Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
February-2015 Volume 33 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2015 Volume 33 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Epithelial-mesenchymal transition‑associated microRNAs in colorectal cancer and drug-targeted therapies (Review)

  • Authors:
    • Danjuan Jin
    • Yantian Fang
    • Zhengyang Li
    • Zongyou Chen
    • Jianbin Xiang
  • View Affiliations / Copyright

    Affiliations: Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
  • Pages: 515-525
    |
    Published online on: December 1, 2014
       https://doi.org/10.3892/or.2014.3638
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Colorectal cancer (CRC) is one of the most common malignancies, and the third leading cause of cancer‑associated mortality worldwide. Therefore, the identification of effective targets at the early stages of cancer invasion and metastasis, and new tumor markers for early diagnosis and individualized treatment is imperative for CRC. Epithelial‑mesenchymal transition (EMT) refers to the phenomenon of the transformation of epithelial cells to mesenchymal cells in specific physiological and/or pathological circumstances. Evidence suggests that EMT plays an important role in in situ infiltration and distant metastasis of many types of cancer, including CRC. Recent findings showed that microRNA expression is important in regulating the EMT process. This review aimed to summarize EMT-associated specific miRNA molecules in CRC, with particular emphasis on clinical targets for effective treatment of this lethal disease.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Siegel R, Ma J, Zou Z and Jemal A: Cancer Statistics, 2014. CA Cancer J Clin. 64:9–29. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Thiery JP: Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol. 15:740–746. 2003. View Article : Google Scholar : PubMed/NCBI

3 

Croce CM and Iorio MV: MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. EMBO Mol Med. 4:143–159. 2012. View Article : Google Scholar

4 

Jeff JH and Yang J: Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev. 27:2192–2206. 2013. View Article : Google Scholar

5 

Thiery JP and Sleeman JP: Complex networks orchestrate epithelial-mesenchymal-transitions. Nat Rev Mol Cell Biol. 7:131–142. 2006. View Article : Google Scholar : PubMed/NCBI

6 

Jang J and Weinberg RA: Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 14:818–829. 2008. View Article : Google Scholar

7 

Pino MS, Kikuchi H, Zeng M, et al: Epithelial to mesenchymal transition is impaired in colon cancer cells with microsatellite instability. Gastroenterology. 138:1406–1417. 2010. View Article : Google Scholar :

8 

Savagner P: The epithelial-mesenchymal transition phenomenon. Ann Oncol. 21:89–92. 2010. View Article : Google Scholar

9 

Bonnomet A, Brysse A, Tachsidis A, et al: Epithelial-tomesenchymal transitions and circulating tumor cells. J Mammary Gland Biol Neoplasia. 15:261–273. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Lun H and Shourong S: EMT phenomenon and related microRNAs in the malignant progression of tumor. Chin Oncol. 21:725–730. 2011.

11 

Cavallaro U, Schaffhauser B and Christofori G: Cadherins and the tumour progression: is it all in a switch? Cancer Lett. 176:123–128. 2002. View Article : Google Scholar : PubMed/NCBI

12 

Saito Y, Takazawa H, Uzawa K, et al: Reduced expression of E-cadherin in oral squamous cell carcinoma: Relationship with DNA methylation of 5′ CpG island. Int J Oncol. 12:293–298. 1998.PubMed/NCBI

13 

Lester RD, Jo M, Montel V, et al: uPAR induces epithelial-mesenchymal transition in hypoxic breast cancer cells. J Cell Biol. 178:425–436. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Berx G and Van Roy F: The E-cadherin/catenin complex: an important gatekeeper in breast cancer tumorigenesis and malignant progression. Breast Cancer Res. 3:289–293. 2001. View Article : Google Scholar : PubMed/NCBI

15 

Canel M, Serrels A, Frame MC, et al: E-cadherin-integrin crosstalk in cancer invasion and metastasis. J Cell Sci. 126:393–401. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Derycke LD and Bracke ME: N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signaling. Int J Dev Biol. 48:463–476. 2004. View Article : Google Scholar

17 

Hazan RB, Qiao R, Keren R, et al: Cadherin switch in tumor progression. Ann NY Acad Sci. 1014:155–163. 2004. View Article : Google Scholar : PubMed/NCBI

18 

Rosivatz E, Becker I, Bamba M, et al: Neoexpression of N-cadherin in E-cadherin positive colon cancers. Int J Cancer. 111:711–719. 2004. View Article : Google Scholar : PubMed/NCBI

19 

Colomiere M, Findlay J, Ackland L and Ahmed N: Epidermal growth factor-induced ovarian carcinoma cell migration is associated with JAK2/STAT3 signals and changes in the abundance and localization of alpha6betal integrin. Int J Biochem Cell Biol. 41:1034–1045. 2009. View Article : Google Scholar

20 

Vora HH, Patel NA, Rajvik KN, et al: Cytokerain and vimentin expression in breast cancer. Int J Biol Markers. 24:38–46. 2009.PubMed/NCBI

21 

Shirahata A, Sakata M, Sakuraba K, et al: Vimentin methylation as a marker or advanced colorectal carcinoma. Anticancer Res. 29:279–281. 2009.PubMed/NCBI

22 

Wei J, Xu G, Wu M, et al: Overexpression of vimentin contributes to prostate cancer invasion and metastasis via src regulation. Anticancer Res. 28:327–334. 2008.PubMed/NCBI

23 

Pankov R and Yamada KM: Fibronectin at a glance. J Cell Science. 115:3861–3863. 2002. View Article : Google Scholar : PubMed/NCBI

24 

Birchler MT, Milisavlijevic D, Pfaltz M, et al: Expression of the extra domain B of fibronectin, a marker of angiogenesis, in head and neck tumors. Laryngoscope. 113:1231–1237. 2003. View Article : Google Scholar : PubMed/NCBI

25 

Cano A, Perez-Moreno MA, Rodrigo I, et al: The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 12:76–83. 2000. View Article : Google Scholar

26 

Hajra KM, Chen DY and Fearon ER: The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res. 62:1613–1618. 2002.PubMed/NCBI

27 

Eger A, Aigner K, Sonderegger S, et al: DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene. 24:2375–2385. 2005. View Article : Google Scholar : PubMed/NCBI

28 

Kim T, Veronese A, Pichiorri F, et al: p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med. 208:875–883. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Yang J, Mani SA, Donaher JL, et al: Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 117:927–939. 2004. View Article : Google Scholar : PubMed/NCBI

30 

Fang X, Cai Y, Liu J, et al: Twist2 contributes to breast cancer progression by promoting an epithelial-mesenchymal transition and cancer stem-like cell self-renewal. Oncogene. 30:4707–4720. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Casas E, Kim J, Bendesky A, et al: Snail2 is an essential mediator of Twist1-induced epithelial mesenchymal transition and metastasis. Cancer Res. 71:245–254. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Nusse R and Varmus HE: Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 31:99–109. 1982. View Article : Google Scholar : PubMed/NCBI

33 

Kurayoshi M, Oue N, Yamamoto H, et al: Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Res. 66:10439–10448. 2006. View Article : Google Scholar : PubMed/NCBI

34 

Dissanayake SK, Wade M, Johnson CE, et al: The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J Biol Chem. 282:17259–17271. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Huelsken J and Behrens J: The Wnt signaling pathway. J Cell Sci. 115:3977–3978. 2002. View Article : Google Scholar : PubMed/NCBI

36 

King TD, Zhang W, Suto MJ, et al: Frizzled7 as an emerging target for cancer therapy. Cell Signal. 24:846–851. 2012. View Article : Google Scholar :

37 

MacDonald BT, Tamai K and He X: Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 17:9–26. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Deka J, Wiedemann N, Anderle P, et al: Bcl9/Bcl9l are critical for Wnt-mediated regulation of stem cell traits in colon epithelium and adenocarcinomas. Cancer Res. 70:6619–6628. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Hlubek F, Spaderna S, Schmalhofer O, et al: Wnt/FZD signaling and colorectal cancer morphogenesis. Front Biosci. 12:458–470. 2007. View Article : Google Scholar

40 

Beiter K, Hiendlmeyer E, Brabletz T, et al: Beta-catenin regulates the expression of tenascin-C in human colorectal tumors. Oncogene. 24:8200–8204. 2005.PubMed/NCBI

41 

Katsuno Y, Lamouille S and Derynck R: TGF-β signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol. 25:76–84. 2013. View Article : Google Scholar

42 

Watanabe Y, Itoh S, Goto T, et al: TMEPAI, a transmembrane TGF-beta-inducible protein, sequesters Smad proteins from active participation in TGF-beta signaling. Mol Cell. 37:123–134. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Shi Y and Massague J: Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 113:685–700. 2003. View Article : Google Scholar : PubMed/NCBI

44 

Tsukazaki T, Chiang TA, Davison AF, et al: SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell. 95:779–791. 1998. View Article : Google Scholar : PubMed/NCBI

45 

Müller N, Reinacher-Schick A, Baldus S, et al: SMAD4 induces the tumor suppressor E-cadherin and P-cadherin in colon carcinoma cells. Oncogene. 21:6049–6058. 2002. View Article : Google Scholar : PubMed/NCBI

46 

Mu Y, Gudey SK and Landström M: Non-SMAD signaling pathways. Cell Tissue Res. 347:11–20. 2012. View Article : Google Scholar

47 

Hong M, Wilkes MC, Penheiter SG, et al: Non-Smad transforming growth factor-β signaling regulated by focal adhesion kinase binding the p85 subunit of phosphatidylinositol 3-kinase. J Biol Chem. 286:17841–17850. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Kang JS, Liu C and Derynck R: New regulatory mechanisms of TGF-beta receptor function. Trends Cell Biol. 19:385–394. 2009. View Article : Google Scholar : PubMed/NCBI

49 

Hartsough MT and Mulder KM: Transforming growth factor beta activation of p44mapk in proliferating cultures of epithelial cells. J Biol Chem. 270:7117–7124. 1995. View Article : Google Scholar : PubMed/NCBI

50 

Park SS, Eom YW, Kim EH, et al: Involvement of c-Src kinase in the regulation of TGF-beta1-induced apoptosis. Oncogene. 23:6272–6281. 2004. View Article : Google Scholar : PubMed/NCBI

51 

Yu L, Hebert MC and Zhang YE: TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. EMBO J. 21:3749–3759. 2002. View Article : Google Scholar : PubMed/NCBI

52 

Timmerman LA, Grego Bessa J, Raya A, et al: Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 18:99–115. 2004. View Article : Google Scholar : PubMed/NCBI

53 

Leong KG, Niessen K, Kulic I, et al: Jagged l-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. J Exp Med. 204:2935–2948. 2007. View Article : Google Scholar : PubMed/NCBI

54 

Sahlgren C, Gustafsson MV, Jin S, et al: Notch signaling mediates hypoxia induced tumor cell migration and invasion. Proc Natl Acad Sci USA. 105:6392–6397. 2008. View Article : Google Scholar

55 

Veenendaal LM, Kranenburg O, Smakman N, et al: Differential Notch and TGFbeta signaling in primary colorectal tumors and their corresponding metastases. Cell Oncol. 30:1–11. 2008.PubMed/NCBI

56 

Murone M, Rosenthal A and de Sauvage FJ: Sonic hedgehog signaling by the patched-smoothened receptor complex. Curr Biol. 9:76–84. 1999. View Article : Google Scholar : PubMed/NCBI

57 

Chen JS, Huang XH, Wang Q, et al: Sonic hedgehog signaling pathway induces cell migration and invasion through focal adhesion kinase/AKT signaling-mediated activation of matrix metalloproteinase (MMP)-2 and MMP-9 in liver cancer. Carcinogenesis. 34:10–19. 2013. View Article : Google Scholar

58 

Zhang H, Berezov A, Wang Q, et al: ErbB receptors: from oncogenes to targeted cancer therapies. J Clin Invest. 117:2051–2058. 2007. View Article : Google Scholar : PubMed/NCBI

59 

Oda K, Matsuoka Y, Funahashi A, et al: A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol. 1:2005.00102005. View Article : Google Scholar

60 

Wu L, Fan J and Belasco JG: MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA. 103:4034–4039. 2006. View Article : Google Scholar : PubMed/NCBI

61 

Wienholds E, Koudijs MJ, van Eeden FJ, et al: The microRNA-producing enzyme Dicer1 is essencial for zebrafish development. Nat Genet. 35:217–218. 2003. View Article : Google Scholar : PubMed/NCBI

62 

Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI

63 

Pasquinelli AE, Reinhart BJ, Slack F, et al: Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 408:86–89. 2000. View Article : Google Scholar : PubMed/NCBI

64 

Fang Y, Shi C, Manduchi E, et al: MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc Natl Acad Sci USA. 107:13450–13455. 2010. View Article : Google Scholar : PubMed/NCBI

65 

Tsai KW, Wu CW, Hu LY, et al: Epigenetic regulation of miR-34b and miR-129 expression in gastric cancer. Int J Cancer. 129:2600–2610. 2011. View Article : Google Scholar : PubMed/NCBI

66 

Yan W, Song G-X and Li Q: Advances in understanding the relationship between microRNAs and colorectal cancer. World Chin J Digestol. 19:3426–3431. 2011.

67 

Ng EK, Chong WW, Jin H, et al: Differential expression of microRNAs in plasma of colorectal cancer patients: a potential marker for colorectal cancer screening. Gut. 58:1375–1381. 2009. View Article : Google Scholar : PubMed/NCBI

68 

Lu J, Getz G, Miska EA, et al: MicroRNA expression profiles classify human cancers. Nature. 435:834–838. 2005. View Article : Google Scholar : PubMed/NCBI

69 

Calin GA, Sevignani C, Dumitru CD, et al: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 101:2999–3004. 2004. View Article : Google Scholar : PubMed/NCBI

70 

Hurteau GJ, Carlson JA, Spivack SD, et al: Overexpression of the microRNA has-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res. 67:7972–7976. 2007. View Article : Google Scholar : PubMed/NCBI

71 

Gregory PA, Bert AG, Paterson EL, et al: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 10:593–601. 2008. View Article : Google Scholar : PubMed/NCBI

72 

Park SM, Gaur AB, Lengyel E, et al: The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 22:894–907. 2008. View Article : Google Scholar : PubMed/NCBI

73 

Burk U, Schubert J, Wellner U, et al: A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 9:582–589. 2008. View Article : Google Scholar : PubMed/NCBI

74 

Shell S, Park SM, Radjabi AR, et al: Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci USA. 104:11400–11405. 2007. View Article : Google Scholar : PubMed/NCBI

75 

Liu X, Wang C, Chen Z, et al: MicroRNA-138 suppresses epithelial-mesenchymal transition in squamous cell carcinoma lines. Biochem J. 440:23–31. 2011. View Article : Google Scholar : PubMed/NCBI

76 

Castilla MA, Moreno-Bueno G, Romero-Perez L, et al: Micro-RNA signature of the epithelial-mesenchymal transition in endometrial carcinosarcoma. J Pathol. 233:72–80. 2011. View Article : Google Scholar

77 

Li QQ, Chen ZQ, Cao XX, et al: Involvement of NF-κB/miR-448 regulatory feedback loop in chemotherapy-induced epithelial-mesenchymal transition of breast cancer cells. Cell Death Differ. 18:16–25. 2011. View Article : Google Scholar :

78 

Meng Z, Fu X, Chen X, et al: miR-194 is a marker of hepatic epithelial cells and suppresses metastasis of liver cancer cells in mice. Hepatology. 52:2148–2157. 2010. View Article : Google Scholar : PubMed/NCBI

79 

Ma L, Teruya-Feldstein J and Weinberg RA: Tumor invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 449:682–688. 2007. View Article : Google Scholar : PubMed/NCBI

80 

Kong W, Yang H, He L, et al: MicroRNA155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol. 28:6773–6784. 2008. View Article : Google Scholar : PubMed/NCBI

81 

Cottonham CL, Kaneko S and Xu L: miR-21 and miR-31 converge on TIAM1 to regulate migration and invasion of colon carcinoma cells. J Biol Chem. 285:35293–35302. 2010. View Article : Google Scholar : PubMed/NCBI

82 

Asangani IA, Rasheed SA, Nikolova DA, et al: MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 27:2128–2136. 2008. View Article : Google Scholar

83 

Wang P, Zho F, Zheng X, et al: microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Res. 69:8157–8165. 2009. View Article : Google Scholar : PubMed/NCBI

84 

Ma L, Young J, Prabhala H, et al: miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol. 12:247–256. 2010.PubMed/NCBI

85 

Vetter G, Saumet A, Moes M, et al: miR-661 expression in SNAI1-induced epithelial to mesenchymal transition contributes to breast cancer cell invasion by targeting Nectin-1 and StarD10 messengers. Oncogene. 29:4436–4448. 2010. View Article : Google Scholar : PubMed/NCBI

86 

Castilla MA, Moreno-Bueno G, Romero-Pérez L, et al: Micro-RNA signature of the epithelial-mesenchymal transition in endometrial carcinosarcoma. J Pathol. 223:72–80. 2011. View Article : Google Scholar

87 

De Krijger I, Mekenkamp LJ, Punt CJ and Nagtegaal ID: MicroRNAs in colorectal cancer metastasis. J Pathol. 224:438–447. 2011. View Article : Google Scholar : PubMed/NCBI

88 

Liu M and Chen H: The role of microRNAs in colorectal cancer. J Genet Genomics. 37:347–358. 2010. View Article : Google Scholar : PubMed/NCBI

89 

Spaderna S, Schmalhofer O, Hlubek F, et al: A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology. 131:830–840. 2006. View Article : Google Scholar : PubMed/NCBI

90 

Spaderna S, Schmalhofer O, Wahlbuhl M, et al: The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res. 68:537–544. 2008. View Article : Google Scholar : PubMed/NCBI

91 

Korpal M, Lee ES, Hu G and Kang Y: The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 283:14910–14914. 2008. View Article : Google Scholar : PubMed/NCBI

92 

Brabletz S and Brabletz T: The ZEB/miR-200 feedback loop - a motor of cellular plasticity in development and cancer? EMBO Rep. 11:670–677. 2010. View Article : Google Scholar : PubMed/NCBI

93 

Fujita S, Ito T, Mizutani T, et al: miR-21 gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. J Mol Biol. 378:492–504. 2008. View Article : Google Scholar : PubMed/NCBI

94 

Ferraro A, Kontos CK, Boni T, et al: Epigenetic regulation of miR-21 in colorectal cancer: ITGB4 as a novel miR-21 target and a three-gene network (miR-21-ITGB4-PDCD4) as predictor of metastatic tumor potential. Epigenetics. 9:129–141. 2014. View Article : Google Scholar :

95 

Bommer GT, Gerin I, Feng Y, et al: p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol. 17:1298–1307. 2007. View Article : Google Scholar : PubMed/NCBI

96 

Chang TC, Wentzel EA, Kent OA, et al: Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 26:745–752. 2007. View Article : Google Scholar : PubMed/NCBI

97 

Yamakuchi M, Ferlito M and Lowenstein CJ: miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA. 105:13421–13426. 2008. View Article : Google Scholar : PubMed/NCBI

98 

Siemens H, Jackstadt R, Hünten S, et al: miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle. 10:4256–4271. 2011. View Article : Google Scholar : PubMed/NCBI

99 

Kim NH, Kim HS, Li XY, et al: A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J Cell Biol. 195:417–433. 2011. View Article : Google Scholar : PubMed/NCBI

100 

Rokavec M, Oner MG, Li H, et al: IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest. 124:1853–1867. 2014. View Article : Google Scholar : PubMed/NCBI

101 

Bandi N, Zbinden S, Gugger M, et al: miR-15a and miR16 are implicated in cell cycle regulation a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer. Cancer Res. 69:5553–5559. 2009. View Article : Google Scholar : PubMed/NCBI

102 

Jackstadt R, Röh S, Neumann J, et al: AP4 is a mediator of epithelial-mesenchymal transition and metastasis in colorectal cancer. J Exp Med. 210:1331–1350. 2013. View Article : Google Scholar : PubMed/NCBI

103 

Shi L, Jackstadt R, Siemens H, et al: p53-induced miR-15a/16-1 and AP4 form a double-negative feedback loop to regulate epithelial-mesenchymal transition and metastasis in colorectal cancer. Cancer Res. 74:532–542. 2014. View Article : Google Scholar

104 

Dihlmann S, Siermann A and von Knebel Doeberitz M: The nonsteroidal anti-inflammatory drugs aspirin and indomethacin attenuate beta-catenin/TCF-4 signaling. Oncogene. 20:645–653. 2001. View Article : Google Scholar : PubMed/NCBI

105 

Boon EM, Keller JJ, Wormhoudt TA, et al: Sulindac targets nuclear beta-catenin accumulation and Wnt signaling in adenomas of patients with familial adenomatous polyposis and in human colorectal cancer cell lines. Br J Cancer. 90:224–229. 2004. View Article : Google Scholar : PubMed/NCBI

106 

Linna L and Shoujun Y: Wnt/β-catenin signaling pathway and strategy of originating and treatment in colorectal cancer. World Chin J Digestol. 14:201–206. 2006.

107 

Zhou L, An N, Haydon RC, et al: Tyrosine kinase inhibitor STI-571/Gleevec down-regulatates the beta-catenin signaling activity. Cancer Lett. 193:161–170. 2003. View Article : Google Scholar : PubMed/NCBI

108 

Green DW, Roh H, Pippin JA and Drebin JA: Beta-catenin antisense treatment decreases beta-catenin expression and tumor growth rate in colon carcinoma xenografts. J Surg Res. 101:16–20. 2001. View Article : Google Scholar : PubMed/NCBI

109 

Suzuki H, Watkins DN, Jair KW, et al: Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet. 36:417–422. 2004. View Article : Google Scholar : PubMed/NCBI

110 

Katz LH, Li Y, Chen JS, et al: Targeting TGF-β signaling in cancer. Expert Opin Ther Targets. 17:743–760. 2013. View Article : Google Scholar : PubMed/NCBI

111 

Lampropoulos P, Zizi-Sermpetzoglou A, Rizos S, et al: TGF-beta signaling in colon carcinogenesis. Cancer Lett. 314:1–7. 2012. View Article : Google Scholar

112 

Melisi D, Ishiyama S, Sclabas GM, et al: LY2109761, a novel transforming growth factor beta receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancteatic cancer metastasis. Mol Cancer Ther. 7:829–840. 2008. View Article : Google Scholar : PubMed/NCBI

113 

Korpal M, Yan J, Lu X, et al: Imaging transforming growth factor-beta signaling dynamics and therapeutic response in breast cancer bone metastasis. Nat Med. 15:960–966. 2009. View Article : Google Scholar : PubMed/NCBI

114 

Zhang B, Halder SK, Zhang S and Datta PK: Targeting transforming growth factor-beta signaling in liver metastasis of colon cancer. Cancer Lett. 277:114–120. 2009. View Article : Google Scholar : PubMed/NCBI

115 

Connolly EC, Freimuth J and Akhurst RJ: Comlexities of TGF-β targeted cancer therapy. Int J Biol Sci. 8:964–978. 2012. View Article : Google Scholar

116 

Zhao BM and Hoffmann FM: Inhibition of transforming growth factor-beta1-induced signaling and epithelial-to-mesenchymal transition by the Smad-binding peptide aptamer Trx-SARA. Mol Biol Cell. 17:3819–3831. 2006. View Article : Google Scholar : PubMed/NCBI

117 

Espinoza I, Pochampally R, Xing F, et al: Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition. Onco Targets Ther. 6:1249–1259. 2013.PubMed/NCBI

118 

Yan M and Plowman GD: Delta-like 4/Notch signaling and its therapeutic implications. Clin Cancer Res. 13:7243–7246. 2007. View Article : Google Scholar : PubMed/NCBI

119 

Hayashi I, Takatori S, Urano Y, et al: Neutralization of the γ-secretase activity by monoclonal antibody against extracellular domain of nicastrin. Oncogene. 31:787–798. 2012. View Article : Google Scholar

120 

Funahashi Y, Hernandez SL, Das I, et al: A notch1 ectodomain construct inhibits endothelial notch signaling, tumor growth, and angiogenesis. Cancer Res. 68:4727–4735. 2008. View Article : Google Scholar : PubMed/NCBI

121 

Tammam J, Ware C, Efferson C, et al: Down-regulation of the Notch pathway mediated by a gamma-secretase inhibitor induces anti-tumor effects in mouse models of T-cell leukaemia. Br J Pharmacol. 158:1183–1195. 2009. View Article : Google Scholar : PubMed/NCBI

122 

Fouladi M, Stewart CF, Olson J, et al: Phase I trial of MK_0752 in children with refractory CNS malignancies: a pediatric brain tumor consortium study. J Clin Oncol. 29:3529–3534. 2011. View Article : Google Scholar : PubMed/NCBI

123 

Moellering RE, Cornejo M, Davis TN, et al: Direct inhibition of the NOTCH transcription factor complex. Nature. 462:182–188. 2009. View Article : Google Scholar : PubMed/NCBI

124 

Zhou W, Kallifatidis G, Baumann B, et al: Dietary polyphenol quercetin targets pancreatic cancer stem cells. Int J Oncol. 37:551–561. 2010.PubMed/NCBI

125 

Kallifatidis G, Labsch S, Rausch V, et al: Sulforaphane increases drug-mediated cytotoxicity toward cancer stem-like cells of pancreas and prostate. Mol Ther. 19:188–195. 2011. View Article : Google Scholar :

126 

Espinozal I and Miele L: Notch inhibitors for cancer treatment. Pharmacol Ther. 139:95–110. 2013. View Article : Google Scholar

127 

Kelleher FC: Hedgehog signaling and therapeutics in pancreatic cancer. Carcinogenesis. 32:445–451. 2011. View Article : Google Scholar

128 

Feldmann G, Dhara S, Fendrich V, et al: Blockade of Hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res. 67:2187–2196. 2007. View Article : Google Scholar : PubMed/NCBI

129 

Agyeman A, Mazumdar T and Houghton JA: Regulation of DNA damage following termination of Hedgehog (HH) survival signaling at the level of the GLI genes in human colon cancer. Oncotarget. 3:854–868. 2012.PubMed/NCBI

130 

Stecca B, Ruiz I and Altaba A: Context-dependent regulation of the GLI code in cancer by Hedgehog and non-Hedgehog signals. J Mol Cell Biol. 2:84–95. 2010. View Article : Google Scholar : PubMed/NCBI

131 

Lauth M and Toftqard R: Non-canonical activation of GLI transcription factors: implications for targeted anti-cancer therapy. Cell Cycle. 6:2458–2463. 2007. View Article : Google Scholar : PubMed/NCBI

132 

Hegan S, Orr MC and Doyle B: Targeted therapies in colorectal cancer - an integrative view by PPPM. EPMA J. 4:32013. View Article : Google Scholar

133 

Ebi H, Corcoran RB, Singh A, et al: Receptor tyrosine kinases exert dominant control over PI3K signaling in human KRAS mutant colorectal cancers. J Clin Invest. 121:4311–4321. 2011. View Article : Google Scholar : PubMed/NCBI

134 

Van Cutsem E, Peeters M, Siena S, et al: Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol. 25:1658–1664. 2007. View Article : Google Scholar : PubMed/NCBI

135 

Jonker DJ, O’Callaghan CJ, Karapetis CS, et al: Cetuximab for the treatment of colorectal cancer. N Engl J Med. 357:2040–2048. 2007. View Article : Google Scholar : PubMed/NCBI

136 

Van Cutsem E, Köhne CH, Lang I, et al: Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol. 29:2011–2019. 2011. View Article : Google Scholar : PubMed/NCBI

137 

Heinemann V, von Weikersthal LF, Decker T, et al: Randomized comparison of FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment of KRAS wild-type metastatic colorectal cancer: German AIO study KRK-0306 (FIRE-3). J Clin Oncol. 31:LBA3506 ASCO Annual Meeting. 2013.

138 

Dassow H and Aigner A: MicroRNAs (miRNAs) in colorectal cancer: from aberrant expression towards therapy. Curr Pharm Des. 19:1242–1252. 2013.PubMed/NCBI

139 

Weiler J, Hunziker J and Hall J: Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease. Gene Ther. 13:496–502. 2006. View Article : Google Scholar

140 

Garzon R, Marcucci G and Croce CM: Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov. 9:775–789. 2010. View Article : Google Scholar : PubMed/NCBI

141 

Yang Z, Vilkaitis G, Yu B, et al: Approaches for studying MicroRNA and small interfering RNA methylation in vitro and in vivo. Methods Enzymol. 427:139–154. 2007. View Article : Google Scholar : PubMed/NCBI

142 

Ørom UA, Kauppinen S and Lund AH: LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene. 10:137–141. 2006. View Article : Google Scholar

143 

Vester B and Wengel J: LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochemistry. 43:13233–13241. 2004. View Article : Google Scholar : PubMed/NCBI

144 

Krützfeldt J, Rajewsky N, Braich R, et al: Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 438:685–689. 2005. View Article : Google Scholar

145 

Si ML, Zhu S, Wu H, et al: miR-21-mediated tumor growth. Oncogene. 26:2799–2803. 2007. View Article : Google Scholar

146 

Corsten MF, Miranda R, Kasmieh R, et al: MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res. 67:8994–9000. 2007. View Article : Google Scholar : PubMed/NCBI

147 

Meng F, Henson R, Lang M, et al: Involvement of human microRNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology. 130:2113–2129. 2006. View Article : Google Scholar : PubMed/NCBI

148 

Ebert MS, Neilson JR and Sharp PA: MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 4:721–726. 2007. View Article : Google Scholar : PubMed/NCBI

149 

Ebert MS and Sharp PA: MicroRNA sponges: progress and possibilities. RNA. 16:2043–2050. 2010. View Article : Google Scholar : PubMed/NCBI

150 

Valastyan S, Reinhardt F, Benaich N, et al: A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 137:1032–1046. 2009. View Article : Google Scholar : PubMed/NCBI

151 

Xiao J, Yang B, Lin H, et al: Novel approaches for gene-specific interference via manipulating actions of microRNAs: examination on the pacemaker channel genes HCN2 and HCN4. J Cell Physiol. 212:285–292. 2007. View Article : Google Scholar : PubMed/NCBI

152 

Gumireddy K, Young DD, Xiong X, et al: Small-molecule inhibitors of microrna miR-21 function. Angew Chem Int Ed Engl. 47:7482–7484. 2008. View Article : Google Scholar : PubMed/NCBI

153 

Lennox KA and Behlke MA: Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther. 18:1111–1120. 2011. View Article : Google Scholar : PubMed/NCBI

154 

Yang N, Kaur S, Volinia S, et al: MicroRNA microarray identifles Let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer. Cancer Res. 68:10307–10314. 2008. View Article : Google Scholar : PubMed/NCBI

155 

Kumar MS, Erkeland SJ, Pester RE, et al: Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci USA. 105:3903–3908. 2008. View Article : Google Scholar : PubMed/NCBI

156 

Bonci D, Coppola V, Musumeci M, et al: The miR-15a-miR-16–1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med. 14:1271–1277. 2008. View Article : Google Scholar : PubMed/NCBI

157 

Wiggins JF, Ruffino L, Kelnar K, et al: Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 70:5923–5930. 2010. View Article : Google Scholar : PubMed/NCBI

158 

Chen Y, Zhu X, Zhang X, et al: Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther. 18:1650–1656. 2010. View Article : Google Scholar : PubMed/NCBI

159 

La Rocca G, Badin M, Shi B, et al: Mechanism of growth inhibition by MicroRNA 145: the role of the IGF-1 receptor signaling pathway. J Cell Physiol. 220:485–491. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Jin D, Fang Y, Li Z, Chen Z and Xiang J: Epithelial-mesenchymal transition‑associated microRNAs in colorectal cancer and drug-targeted therapies (Review). Oncol Rep 33: 515-525, 2015.
APA
Jin, D., Fang, Y., Li, Z., Chen, Z., & Xiang, J. (2015). Epithelial-mesenchymal transition‑associated microRNAs in colorectal cancer and drug-targeted therapies (Review). Oncology Reports, 33, 515-525. https://doi.org/10.3892/or.2014.3638
MLA
Jin, D., Fang, Y., Li, Z., Chen, Z., Xiang, J."Epithelial-mesenchymal transition‑associated microRNAs in colorectal cancer and drug-targeted therapies (Review)". Oncology Reports 33.2 (2015): 515-525.
Chicago
Jin, D., Fang, Y., Li, Z., Chen, Z., Xiang, J."Epithelial-mesenchymal transition‑associated microRNAs in colorectal cancer and drug-targeted therapies (Review)". Oncology Reports 33, no. 2 (2015): 515-525. https://doi.org/10.3892/or.2014.3638
Copy and paste a formatted citation
x
Spandidos Publications style
Jin D, Fang Y, Li Z, Chen Z and Xiang J: Epithelial-mesenchymal transition‑associated microRNAs in colorectal cancer and drug-targeted therapies (Review). Oncol Rep 33: 515-525, 2015.
APA
Jin, D., Fang, Y., Li, Z., Chen, Z., & Xiang, J. (2015). Epithelial-mesenchymal transition‑associated microRNAs in colorectal cancer and drug-targeted therapies (Review). Oncology Reports, 33, 515-525. https://doi.org/10.3892/or.2014.3638
MLA
Jin, D., Fang, Y., Li, Z., Chen, Z., Xiang, J."Epithelial-mesenchymal transition‑associated microRNAs in colorectal cancer and drug-targeted therapies (Review)". Oncology Reports 33.2 (2015): 515-525.
Chicago
Jin, D., Fang, Y., Li, Z., Chen, Z., Xiang, J."Epithelial-mesenchymal transition‑associated microRNAs in colorectal cancer and drug-targeted therapies (Review)". Oncology Reports 33, no. 2 (2015): 515-525. https://doi.org/10.3892/or.2014.3638
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team