|
1
|
Hecht JL and Mutter GL: Molecular and
pathologic aspects of endometrial carcinogenesis. J Clin Oncol.
24:4783–4791. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Matias-Guiu X, Catasus L, Bussaglia E, et
al: Molecular pathology of endometrial hyperplasia and carcinoma.
Hum Pathol. 32:569–577. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Murphy MP: How mitochondria produce
reactive oxygen species. Biochem J. 417:1–13. 2009. View Article : Google Scholar
|
|
4
|
Brookes PS, Yoon Y, Robotham JL, Anders MW
and Sheu SS: Calcium, ATP and ROS: a mitochondrial love-hate
triangle. Am J Physiol Cell Physiol. 287:C817–C833. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Cadenas E and Davies K: Mitochondrial free
radical generation, oxidative stress and aging. Free Radic Biol
Med. 29:222–230. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Hüttemann M, Lee I, Samavati L, Yu H and
Doan JW: Regulation of mitochondrial oxidative phosphorylation
through cell signaling. Biochim Biophys Acta. 1773:1701–1720. 2007.
View Article : Google Scholar
|
|
7
|
Warburg O: On respiratory impairment in
cancer cells. Science. 124:269–270. 1956.PubMed/NCBI
|
|
8
|
Bonuccelli G, Tsirigos A, Whitaker-Menezes
D, et al: Ketones and lactate ‘fuel’ tumor growth and metastasis:
Evidence that epithelial cancer cells use oxidative mitochondrial
metabolism. Cell Cycle. 9:3506–3514. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Smolkova K, Plecita-Hlavata L, Bellance N,
Benard G, Rossignol R and Jezek P: Waves of gene regulation
suppress and then restore oxidative phosphorylation in cancer
cells. Int J Biochem Cell Biol. 43:950–968. 2011. View Article : Google Scholar
|
|
10
|
Pedersen PL: Tumor mitochondria and the
bioenergetics of cancer cells. Prog Exp Tumor Res. 22:190–274.
1978.PubMed/NCBI
|
|
11
|
Yu M: Generation, function and diagnostic
value of mitochondrial DNA copy number alterations in human cancer.
Life Sci. 89:65–71. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Baracca A, Chiaradonna F, Sgarbi G,
Solaini G, Alberghina L and Lenaz G: Mitochondrial complex I
decrease is responsible for bioenergetic dydfunction in K-ras
transformed cells. Biochim Biophys Acta. 1797:314–323. 2010.
View Article : Google Scholar
|
|
13
|
Larman TC, DePalma SR, Hadjipanayis AG, et
al: Spectrum of somatic mitochondrial mutations in five cancers.
Proc Nat Acad Sci USA. 109:14087–14091. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kulawiec M, Salk JJ, Ericson NG, Wanagat J
and Bielas JH: Generation, function and prognostic utility of
somatic mitochondrial DNA mutations in cancer. Environ Mol Mutagen.
51:427–439. 2010.PubMed/NCBI
|
|
15
|
Ward PS, Patel J, Wise DR, et al: The
common feature of leukemia-associated IDH1 and IDH2 mutations is a
neomorphic enzyme activity converting alpha-ketoglutarate to
2-hydroxyglutarate. Cancer Cell. 17:225–234. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Chandra D and Singh KK: Genetic insights
into OXPHOS defect and its role in cancer. Biochim Biophys Acta.
1807:620–625. 2011. View Article : Google Scholar
|
|
17
|
Picaud S, Kavanagh KL, Yue WW, et al:
Structural basis of fumarate hydratase deficiency. J Inherit Metab
Dis. 34:671–676. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Bardella C, Pollard P and Tomlinson I: SDH
mutations in cancer. Biochim Biophys Acta. 1807:1432–1443. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Anderson S, Bankier AT, Barrell BG, et al:
Sequence and organization of the human mitochondrial genome.
Nature. 290:457–465. 1981. View
Article : Google Scholar : PubMed/NCBI
|
|
20
|
Attardi G: Animal mitochondrial DNA: an
extreme example of genetic economy. Int Rev Cytol. 93:93–145. 1985.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Chen X and Butow RA: The organization and
inheritance of the mitochondrial genome. Nat Rev Genet. 6:815–825.
2005. View
Article : Google Scholar : PubMed/NCBI
|
|
22
|
Lightowlers RN, Chinnery PF, Turnbull DM
and Howell N: Mammalian mitochondrial genetics: heredity,
heteroplasmy and disease. Trends Genet. 13:450–455. 1997.
View Article : Google Scholar
|
|
23
|
Johns DR: Paternal transmission of
mitochondrial DNA is (fortunately) rare. Ann Neurol. 54:422–424.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
DiMauro S, Tanji K, Bonilla E, Pallotti F
and Schon EA: Mitochondrial abnormalities in muscle and other aging
cells: classification, causes and effects. Muscle Nerve.
26:597–607. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Rossignol R, Faustin B, Rocher C, Malgat
M, Mazat JP and Letellier T: Mitochondrial threshold effects.
Biochem J. 370:751–762. 2003. View Article : Google Scholar
|
|
26
|
Musicco C, Cormio A, Calvaruso MA, et al:
Analysis of the mitochondrial proteome of cybrid cells harbouring a
truncative mitochondrial DNA mutation in respiratory complex I. Mol
Biosyst. 10:1313–1319. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Torroni A, Achilli A, Macaulay V, Richards
M and Bandelt HJ: Harvesting the fruit of the human mtDNA tree.
Trends Genet. 22:339–345. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wallace DC: Bioenergetics in human
evolution and disease: implications for the origins of biological
complexity and the missing genetic variation of common diseases.
Philos Trans R Soc Lond B Biol Sci. 368:2012–2067. 2013. View Article : Google Scholar
|
|
29
|
Brandon M, Baldi P and Wallace DC:
Mitochondrial mutations in cancer. Oncogene. 25:4647–4662. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: the next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
McKenzie M, Lazarou M, Thorburn DR and
Ryan MT: Mitochondrial respiratory chain supercomplexes are
destabilized in Barth syndrome patients. J Mol Biol. 361:462–469.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Burke WM, Orr J, Mario L, et al:
Endometrial Cancer: A review and current management strategies:
part I. SGO Clinical Practice Endometrial Cancer Working Group.
Gynecol Oncol. 134:385–392. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Bonadona V, Bonaïti B, Olschwang S, et al:
Cancer risks associated with germline mutations in MLH1, MSH2 and
MSH6 genes in Lynch syndrome. JAMA. 305:2304–2310. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Levine DA, Lin O, Barakat RR, et al: Risk
of endometrial carcinoma associated with BRCA mutation. Gynecol
Oncol. 80:395–398. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Liu VW, Wang Y, Yang HJ, et al:
Mitochondrial DNA variant 16189T>C is associated with
susceptibility to endometrial cancer. Hum Mutat. 22:173–174. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Xu L, Hu Y, Chen B, Tang W, Han X, Yu H
and Xiao C: Mitochondrial polymorphisms as risk factors for
endometrial cancer in southwest China. Int J Gynecol Cancer.
16:1661–1667. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Czarnecka AM, Klemba A, Semczuk A, et al:
Common mitochondrial polymorphisms as risk factor for endometrial
cancer. Int Arch Med. 2:332009. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Matias-Guiu X and Davidson B: Prognostic
biomarkers in endometrial and ovarian carcinoma. Virchows Arch.
464:315–331. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Liu VW, Yang HJ, Wang Y, et al: High
frequency of mitochondrial genome instability in human endometrial
carcinomas. Br J Cancer. 89:697–701. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Wang Y, Liu VW, Tsang PC, et al:
Microsatellite instability in mitochondrial genome of common female
cancers. Int J Gynecol Cancer. 16:259–266. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wang Y, Xue WC, Liu VW and Ngan HY:
Detection of mosaic pattern of mitochondrial DNA alterations in
different populations of cells from the same endometrial tumor.
Mitochondrion. 7:171–175. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Pejovic T, Ladner D and Intengan M:
Somatic D-loop mitochondrial DNA mutations are frequent in uterine
serous carcinoma. Eur J Cancer. 40:2519–2524. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Futyma K, Putowski L, Cybulski M, Miotla
P, Rechberger T and Semczuk A: The prevalence of mtDNA4977 deletion
in primary human endometrial carcinomas and matched control
samples. Oncol Rep. 20:683–688. 2008.PubMed/NCBI
|
|
44
|
Semczuk A, Lorenc A, Putowski L, Futyma K,
Bryk J, Miotla P and Bartnik E: Clinicoprognostical features of
endometrial cancer patients with somatic mtDNA mutations. Oncol
Rep. 16:1041–1045. 2006.PubMed/NCBI
|
|
45
|
Wang Y, Liu VW, Xue WC, Tsang PC, Cheung
AN and Ngan HY: The increase of mitochondrial DNA content in
endometrial adenocarcinoma cells: a quantitative study using
laser-captured microdissected tissues. Gynecol Oncol. 98:104–110.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Guerra F, Kurelac I, Cormio A, et al:
Placing mitochondrial DNA mutations within the progression model of
type I endometrial carcinoma. Hum Mol Genet. 20:2394–2405. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wenz T: Regulation of mitochondrial
biogenesis and PGC-1α under cellular stress. Mitochondrion.
13:134–142. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zhu J, Wang KZ and Chu CT: After the
banquet: mitochondrial biogenesis, mitophagy and cell survival.
Autophagy. 9:1663–1676. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Piantadosi CA and Suliman HB: Redox
regulation of mitochondrial biogenesis. Free Radic Biol Med.
53:2043–2053. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Wredenberg A, Wibom R, Wilhelmsson H, et
al: Increased mitochondrial mass in mitochondrial myopathy mice.
Proc Natl Acad Sci USA. 99:15066–15071. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Puigserver P and Spiegelman BM: Peroxisome
proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1
alpha): transcriptional coactivator and metabolic regulator. Endocr
Rev. 24:78–90. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Lin J, Handschin C and Spiegelman BM:
Metabolic control through the PGC-1 family of transcription
coactivators. Cell Metab. 1:361–370. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Scarpulla RC: Transcriptional paradigms in
mammalian mitochondrial biogenesis and function. Physiol Rev.
88:611–638. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Malik AN and Czajka A: Is mitochondrial
DNA content a potential biomarker of mitochondrial dysfunction?
Mitochondrion. 13:481–492. 2013. View Article : Google Scholar
|
|
55
|
Cormio A, Guerra F, Cormio G, Pesce V, et
al: The PGC-1alpha-dependent pathway of mitochondrial biogenesis is
upregulated in type I endometrial cancer. Biochem Biophys Res
Commun. 390:1182–1185. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Montgomery BE, Daum GS and Dunton CJ:
Endometrial hyperplasia: a review. Obstet Gynecol Surv. 59:368–378.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Cormio A, Guerra F, Cormio G, et al:
Mitochondrial DNA content and mass increase in progression from
normal to hyperplastic to cancer endometrium. BMC Res Notes.
5:2792012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Mayr JA, Meierhofer D, Zimmermann F, et
al: Loss of complex I due to mitochondrial DNA mutations in renal
oncocytoma. Clin Cancer Res. 14:2270–2275. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Gasparre G, Kurelac I, Capristo M, et al:
A mutation threshold distinguishes the antitumorigenic effects of
the mitochondrial gene MTND1, an oncojanus function. Cancer Res.
71:6220–6229. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Kurelac I, MacKay A, Lambros MB, et al:
Somatic complex I disruptive mitochondrial DNA mutations are
modifiers of tumorigenesis that correlate with low genomic
instability in pituitary adenomas. Hum Mol Genet. 22:226–238. 2013.
View Article : Google Scholar
|
|
61
|
Gasparre G, Bonora E, Tallini G and Romeo
G: Molecular features of thyroid oncocytic tumors. Mol Cell
Endocrinol. 321:67–76. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Gasparre G, Romeo G, Rugolo M and Porcelli
AM: Learning from oncocytic tumors: Why choose inefficient
mitochondria? Biochim Biophys Acta. 1807:633–642. 2011. View Article : Google Scholar
|
|
63
|
Gasparre G, Porcelli AM, Lenaz G and Romeo
G: Relevance of mitochondrial genetics and metabolism in cancer
development. Cold Spring Harb Perspect Biol. 5:pii: a011411. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Hirst J, King MS and Pryde KR: The
production of reactive oxygen species by complex I. Biochem Soc
Trans. 36:976–980. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Murphy MP: How mitochondria produce
reactive oxygen species. Biochem J. 417:1–13. 2009. View Article : Google Scholar
|
|
66
|
Papa S, De Rasmo D, Technikova-Dobrova Z,
et al: Respiratory chain complex I, a main regulatory target of The
cAMP/PKA pathway is defective in different human diseases. FEBS
Lett. 586:568–577. 2012. View Article : Google Scholar
|
|
67
|
Porcelli AM, Ghelli A, Ceccarelli C, et
al: The genetic and metabolic signature of oncocytic transformation
implicates HIF1alpha destabilization. Hum Mol Genet. 19:1019–1032.
2010. View Article : Google Scholar
|
|
68
|
Calabrese C, Iommarini L, Kurelac I, et
al: Respiratory complex I is essential to induce a Warburg profile
in mitochondria-defective tumor cells. Cancer Metab. 1:112013.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Chen JQ, Cammarata PR, Baines CP and Yager
JD: Regulation of mitochondrial respiratory chain biogenesis by
estrogens/estrogen receptors and physiological, pathological and
pharmacological implications. Biochim Biophys Acta. 1793:1540–1570.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Chen JQ and Russo J: Mitochondrial
oestrogen receptors and their potential implications in oestrogen
carcinogenesis in human breast cancer. J Nutr Environ Med.
17:76–89. 2008. View Article : Google Scholar
|
|
71
|
Mattingly KA, Ivanova MM, Riggs KA,
Wickramasinghe NS, Barch MJ and Klinge CM: Estradiol stimulates
transcription of nuclear respiratory factor-1 and increases
mitochondrial biogenesis. Mol Endocrinol. 22:609–622. 2008.
View Article : Google Scholar
|
|
72
|
Felty Q, Xiong WC, Sun D, Sarkar S, Singh
KP, Parkash J and Roy D: Estrogen induced mitochondrial reactive
oxygen species as signal-transducing messengers. Biochemistry.
44:6900–6909. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Stankov K, Biondi A, D’Aurelio M, Gasparre
G, Falasca A, Romeo G and Lenaz G: Mitochondrial activities of a
cell line derived from thyroid Hürthle cell tumors. Thyroid.
16:325–331. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Guerra F, Kurelac I, Magini P, Cormio A,
Santini D, Ceccarelli C and Gasparre G: Mitochondrial DNA
genotyping reveals synchronous nature of simultaneously detected
endometrial and ovarian cancers. Gynecol Oncol. 122:457–458. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Guerra F, Girolimetti G, Perrone AM, et
al: Mitochondrial DNA genotyping efficiently reveals clonality of
synchronous endometrial and ovarian cancers. Mod Pathol.
39:1412–1420. 2014. View Article : Google Scholar
|