBI

111 

Musgrove EA, Sergio CM, Anderson LR, et al: Identification of downstream targets of estrogen and c-myc in breast cancer cells. Adv Exp Med Biol. 617:445–451. 2008. View Article : Google Scholar : PubMed/NCBI

112 

Dhillon NK and Mudryj M: Ectopic expression of cyclin E in estrogen responsive cells abrogates antiestrogen mediated growth arrest. Oncogene. 21:4626–4634. 2002. View Article : Google Scholar : PubMed/NCBI

113 

Hui R, Finney GL, Carroll JS, Lee CS, Musgrove EA and Sutherland RL: Constitutive overexpression of cyclin D1 but not cyclin E confers acute resistance to antiestrogens in T-47D breast cancer cells. Cancer Res. 62:6916–6923. 2002.PubMed/NCBI

114 

Caldon CE, Sergio CM, Schütte J, et al: Estrogen regulation of cyclin E2 requires cyclin D1 but not c-Myc. Mol Cell Biol. 29:4623–4639. 2009. View Article : Google Scholar : PubMed/NCBI

115 

Finn RS, Dering J, Conklin D, et al: PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 11:R772009. View Article : Google Scholar

116 

Wang L, Wang J, Blaser BW, et al: Pharmacologic inhibition of CDK4/6: mechanistic evidence for selective activity or acquired resistance in acute myeloid leukemia. Blood. 110:2075–2083. 2007. View Article : Google Scholar : PubMed/NCBI

117 

Planas-Silva MD and Weinberg RA: Estrogen-dependent cyclin E-cdk2 activation through p21 redistribution. Mol Cell Biol. 17:4059–4069. 1997.PubMed/NCBI

118 

Cariou S, Donovan JC, Flanagan WM, Milic A, Bhattacharya N and Slingerland JM: Down-regulation of p21WAF1/CIP1 or p27Kip1 abrogates antiestrogen-mediated cell cycle arrest in human breast cancer cells. Proc Natl Acad Sci USA. 97:9042–9046. 2000.PubMed/NCBI

119 

Bachman KE, Blair BG, Brenner K, et al: p21WAF1/CIP1 mediates the growth response to TGF-β in human epithelial cells. Cancer Biol Ther. 3:221–225. 2004.

120 

Mokbel K: The evolving role of aromatase inhibitors in breast cancer. Int J Clin Oncol. 7:279–283. 2002.PubMed/NCBI

121 

Jordan VC: Tamoxifen (ICI46,474) as a targeted therapy to treat and prevent breast cancer. Br J Pharmacol. 147(Suppl 1): S269–S276. 2006. View Article : Google Scholar : PubMed/NCBI

122 

Pohl G, Rudas M, Dietze O, et al: High p27Kip1 expression predicts superior relapse-free and overall survival for premenopausal women with early-stage breast cancer receiving adjuvant treatment with tamoxifen plus goserelin. J Clin Oncol. 21:3594–3600. 2003.

123 

Abukhdeir AM and Park BH: P21 and p27: roles in carcinogenesis and drug resistance. Expert Rev Mol Med. 10:e192008. View Article : Google Scholar : PubMed/NCBI

124 

Ellis PA, Smith IE, Detre S, et al: Reduced apoptosis and proliferation and increased Bcl-2 in residual breast cancer following preoperative chemotherapy. Breast Cancer Res Treat. 48:107–116. 1998. View Article : Google Scholar : PubMed/NCBI

125 

Cannings E, Kirkegaard T, Tovey SM, Dunne B, Cooke TG and Bartlett JM: Bad expression predicts outcome in patients treated with tamoxifen. Breast Cancer Res Treat. 102:173–179. 2007. View Article : Google Scholar : PubMed/NCBI

126 

Hur J, Chesnes J, Coser KR, et al: The Bik BH3-only protein is induced in estrogen-starved and antiestrogen-exposed breast cancer cells and provokes apoptosis. Proc Natl Acad Sci USA. 101:2351–2356. 2004. View Article : Google Scholar : PubMed/NCBI

127 

Fu Y, Li J and Lee AS: GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis. Cancer Res. 67:3734–3740. 2007. View Article : Google Scholar

128 

Viedma-Rodriguez R, Baiza-Gutman LA, García-Carrancá A, Moreno-Fierros L, Salamanca-Gómez F and Arenas-Aranda D: Suppression of the death gene BIK is a critical factor for resistance to tamoxifen in MCF-7 breast cancer cells. Int J Oncol. 43:1777–1786. 2013.PubMed/NCBI

129 

Lopez J, Hesling C, Prudent J, et al: Src tyrosine kinase inhibits apoptosis through the Erk1/2-dependent degradation of the death accelerator Bik. Cell Death Differ. 19:1459–1469. 2012. View Article : Google Scholar : PubMed/NCBI

130 

Schoenlein PV, Periyasamy-Thandavan S, Samaddar JS, Jackson WH and Barrett JT: Autophagy facilitates the progression of ERα-positive breast cancer cells to antiestrogen resistance. Autophagy. 5:400–403. 2009.

131 

Galluzzi L, Vicencio JM, Kepp O, Tasdemir E, Maiuri MC and Kroemer G: To die or not to die: that is the autophagic question. Curr Mol Med. 8:78–91. 2008. View Article : Google Scholar : PubMed/NCBI

132 

Cully M, You H, Levine AJ and Mak TW: Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer. 6:184–192. 2006. View Article : Google Scholar : PubMed/NCBI

133 

Shaw RJ and Cantley LC: Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature. 441:424–430. 2006. View Article : Google Scholar : PubMed/NCBI

134 

Degenhardt K, Mathew R, Beaudoin B, et al: Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 10:51–64. 2006. View Article : Google Scholar : PubMed/NCBI

135 

Feng W, Huang S, Wu H and Zhang M: Molecular basis of Bcl-xL’s target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1. J Mol Biol. 372:223–235. 2007.

136 

Ciechomska IA, Goemans GC, Skepper JN and Tolkovsky AM: Bcl-2 complexed with Beclin-1 maintains full anti-apoptotic function. Oncogene. 28:2128–2141. 2009. View Article : Google Scholar : PubMed/NCBI

137 

Maiuri MC, Le Toumelin G, Criollo A, et al: Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1. EMBO J. 26:2527–2539. 2007. View Article : Google Scholar : PubMed/NCBI

138 

Levine B, Sinha S and Kroemer G: Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy. 4:600–606. 2008. View Article : Google Scholar : PubMed/NCBI

139 

Boyd JM, Gallo GJ, Elangovan B, et al: Bik, a novel death-inducing protein shares a distinct sequence motif with Bcl-2 family proteins and interacts with viral and cellular survival-promoting proteins. Oncogene. 11:1921–1928. 1995.PubMed/NCBI

140 

Naumann U, Bähr O, Wolburg H, et al: Adenoviral expression of XIAP antisense RNA induces apoptosis in glioma cells and suppresses the growth of xenografts in nude mice. Gene Ther. 14:147–161. 2007. View Article : Google Scholar : PubMed/NCBI

141 

Oppermann M, Geilen CC, Fecker LF, Gillissen B, Daniel PT and Eberle J: Caspase-independent induction of apoptosis in human melanoma cells by the proapoptotic Bcl-2-related protein Nbk/Bik. Oncogene. 24:7369–7380. 2005. View Article : Google Scholar : PubMed/NCBI

142 

Garcia N, Salamanca F, Astudillo-de la Vega H, et al: A molecular analysis by gene expression profiling reveals Bik/NBK overexpression in sporadic breast tumor samples of Mexican females. BMC Cancer. 5:932005. View Article : Google Scholar : PubMed/NCBI

143 

Hirsch DS, Shen Y, Dokmanovic M and Wu WJ: pp60c-Src phosphorylates and activates vacuolar protein sorting 34 to mediate cellular transformation. Cancer Res. 70:5974–5983. 2010.

144 

Gao P, Bauvy C, Souquère S, et al: The Bcl-2 homology domain 3 mimetic gossypol induces both Beclin 1-dependent and Beclin 1-independent cytoprotective autophagy in cancer cells. J Biol Chem. 285:25570–25581. 2010. View Article : Google Scholar : PubMed/NCBI

145 

Furuya N, Yu J, Byfield M, Pattingre S and Levine B: The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy. 1:46–52. 2005. View Article : Google Scholar : PubMed/NCBI

146 

Musgrove EA and Sutherland RL: Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer. 9:631–643. 2009. View Article : Google Scholar : PubMed/NCBI

147 

Dancey J: mTOR signaling and drug development in cancer. Nat Rev Clin Oncol. 7:209–219. 2010. View Article : Google Scholar : PubMed/NCBI

148 

Ciafrè SA, Galardi S, Mangiola A, et al: Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun. 334:1351–1358. 2005.PubMed/NCBI

149 

Pallante P, Visone R, Ferracin M, et al: MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer. 13:497–508. 2006. View Article : Google Scholar : PubMed/NCBI

150 

Kondo N, Toyama T, Sugiura H, Fujii Y and Yamashita H: miR-206 expression is down-regulated in estrogen receptor α-positive human breast cancer. Cancer Res. 68:5004–5008. 2008.

151 

Rao X, Di Leva G, Li M, et al: MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene. 30:1082–1097. 2011. View Article : Google Scholar : PubMed/NCBI

152 

Sachdeva M, Wu H, Ru P, Hwang L, Trieu V and Mo YY: MicroRNA-101-mediated Akt activation and estrogen-independent growth. Oncogene. 30:822–831. 2011. View Article : Google Scholar : PubMed/NCBI

153 

Miller TE, Ghoshal K, Ramaswamy B, et al: MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem. 283:29897–29903. 2008. View Article : Google Scholar : PubMed/NCBI

154 

Kovalchuk O, Filkowski J, Meservy J, et al: Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther. 7:2152–2159. 2008. View Article : Google Scholar : PubMed/NCBI

155 

Liang Z, Wu H, Xia J, et al: Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem Pharmacol. 79:817–824. 2010. View Article : Google Scholar

156 

Xin F, Li M, Balch C, et al: Computational analysis of microRNA profiles and their target genes suggests significant involvement in breast cancer antiestrogen resistance. Bioinformatics. 25:430–434. 2009. View Article : Google Scholar

157 

Guardavaccaro D and Clevers H: Wnt/β-catenin and MAPK signaling: allies and enemies in different battlefields. Sci Signal. 5:pe152012.

158 

Gabrovska PN, Smith RA, Tiang T, Weinstein SR, Haupt LM and Griffiths LR: Development of an eight gene expression profile implicating human breast tumours of all grade. Mol Biol Rep. 39:3879–3892. 2012. View Article : Google Scholar

159 

Khramtsov AI, Khramtsova GF, Tretiakova M, Huo D, Olopade OI and Goss KH: Wnt/β-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am J Pathol. 176:2911–2920. 2010.

160 

Loh YN, Hedditch EL, Baker LA, Jary E, Ward RL and Ford CE: The Wnt signalling pathway is upregulated in an in vitro model of acquired tamoxifen resistant breast cancer. BMC Cancer. 13:1742013. View Article : Google Scholar : PubMed/NCBI

161 

Katoh M: Comparative genomics on Wnt3-Wnt9b gene cluster. Int J Mol Med. 15:743–747. 2005.PubMed/NCBI

162 

Rubin JS, Bottaro DP, Chedid M, et al: Keratinocyte growth factor. Cell Biol Int. 19:399–411. 1995. View Article : Google Scholar

163 

Rubin JS, Bottaro DP, Chedid M, et al: Keratinocyte growth factor as a cytokine that mediates mesenchymal-epithelial interaction. EXS. 74:191–214. 1995.PubMed/NCBI

164 

Kumar V, Green S, Staub A and Chambon P: Localisation of the oestradiol-binding and putative DNA-binding domains of the human oestrogen receptor. EMBO J. 5:2231–2236. 1986.PubMed/NCBI

165 

Berry M, Metzger D and Chambon P: Role of the two activating domains of the oestrogen receptor in the cell-type and promoter-context dependent agonistic activity of the anti-oestrogen 4-hydroxytamoxifen. EMBO J. 9:2811–2818. 1990.

166 

Mader S, Chambon P and White JH: Defining a minimal estrogen receptor DNA binding domain. Nucleic Acids Res. 21:1125–1132. 1993. View Article : Google Scholar : PubMed/NCBI

167 

Wang Z, Li Y, Banerjee S and Sarkar FH: Emerging role of Notch in stem cells and cancer. Cancer Lett. 279:8–12. 2009. View Article : Google Scholar : PubMed/NCBI

168 

Shi TP, Xu H, Wei JF, et al: Association of low expression of notch-1 and jagged-1 in human papillary bladder cancer and shorter survival. J Urol. 180:361–366. 2008. View Article : Google Scholar : PubMed/NCBI

169 

Al Saleh S, Sharaf LH and Luqmani YA: Signalling pathways involved in endocrine resistance in breast cancer and associations with epithelial to mesenchymal transition (Review). Int J Oncol. 38:1197–1217. 2011.PubMed/NCBI

170 

Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM and Wicha MS: Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 6:R605–R615. 2004. View Article : Google Scholar : PubMed/NCBI

171 

Stylianou S, Clarke RB and Brennan K: Aberrant activation of notch signaling in human breast cancer. Cancer Res. 66:1517–1525. 2006. View Article : Google Scholar : PubMed/NCBI

172 

Rizzo P, Miao H, D’Souza G, et al: Cross-talk between notch and the estrogen receptor in breast cancer suggests novel therapeutic approaches. Cancer Res. 68:5226–5235. 2008. View Article : Google Scholar : PubMed/NCBI

173 

Wang Z, Li Y, Ahmad A, et al: Targeting Notch signaling pathway to overcome drug resistance for cancer therapy. Biochim Biophys Acta. 1806:258–267. 2010.PubMed/NCBI

174 

Hurvitz SA and Pietras RJ: Rational management of endocrine resistance in breast cancer: a comprehensive review of estrogen receptor biology, treatment options, and future directions. Cancer. 113:2385–2397. 2008. View Article : Google Scholar

175 

Dibb NJ, Dilworth SM and Mol CD: Switching on kinases: oncogenic activation of BRAF and the PDGFR family. Nat Rev Cancer. 4:718–727. 2004. View Article : Google Scholar : PubMed/NCBI

176 

Weigel MT, Ghazoui Z, Dunbier A, Pancholi S, Dowsett M and Martin LA: Preclinical and clinical studies of estrogen deprivation support the PDGF/Abl pathway as a novel therapeutic target for overcoming endocrine resistance in breast cancer. Breast Cancer Res. 14:R782012. View Article : Google Scholar

177 

Pancholi V: Multifunctional α-enolase: its role in diseases. Cell Mol Life Sci. 58:902–920. 2001.

178 

Jiang BH, Agani F, Passaniti A and Semenza GL: V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res. 57:5328–5335. 1997.

179 

Wygrecka M, Marsh LM, Morty RE, et al: Enolase-1 promotes plasminogen-mediated recruitment of monocytes to the acutely inflamed lung. Blood. 113:5588–5598. 2009. View Article : Google Scholar : PubMed/NCBI

180 

Dudani AK, Cummings C, Hashemi S and Ganz PR: Isolation of a novel 45 kDa plasminogen receptor from human endothelial cells. Thromb Res. 69:185–196. 1993. View Article : Google Scholar : PubMed/NCBI

181 

Peebles KA, Duncan MW, Ruch RJ and Malkinson AM: Proteomic analysis of a neoplastic mouse lung epithelial cell line whose tumorigenicity has been abrogated by transfection with the gap junction structural gene for connexin 43, Gja1. Carcinogenesis. 24:651–657. 2003. View Article : Google Scholar

182 

Wu W, Tang X, Hu W, Lotan R, Hong WK and Mao L: Identification and validation of metastasis-associated proteins in head and neck cancer cell lines by two-dimensional electrophoresis and mass spectrometry. Clin Exp Metastasis. 19:319–326. 2002. View Article : Google Scholar : PubMed/NCBI

183 

Ray R and Miller DM: Cloning and characterization of a human c-myc promoter-binding protein. Mol Cell Biol. 11:2154–2161. 1991.PubMed/NCBI

184 

Tu SH, Chang CC, Chen CS, et al: Increased expression of enolase α in human breast cancer confers tamoxifen resistance in human breast cancer cells. Breast Cancer Res Treat. 121:539–553. 2010.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Viedma-Rodríguez R, Baiza-Gutman L, Salamanca‑Gómez F, Diaz‑Zaragoza M, Martínez-Hernández G, Ruiz Esparza‑Garrido R, Velázquez-Flores MA and Arenas-Aranda D: Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer (Review). Oncol Rep 32: 3-15, 2014.
APA
Viedma-Rodríguez, R., Baiza-Gutman, L., Salamanca‑Gómez, F., Diaz‑Zaragoza, M., Martínez-Hernández, G., Ruiz Esparza‑Garrido, R. ... Arenas-Aranda, D. (2014). Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer (Review). Oncology Reports, 32, 3-15. https://doi.org/10.3892/or.2014.3190
MLA
Viedma-Rodríguez, R., Baiza-Gutman, L., Salamanca‑Gómez, F., Diaz‑Zaragoza, M., Martínez-Hernández, G., Ruiz Esparza‑Garrido, R., Velázquez-Flores, M. A., Arenas-Aranda, D."Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer (Review)". Oncology Reports 32.1 (2014): 3-15.
Chicago
Viedma-Rodríguez, R., Baiza-Gutman, L., Salamanca‑Gómez, F., Diaz‑Zaragoza, M., Martínez-Hernández, G., Ruiz Esparza‑Garrido, R., Velázquez-Flores, M. A., Arenas-Aranda, D."Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer (Review)". Oncology Reports 32, no. 1 (2014): 3-15. https://doi.org/10.3892/or.2014.3190
Copy and paste a formatted citation
x
Spandidos Publications style
Viedma-Rodríguez R, Baiza-Gutman L, Salamanca‑Gómez F, Diaz‑Zaragoza M, Martínez-Hernández G, Ruiz Esparza‑Garrido R, Velázquez-Flores MA and Arenas-Aranda D: Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer (Review). Oncol Rep 32: 3-15, 2014.
APA
Viedma-Rodríguez, R., Baiza-Gutman, L., Salamanca‑Gómez, F., Diaz‑Zaragoza, M., Martínez-Hernández, G., Ruiz Esparza‑Garrido, R. ... Arenas-Aranda, D. (2014). Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer (Review). Oncology Reports, 32, 3-15. https://doi.org/10.3892/or.2014.3190
MLA
Viedma-Rodríguez, R., Baiza-Gutman, L., Salamanca‑Gómez, F., Diaz‑Zaragoza, M., Martínez-Hernández, G., Ruiz Esparza‑Garrido, R., Velázquez-Flores, M. A., Arenas-Aranda, D."Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer (Review)". Oncology Reports 32.1 (2014): 3-15.
Chicago
Viedma-Rodríguez, R., Baiza-Gutman, L., Salamanca‑Gómez, F., Diaz‑Zaragoza, M., Martínez-Hernández, G., Ruiz Esparza‑Garrido, R., Velázquez-Flores, M. A., Arenas-Aranda, D."Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer (Review)". Oncology Reports 32, no. 1 (2014): 3-15. https://doi.org/10.3892/or.2014.3190
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team