|
1
|
Mo QG, Liang AM, Yang NW, et al:
Surgery-predominant comprehensive therapy for 134 patients with
small hepatocellular carcinoma. Ai Zheng. 22:189–191. 2003.(In
Chinese). PubMed/NCBI
|
|
2
|
Yoon H, Lee H, Kim HJ, et al: Tudor
domain-containing protein 4 as a potential cancer/testis antigen in
liver cancer. Tohoku J Exp Med. 224:41–46. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Song MH, Choi KU, Shin DH, et al:
Identification of the cancer/testis antigens AKAP3 and CTp11 by
SEREX in hepatocellular carcinoma. Oncol Rep. 28:1792–1798.
2012.PubMed/NCBI
|
|
4
|
Xing Q, Pang XW, Peng JR, et al:
Identification of new cytotoxic T-lymphocyte epitopes from cancer
testis antigen HCA587. Biochem Biophys Res Commun. 372:331–335.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Zhao L, Mou DC, Leng XS, et al: Expression
of cancer-testis antigens in hepatocellular carcinoma. World J
Gastroenterol. 10:2034–2038. 2004.PubMed/NCBI
|
|
6
|
Pang PH, Chan KT, Tse LY, et al: Induction
of cytotoxic T cell response against HCA661 positive cancer cells
through activation with novel HLA-A*0201 restricted epitopes.
Cancer Lett. 256:178–185. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Yang XA, Dong XY, Qiao H, et al:
Immunohistochemical analysis of the expression of FATE/BJ-HCC-2
antigen in normal and malignant tissues. Lab Invest. 85:205–213.
2005. View Article : Google Scholar
|
|
8
|
Yin YH, Li YY, Qiao H, et al: TSPY is a
cancer testis antigen expressed in human hepatocellular carcinoma.
Br J Cancer. 93:458–463. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ono T, Kurashige T, Harada N, et al:
Identification of proacrosin binding protein sp32 precursor as a
human cancer/testis antigen. Proc Natl Acad Sci USA. 98:3282–3287.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Fan R, Huang W, Xiao SW, et al: OY-TES-1
expression and serum immunoreactivity in hepatocellular carcinoma.
World Chi J Digest. 17:3307–3312. 2009.(In Chinese).
|
|
11
|
Tammela J, Uenaka A, Ono T, et al:
OY-TES-1 expression and serum immunoreactivity in epithelial
ovarian cancer. Int J Oncol. 29:903–910. 2006.PubMed/NCBI
|
|
12
|
Whitehurst AW, Xie Y, Purinton SC, et al:
Tumor antigen acrosin binding protein normalizes mitotic spindle
function to promote cancer cell proliferation. Cancer Res.
70:7652–7661. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kanemori Y, Ryu JH, Sudo M, et al: Two
functional forms of ACRBP/sp32 are produced by pre-mRNA alternative
splicing in the mouse. Biol Reprod. 88:1052013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Okumura H, Noguchi Y, Uenaka A, et al:
Identification of an HLA-A24-restricted OY-TES-1 epitope recognized
by cytotoxic T-cells. Microbiol Immunol. 49:1009–1016. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Cen YH, Guo WW, Luo B, et al: Knockdown of
OY-TES-1 by RNAi causes cell cycle arrest and migration decrease in
bone marrow-derived mesenchymal stem cells. Cell Biol Int.
36:917–922. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Yellaboina S, Tasneem A, Zaykin DV, et al:
DOMINE: a comprehensive collection of known and predicted
domain-domain interactions. Nucleic Acids Res. 39:D730–D735. 2011.
View Article : Google Scholar :
|
|
17
|
Finn RD, Bateman A, Clements J, et al:
Pfam: the protein families database. Nucleic Acids Res.
42:D222–D230. 2014. View Article : Google Scholar :
|
|
18
|
Kumar B, Sharma D, Sharma P, et al:
Proteomic analysis of Mycobacterium tuberculosis isolates resistant
to kanamycin and amikacin. J Proteomics. 94:68–77. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Rhodes DR, Kalyana-Sundaram S, Mahavisno
V, et al: Oncomine 3.0: genes, pathways, and networks in a
collection of 18,000 cancer gene expression profiles. Neoplasia.
9:166–180. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Wilson BJ and Giguère V: Identification of
novel pathway partners of p68 and p72 RNA helicases through
Oncomine meta-analysis. BMC Genomics. 8:4192007. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Li Z, Ma B, Lu M, et al: Construction of
network for protein kinases that play a role in acute pancreatitis.
Pancreas. 42:607–613. 2013. View Article : Google Scholar
|
|
22
|
Melaiu O, Cristaudo A, Melissari E, et al:
A review of transcriptome studies combined with data mining reveals
novel potential markers of malignant pleural mesothelioma. Mutat
Res. 750:132–140. 2012. View Article : Google Scholar
|
|
23
|
Smith IM, Glazer CA, Mithani SK, et al:
Coordinated activation of candidate proto-oncogenes and cancer
testes antigens via promoter demethylation in head and neck cancer
and lung cancer. PLoS One. 4:e49612009. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Suyama T, Shiraishi T, Zeng Y, et al:
Expression of cancer/testis antigens in prostate cancer is
associated with disease progression. Prostate. 70:1778–1787.
2010.PubMed/NCBI
|
|
25
|
Warde-Farley D, Donaldson SL, Comes O, et
al: The GeneMANIA prediction server: biological network integration
for gene prioritization and predicting gene function. Nucleic Acids
Res. 38:W214–W220. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Williamson MP, Marion D and Wüthrich K:
Secondary structure in the solution conformation of the proteinase
inhibitor IIA from bull seminal plasma by nuclear magnetic
resonance. J Mol Biol. 173:341–359. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Laskowski M Jr, Kato I, Ardelt W, et al:
Ovomucoid third domains from 100 avian species: isolation,
sequences, and hypervariability of enzyme-inhibitor contact
residues. Biochemistry. 26:202–221. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Schlott B, Wöhnert J, Icke C, et al:
Interaction of Kazal-type inhibitor domains with serine
proteinases: biochemical and structural studies. J Mol Biol.
318:533–546. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Funk JD, Nedialkov YA, Xu D and Burton ZF:
A key role for the α1 helix of human RAP74 in the initiation and
elongation of RNA chains. J Biol Chem. 277:46998–47003. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Baba T, Niida Y, Michikawa Y, et al: An
acrosomal protein, sp32, in mammalian sperm is a binding protein
specific for two proacrosins and an acrosin intermediate. J Biol
Chem. 269:10133–10140. 1994.PubMed/NCBI
|
|
31
|
Hase H, Kanno Y, Kojima H, et al: CD27 and
CD40 inhibit p53-independent mitochondrial pathways in apoptosis of
B cells induced by B cell receptor ligation. J Biol Chem.
277:46950–46958. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Shi JY, Gao Q, Wang ZC, et al:
Margin-infiltrating CD20+ B cells display an atypical
memory phenotype and correlate with favorable prognosis in
hepatocellular carcinoma. Clin Cancer Res. 19:5994–6005. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wang XD, Wang L, Ji FJ, et al: Decreased
CD27 on B lymphocytes in patients with primary hepatocellular
carcinoma. J Int Med Res. 40:307–316. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Yang ZQ, Yang ZY, Zhang LD, et al:
Increased liver-infiltrating CD8+FoxP3+
regulatory T cells are associated with tumor stage in
hepatocellular carcinoma patients. Hum Immunol. 71:1180–1186. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhang X, Xu LS, Wang ZQ, et al: ING4
induces G2/M cell cycle arrest and enhances the chemosensitivity to
DNA-damage agents in HepG2 cells. FEBS Lett. 570:7–12. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Doyon Y, Cayrou C, Ullah M, et al: ING
tumor suppressor proteins are critical regulators of chromatin
acetylation required for genome expression and perpetuation. Mol
Cell. 21:51–64. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Li X, Cai L, Chen H, et al: Inhibitor of
growth 4 induces growth suppression and apoptosis in glioma U87MG.
Pathobiology. 76:181–192. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Karabulut B, Karaca B, Atmaca H, et al:
Regulation of apoptosis-related molecules by synergistic
combination of all-trans retinoic acid and zoledronic acid in
hormone-refractory prostate cancer cell lines. Mol Biol Rep.
38:249–259. 2011. View Article : Google Scholar
|
|
39
|
Matsuda A, Suzuki Y, Honda G, et al:
Large-scale identification and characterization of human genes that
activate NF-κB and MAPK signaling pathways. Oncogene. 22:3307–3318.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Masellis-Smith A and Shaw AR:
CD9-regulated adhesion. Anti-CD9 monoclonal antibody induces pre-B
cell adhesion to bone marrow fibroblasts through de novo
recognition of fibronectin. J Immunol. 152:2768–2777.
1994.PubMed/NCBI
|
|
41
|
Leung KT, Chan KY, Ng PC, et al: The
tetraspanin CD9 regulates migration, adhesion, and homing of human
cord blood CD34+ hematopoietic stem and progenitor
cells. Blood. 117:1840–1850. 2011. View Article : Google Scholar
|
|
42
|
Powner D, Kopp PM, Monkley SJ, et al:
Tetraspanin CD9 in cell migration. Biochem Soc Trans. 39:563–567.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kanetaka K, Sakamoto M, Yamamoto Y, et al:
Overexpression of tetraspanin CO-029 in hepatocellular carcinoma. J
Hepatol. 35:637–642. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Li J and Li G: Cell cycle regulator ING4
is a suppressor of melanoma angiogenesis that is regulated by the
metastasis suppressor BRMS1. Cancer Res. 70:10445–10453. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Meyerson M and Harlow E: Identification of
G1 kinase activity for cdk6, a novel cyclin D partner.
Mol Cell Biol. 14:2077–2086. 1994.PubMed/NCBI
|
|
46
|
Yadav S, Pandey A, Shukla A, et al:
miR-497 and miR-302b regulate ethanol-induced neuronal cell death
through BCL2 protein and cyclin D2. J Biol Chem. 286:37347–37357.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhou J, Tian Y, Li J, et al: miR-206 is
down-regulated in breast cancer and inhibits cell proliferation
through the up-regulation of cyclinD2. Biochem Biophys Res Commun.
433:207–212. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zhang L, Liu X, Jin H, et al: miR-206
inhibits gastric cancer proliferation in part by repressing
cyclinD2. Cancer Lett. 332:94–101. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Chen BB, Glasser JR, Coon TA, et al: F-box
protein FBXL2 targets cyclin D2 for ubiquitination and degradation
to inhibit leukemic cell proliferation. Blood. 119:3132–3141. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Igawa T, Sato Y, Takata K, et al: Cyclin
D2 is overexpressed in proliferation centers of chronic lymphocytic
leukemia/small lymphocytic lymphoma. Cancer Sci. 102:2103–2107.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Dong Q, Meng P, Wang T, et al: MicroRNA
let-7a inhibits proliferation of human prostate cancer cells in
vitro and in vivo by targeting E2F2 and CCND2. PLoS One.
5:e101472010. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Darr H, Mayshar Y and Benvenisty N:
Overexpression of NANOG in human ES cells enables feeder-free
growth while inducing primitive ectoderm features. Development.
133:1193–1201. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yang L, Zhang X, Zhang M, et al: Increased
Nanog expression promotes tumor development and cisplatin
resistance in human esophageal cancer cells. Cell Physiol Biochem.
30:943–952. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Siu MK, Wong ES, Kong DS, et al: Stem cell
transcription factor NANOG controls cell migration and invasion via
dysregulation of E-cadherin and FoxJ1 and contributes to adverse
clinical outcome in ovarian cancers. Oncogene. 32:3500–3509. 2013.
View Article : Google Scholar
|
|
55
|
Valdez BC, Perlaky L, Saijo Y, et al: A
region of antisense RNA from human p120 cDNA with high homology to
mouse p120 cDNA inhibits NIH 3T3 proliferation. Cancer Res.
152:5681–5686. 1992.
|
|
56
|
Siggers RH and Hackam DJ: The role of
innate immune-stimulated epithelial apoptosis during
gastrointestinal inflammatory diseases. Cell Mol Life Sci.
68:3623–3634. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Sharan R, Ulitsky I and Shamir R:
Network-based prediction of protein function. Mol Syst Biol.
3:882007. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Dodurga Y, Oymak Y, Gündüz C, et al:
Leukemogenesis as a new approach to investigate the correlation
between up regulated gene 4/upregulator of cell proliferation
(URG4/URGCP) and signal transduction genes in leukemia. Mol Biol
Rep. 40:3043–3048. 2013. View Article : Google Scholar
|
|
59
|
Faussillon M, Monnier L, Junien C and
Jeanpierre C: Frequent overexpression of cyclin D2/cyclin-dependent
kinase 4 in Wilms’ tumor. Cancer Lett. 221:67–75. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Park TJ, Chun JY, Bae JS, et al: CCND2
polymorphisms associated with clearance of HBV infection. J Hum
Genet. 55:416–420. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Takano Y, Kato Y, van Diest PJ, et al:
Cyclin D2 overexpression and lack of p27 correlate positively and
cyclin E inversely with a poor prognosis in gastric cancer cases.
Am J Pathol. 156:585–594. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Uchida F, Uzawa K, Kasamatsu A, et al:
Overexpression of cell cycle regulator CDCA3 promotes oral cancer
progression by enhancing cell proliferation with prevention of G1
phase arrest. BMC Cancer. 12:3212012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Chen J, Zhu S, Jiang N, et al: HoxB3
promotes prostate cancer cell progression by transactivating CDCA3.
Cancer Lett. 330:217–224. 2013. View Article : Google Scholar
|
|
64
|
Bunt J, de Haas TG, Hasselt NE, et al:
Regulation of cell cycle genes and induction of senescence by
overexpression of OTX2 in medulloblastoma cell lines. Mol Cancer
Res. 8:1344–1357. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Visconti R, Palazzo L, Della Monica R and
Grieco D: Fcp1-dependent dephosphorylation is required for
M-phase-promoting factor inactivation at mitosis exit. Nat Commun.
3:8942012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Funakoshi T, Tachibana I, Hoshida Y, et
al: Expression of tetraspanins in human lung cancer cells: frequent
downregulation of CD9 and its contribution to cell motility in
small cell lung cancer. Oncogene. 22:674–687. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ovalle S, Gutiérrez-López MD, Olmo N, et
al: The tetraspanin CD9 inhibits the proliferation and
tumorigenicity of human colon carcinoma cells. Int J Cancer.
121:2140–2152. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Saito Y, Tachibana I, Takeda Y, et al:
Absence of CD9 enhances adhesion-dependent morphologic
differentiation, survival, and matrix metalloproteinase-2
production in small cell lung cancer cells. Cancer Res.
66:9557–9565. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Murayama Y, Miyagawa J, Oritani K, et al:
CD9-mediated activation of the p46 Shc isoform leads to apoptosis
in cancer cells. J Cell Sci. 117:3379–3388. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zheng R, Yano S, Zhang H, et al: CD9
overexpression suppressed the liver metastasis and malignant
ascites via inhibition of proliferation and motility of small-cell
lung cancer cells in NK cell-depleted SCID mice. Oncol Res.
15:365–372. 2005.
|
|
71
|
Kim JS, Kim J, Kim BS, et al:
Identification and functional characterization of an alternative
splice variant within the fourth exon of human nanog. Exp Mol Med.
37:601–607. 2005. View Article : Google Scholar
|
|
72
|
Oh JH, Do HJ, Yang HM, et al:
Identification of a putative trans-activation domain in human
Nanog. Exp Mol Med. 37:250–254. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Shan J, Shen J, Liu L, et al: Nanog
regulates self-renewal of cancer stem cells through the
insulin-like growth factor pathway in human hepatocellular
carcinoma. Hepatology. 56:1004–1014. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Sun C, Sun L, Jiang K, et al: NANOG
promotes liver cancer cell invasion by inducing
epithelial-mesenchymal transition through NODAL/SMAD3 signaling
pathway. Int J Biochem Cell Biol. 45:1099–1108. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Du Y, Shi L, Wang T, Liu Z and Wang Z:
Nanog siRNA plus Cisplatin may enhance the sensitivity of
chemotherapy in esophageal cancer. J Cancer Res Clin Oncol.
138:1759–1767. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Ji W and Jiang Z: Effect of shRNA-mediated
inhibition of Nanog gene expression on the behavior of human
gastric cancer cells. Oncol Lett. 6:367–374. 2013.PubMed/NCBI
|
|
77
|
Yu J, Zhang SS, Saito K, et al: PTEN
regulation by Akt-EGR1-ARF-PTEN axis. EMBO J. 28:21–33. 2009.
View Article : Google Scholar :
|