|
1
|
Louis DN, Ohgaki H, Wiestler OD and
Cavenee WK: WHO Classification of Tumors of the Central Nervous
System. IARC Press; Lyon: 2007
|
|
2
|
Zankl H and Zang KD: Cytological and
cytogenetical studies on brain tumors. 4. Identification of the
missing G chromosome in human meningiomas as no. 22 by fluorescence
technique. Humangenetik. 14:167–169. 1972.PubMed/NCBI
|
|
3
|
Rey JA, Bello MJ, De Campos JM, Kusak ME
and Moreno S: Cytogenetic analysis in human neurinomas. Cancer
Genet Cytogenet. 28:187–188. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Hadfield KD, Smith MJ, Urquhart JE,
Wallace AJ, Bowers NL, King AT, Rutherford SA, Trump D, Newman WG
and Evans DG: Rates of loss of heterozygosity and mitotic
recombination in NF2 schwannomas, sporadic vestibular schwannomas
and schwanno-matosis schwannomas. Oncogene. 29:6216–6221. 2010.
View Article : Google Scholar
|
|
5
|
Hansson CM, Buckley PG, Grigelioniene G,
Piotrowski A, Hellström AR, Mantripragada K, Jarbo C, Mathiesen T
and Dumanski JP: Comprehensive genetic and epigenetic analysis of
sporadic meningioma for macro-mutations on 22q and micro-mutations
within the NF2 locus. BMC Genomics. 8:162007. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Leone PE, Bello MJ, de Campos JM, Vaquero
J, Sarasa JL, Pestaña A and Rey JA: NF2 gene mutations and
allelic status of 1p, 14q and 22q in sporadic meningiomas.
Oncogene. 18:2231–2239. 1999. View Article : Google Scholar
|
|
7
|
Leone PE, Bello MJ, Mendiola M, Kusak ME,
De Campos JM, Vaquero J, Sarasa JL, Pestana A and Rey JA: Allelic
status of 1p, 14q and 22q and NF2 gene mutations in sporadic
schwannomas. Int J Mol Med. 1:889–892. 1998.PubMed/NCBI
|
|
8
|
Bello MJ, de Campos JM, Kusak ME, Vaquero
J, Sarasa JL, Pestaña A and Rey JA: Allelic loss at 1p is
associated with tumor progression of meningiomas. Genes Chromosomes
Cancer. 9:296–298. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Bello MJ, Martinez-Glez V,
Franco-Hernandez C, Pefla-Granero C, de Campos JM, Isla A,
Lassaletta L, Vaquero J and Rey JA: DNA methylation pattern in 16
tumor-related genes in schwannomas. Cancer Genet Cytogenet.
172:84–86. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Bello MJ, Amiñoso C, Lopez-Marin I, Arjona
D, Gonzalez-Gomez P, Alonso ME, Lomas J, de Campos JM, Kusak ME,
Vaquero J, Isla A, Gutierrez M, Sarasa JL and Rey JA: DNA
methylation of multiple promoter-associated CpG islands in
meningiomas: relationship with the allelic status at 1p and 22q.
Acta Neuropathol. 108:413–421. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Liu Y, Pang JC, Dong S, Mao B, Poon WS and
Ng HK: Aberrant CpG island hypermethylation profile is associated
with atypical and anaplastic meningiomas. Hum Pathol. 36:416–425.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kino T, Takeshima H, Nakao M, Nishi T,
Yamamoto K, Kimura T, Saito Y, Kochi M, Kuratsu J, Saya H and Ushio
Y: Identification of the cis-acting region in the NF2 gene
promoter as a potential target for mutation and
methylation-dependent silencing in schwannoma. Genes Cell.
6:441–454. 2001.
|
|
13
|
Gonzalez-Gomez P, Bello MJ, Alonso ME,
Lomas J, Arjona D, de Campos JM, Vaquero J, Isla A, Lassaletta L,
Gutierrez M, Sarasa JL and Rey JA: CpG island methylation in
sporadic and neurofibromatis type 2-associated schwannomas. Clin
Cancer Res. 9:5601–5606. 2003.PubMed/NCBI
|
|
14
|
Lomas J, Bello MJ, Arjona D, Alonso ME,
Martinez-Glez V, Lopez-Marin I, Amiñoso C, de Campos JM, Isla A,
Vaquero J and Rey JA: Genetic and epigenetic alteration of the NF2
gene in sporadic meningiomas. Genes Chromosomes Cancer. 42:314–319.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Kullar PJ, Pearson DM, Malley DS, Collins
VP and Ichimura K: CpG island hypermethylation of the
neurofibromatosis type 2 (NF2) gene is rare in sporadic vestibular
schwannomas. Neuropathol Appl Neurobiol. 36:505–514. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Koutsimpelas D, Ruerup G, Mann WJ and
Brieger J: Lack of neurofibromatosis type 2 gene promoter
methylation in sporadic vestibular schwannomas. ORL J
Otorhinolaryngol Relat Spec. 74:33–37. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Kishida Y, Natsume A, Kondo Y, Takeuchi I,
An B, Okamoto Y, Shinjo K, Saito K, Ando H, Ohka F, Sekido Y and
Wakabayashi T: Epigenetic subclassification of meningiomas based on
genome-wide DNA methylation analyses. Carcinogenesis. 33:436–441.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Gao F, Shi L, Russin J, Zeng L, Chang X,
He S, Chen TC, Giannotta SL, Weisenberger DJ, Zada G, Mack WJ and
Wang K: DNA methylation in the malignant transformation of
meningiomas. PloS One. 8:e541142013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Clark VE, Erson-Omay EZ, Serin A, Yin J,
Cotney J, Ozduman K, Avşar T, Li J, Murray PB, Henegariu O, Yilmaz
S, Günel JM, Carrión-Grant G, Yilmaz B, Grady C, Tanrikulu B,
Bakircioğlu M, Kaymakçalan H, Caglayan AO, Sencar L, Ceyhun E, Atik
AF, Bayri Y, Bai H, Kolb LE, Hebert RM, Omay SB, Mishra-Gorur K,
Choi M, Overton JD, et al: Genomic analysis of non-NF2 meningiomas
reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science.
339:1077–1080. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Brastianos PK, Horowitz PM, Santagata S,
Jones RT, McKenna A, Getz G, Ligon KL, Palescandolo E, Van Hummelen
P, Ducar MD, Raza A, Sunkavalli A, Macconaill LE,
Stemmer-Rachamimov AO, Louis DN, Hahn WC, Dunn IF and Beroukhim R:
Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1
mutations. Nat Genet. 45:285–289. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Stemmer-Rachamimov AO, Xu L,
Gonzalez-Agosti C, Burwick JA, Pinney D, Beauchamp R, Jacoby LB,
Gusella JF, Ramesh V and Louis DN: Universal absence of merlin, but
not other ERM family members, in schwannomas. Am J Pathol.
151:1649–1654. 1997.PubMed/NCBI
|
|
22
|
Martinez-Glez V, Franco-Hernandez C,
Alvarez L, De Campos JM, Isla A, Vaquero J, Lassaletta L,
Casartelli C and Rey JA: Meningiomas and schwannomas: molecular
subgroup classification found by expression arrays. Int J Oncol.
34:493–504. 2009.PubMed/NCBI
|
|
23
|
Torres-Martín M, Martinez-Glez V,
Peña-Granero C, Isla A, Lassaletta L, De Campos JM, Pinto GR,
Burbano RR, Meléndez B, Castresana JS and Rey JA: Gene expression
analysis of aberrant signaling pathways in meningiomas. Oncol Lett.
6:275–279. 2013.PubMed/NCBI
|
|
24
|
Torres-Martín M, Martinez-Glez V,
Peña-Granero C, Lassaletta L, Isla A, de Campos JM, Pinto GR,
Burbano RR, Meléndez B, Castresana JS and Rey JA: Expression
analysis of tumor-related genes involved in critical regulatory
pathways in schwannomas. Clin Transl Oncol. 15:409–411.
2013.PubMed/NCBI
|
|
25
|
Martínez-Glez V, Alvarez L,
Franco-Hernández C, Torres-Martin M, de Campos JM, Isla A, Vaquero
J, Lassaletta L, Castresana JS, Casartelli C and Rey JA: Genomic
deletions at 1p and 14q are associated with an abnormal cDNA
microarray gene expression pattern in meningiomas but not in
schwannomas. Cancer Genet Cytogenet. 196:1–6. 2010.PubMed/NCBI
|
|
26
|
Aarhus M, Bruland O, Sætran HA, Mork SJ,
Lund-Johansen M and Knappskog PM: Global gene expression profiling
and tissue microarray reveal novel candidate genes and
downregulation of the tumor suppressor gene CAV1 in sporadic
vestibular schwannomas. Neurosurgery. 67:998–1019. 2010. View Article : Google Scholar
|
|
27
|
Cayé-Thomasen P, Borup R, Stangerup S-E,
Thomsen J and Nielsen FC: Deregulated genes in sporadic vestibular
schwannomas. Otol Neurotol. 31:256–266. 2010.
|
|
28
|
Torres-Martin M, Lassaletta L,
San-Roman-Montero J, De Campos JM, Isla A, Gavilan J, Melendez B,
Pinto GR, Burbano RR, Castresana JS and Rey JA: Microarray analysis
of gene expression in vestibular schwannomas reveals SPP1/MET
signaling pathway and androgen receptor deregulation. Int J Oncol.
42:848–862. 2013.
|
|
29
|
Tabernero MD, Maillo A, Gil-Bellosta CJ,
Castrillo A, Sousa P, Merino M and Orfao A: Gene expression
profiles of meningiomas are associated with tumor cytogenetics and
patient outcome. Brain Pathol. 19:409–420. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Keller A, Ludwig N, Backes C, Romeike BFM,
Comtesse N, Henn W, Steudel W-I, Mawrin C, Lenhof H-P and Meese E:
Genome wide expression profiling identifies specific deregulated
pathways in meningioma. Int J Cancer. 124:346–351. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Lee Y, Liu J, Patel S, Cloughesy T, Lai A,
Farooqi H, Seligson D, Dong J, Liau L, Becker D, Mischel P, Shams S
and Nelson S: Genomic landscape of meningiomas. Brain Pathol.
20:751–762. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Pérez-Magán E, Campos-Martín Y, Mur P,
Fiaño C, Ribalta T, García JF, Rey JA, Rodríguez de Lope A, Mollejo
M and Meléndez B: Genetic alterations associated with progression
and recurrence in meningiomas. J Neuropathol Exp Neurol.
71:882–893. 2012.PubMed/NCBI
|
|
33
|
Torres-Martin M, Lassaletta L, de Campos
JM, Isla A, Gavilan J, Pinto GR, Burbano RR, Latif F, Melendez B,
Castresana JS and Rey JA: Global profiling in vestibular
schwannomas shows critical deregulation of microRNAs and
upregulation in those included in chromosomal region 14q32. PloS
One. 8:e658682013. View Article : Google Scholar
|
|
34
|
Bush ML, Oblinger J, Brendel V, Santarelli
G, Huang J, Akhmametyeva EM, Burns SS, Wheeler J, Davis J, Yates
CW, Chaudhury AR, Kulp S, Chen CS, Chang LS, Welling DB and Jacob
A: AR42, a novel histone deacetylase inhibitor, as a potential
therapy for vestibular schwannomas and meningiomas. Neuro Oncol.
13:983–999. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Spear SA, Burns SS, Oblinger JL, Ren Y,
Pan L, Kinghorn AD, Welling DB and Chang LS: Natural compounds as
potential treatments of NF2-deficient schwannoma and meningioma:
cucurbitacin D and goyazensolide. Otol Neurotol. 34:1519–1527.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Johnson WE, Li C and Rabinovic A:
Adjusting batch effects in microarray expression data using
empirical Bayes methods. Biostatistics. 8:118–127. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
MAQC Consortium. Shi L, Reid LH, Jones WD,
Shippy R, Warrington JA, Baker SC, Collins PJ, de Longueville F,
Kawasaki ES, Lee KY, Luo Y, Sun YA, Willey JC, Setterquist RA,
Fischer GM, Tong W, Dragan YP, Dix DJ, Frueh FW, Goodsaid FM,
Herman D, Jensen RV, Johnson CD, Lobenhofer EK, Puri RK, Schrf U,
Thierry-Mieg J, Wang C, Wilson M, Wolber PK, et al: The MicroArray
Quality Control (MAQC) project shows inter- and intraplatform
reproducibility of gene expression measurements. Nat Biotechnol.
24:1151–1161. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhou K, Wang G, Wang Y, Jin H, Yang S and
Liu C: The potential involvement of E-cadherin and beta-catenins in
meningioma. PloS One. 5:e112312010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wang Z, Kong D, Li Y and Sarkar FH: PDGF-D
signaling: a novel target in cancer therapy. Curr Drug Targets.
10:38–41. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Moriyama T, Kataoka H, Kawano H, Yokogami
K, Nakano S, Goya T, Uchino H, Koono M and Wakisaka S: Comparative
analysis of expression of hepatocyte growth factor and its
receptor, c-met, in gliomas, meningiomas and schwannomas in humans.
Cancer Lett. 124:149–155. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Cipriani NA, Abidoye OO, Vokes E and
Salgia R: MET as a target for treatment of chest tumors. Lung
Cancer. 63:169–179. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Lai AZ, Abella JV and Park M: Crosstalk in
Met receptor oncogenesis. Trends Cell Biol. 19:542–551. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhou WJ, Geng ZH, Chi S, Zhang W, Niu XF,
Lan SJ, Ma L, Yang X, Wang LJ, Ding YQ and Geng JG: Slit-Robo
signaling induces malignant transformation through Hakai-mediated
E-cadherin degradation during colorectal epithelial cell
carcinogenesis. Cell Res. 21:609–626. 2011. View Article : Google Scholar
|
|
44
|
Dai CF, Jiang YZ, Li Y, Wang K, Liu PS,
Patankar MS and Zheng J: Expression and roles of Slit/Robo in human
ovarian cancer. Histochem Cell Biol. 135:475–485. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zanata SM, Hovatta I, Rohm B and Püschel
AW: Antagonistic effects of Rnd1 and RhoD GTPases regulate receptor
activity in Semaphorin 3A-induced cytoskeletal collapse. J
Neurosci. 22:471–477. 2002.PubMed/NCBI
|
|
46
|
Hota PK and Buck M: Thermodynamic
characterization of two homologous protein complexes: associations
of the semaphorin receptor plexin-B1 RhoGTPase binding domain with
Rnd1 and active Rac1. Protein Sci. 18:1060–1071. 2009. View Article : Google Scholar
|
|
47
|
Oue E, Lee JW, Sakamoto K, Iimura T, Aoki
K, Kayamori K, Michi Y, Yamashiro M, Harada K, Amagasa T and
Yamaguchi A: CXCL2 synthesized by oral squamous cell carcinoma is
involved in cancer-associated bone destruction. Biochem Biophys Res
Commun. 424:456–461. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Li YH, Ghavampur S, Bondallaz P, Will L,
Grenningloh G and Püschel AW: Rnd1 regulates axon extension by
enhancing the microtubule destabilizing activity of SCG10. J Biol
Chem. 284:363–371. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Jalkanen S, Karikoski M, Mercier N,
Koskinen K, Henttinen T, Elima K, Salmivirta K and Salmi M: The
oxidase activity of vascular adhesion protein-1 (VAP-1) induces
endothelial E- and P-selectins and leukocyte binding. Blood.
110:1864–1870. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Eylar EH, Szymanska I, Ishaque A, Ramwani
J and Dubiski S: Localization of the P2 protein in peripheral nerve
myelin. J Immunol. 124:1086–1092. 1980.PubMed/NCBI
|
|
51
|
Everly JL, Brady RO and Quarles RH:
Evidence that the major protein in rat sciatic nerve myelin is a
glycoprotein. J Neurochem. 21:329–334. 1973. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Bottos A, Rissone A, Bussolino F and Arese
M: Neurexins and neuroligins: synapses look out of the nervous
system. Cell Mol Life Sci. 68:2655–2666. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Alenius M and Bohm S: Identification of a
novel neural cell adhesion molecule-related gene with a potential
role in selective axonal projection. J Biol Chem. 272:26083–26086.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Campos B, Warta R, Chaisaingmongkol J,
Geiselhart L, Popanda O, Hartmann C, von Deimling A, Unterberg A,
Plass C, Schmezer P and Herold-Mende C: Epigenetically mediated
downregulation of the differentiation-promoting chaperon protein
CRABP2 in astrocytic gliomas. Int J Cancer. 131:1963–1968. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Konac E, Varol N, Yilmaz A, Menevse S and
Sozen S: DNA methyltransferase inhibitor-mediated apoptosis in the
Wnt/β-catenin signal pathway in a renal cell carcinoma cell line.
Exp Biol Med. 238:1009–1016. 2013.PubMed/NCBI
|
|
56
|
Rose RA and Giles WR: Natriuretic peptide
C receptor signalling in the heart and vasculature. J Physiol.
586:353–366. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Gjerstorff MF and Ditzel HJ: An overview
of the GAGE cancer/ testis antigen family with the inclusion of
newly identified members. Tissue Antigens. 71:187–192. 2008.
View Article : Google Scholar : PubMed/NCBI
|