|
1
|
Siegel R, Ma J, Zou Z and Jemal A: Cancer
statistics, 2014. CA Cancer J Clin. 64:9–29. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Cohen HT and McGovern FJ: Renal-cell
carcinoma. N Engl J Med. 353:2477–2490. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Rini BI, Rathmell WK and Godley P: Renal
cell carcinoma. Curr Opin Oncol. 20:300–306. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Janzen NK, Kim HL, Figlin RA and
Belldegrun AS: Surveillance after radical or partial nephrectomy
for localized renal cell carcinoma and management of recurrent
disease. Urol Clin North Am. 30:843–852. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Bullock A, McDermott DF and Atkins MB:
Management of metastatic renal cell carcinoma in patients with poor
prognosis. Cancer Manag Res. 2:123–132. 2010.PubMed/NCBI
|
|
6
|
Lilleby W and Fossa SD: Chemotherapy in
metastatic renal cell cancer. World J Urol. 23:175–179. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Redova M, Svoboda M and Slaby O: MicroRNAs
and their target gene networks in renal cell carcinoma. Biochem
Biophys Res Commun. 405:153–156. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Bartel DP: MicroRNAs: target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lee RC, Feinbaum RL and Ambros V: The C.
elegans heterochronic gene lin-4 encodes small RNAs with antisense
complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Croce CM: Causes and consequences of
microRNA dysregulation in cancer. Nat Rev Genet. 10:704–714. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Rodriguez A, Griffiths-Jones S, Ashurst JL
and Bradley A: Identification of mammalian microRNA host genes and
transcription units. Genome Res. 14:1902–1910. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Saini HK, Griffiths-Jones S and Enright
AJ: Genomic analysis of human microRNA transcripts. Proc Natl Acad
Sci USA. 104:17719–17724. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Cai X, Hagedorn CH and Cullen BR: Human
microRNAs are processed from capped, polyadenylated transcripts
that can also function as mRNAs. RNA. 10:1957–1966. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Lee Y, Kim M, Han J, et al: MicroRNA genes
are transcribed by RNA polymerase II. EMBO J. 23:4051–4060. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Denli AM, Tops BB, Plasterk RH, Ketting RF
and Hannon GJ: Processing of primary microRNAs by the
microprocessor complex. Nature. 432:231–235. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Han J, Lee Y, Yeom KH, Kim YK, Jin H and
Kim VN: The Drosha-DGCR8 complex in primary microRNA processing.
Genes Dev. 18:3016–3027. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Lund E, Guttinger S, Calado A, Dahlberg JE
and Kutay U: Nuclear export of microRNA precursors. Science.
303:95–98. 2004. View Article : Google Scholar
|
|
18
|
Yi R, Qin Y, Macara IG and Cullen BR:
Exportin-5 mediates the nuclear export of pre-microRNAs and short
hairpin RNAs. Genes Dev. 17:3011–3016. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zhang B, Pan X, Cobb GP and Anderson TA:
microRNAs as oncogenes and tumor suppressors. Dev Biol. 302:1–12.
2007. View Article : Google Scholar
|
|
20
|
Jackson RJ and Standart N: How do
microRNAs regulate gene expression? Sci STKE. Jan 2–2007.(Epub
ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Nilsen TW: Mechanisms of microRNA-mediated
gene regulation in animal cells. Trends Genet. 23:243–249. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Pillai RS, Bhattacharyya SN and Filipowicz
W: Repression of protein synthesis by miRNAs: how many mechanisms?
Trends Cell Biol. 17:118–126. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kawakami K, Enokida H, Chiyomaru T, et al:
The functional significance of miR-1 and miR-133a in renal cell
carcinoma. Eur J Cancer. 48:827–836. 2012. View Article : Google Scholar
|
|
24
|
Huang J, Yao X, Zhang J, et al:
Hypoxia-induced downregulation of miR-30c promotes
epithelial-mesenchymal transition in human renal cell carcinoma.
Cancer Sci. 104:1609–1617. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yu H, Lin X, Wang F, et al: Proliferation
inhibition and the underlying molecular mechanisms of microRNA-30d
in renal carcinoma cells. Oncol Lett. 7:799–804. 2014.PubMed/NCBI
|
|
26
|
Yamamura S, Saini S, Majid S, et al:
MicroRNA-34a suppresses malignant transformation by targeting c-Myc
transcriptional complexes in human renal cell carcinoma.
Carcinogenesis. 33:294–300. 2012. View Article : Google Scholar :
|
|
27
|
Zhang C, Mo R, Yin B, Zhou L, Liu Y and
Fan J: Tumor suppressor microRNA-34a inhibits cell proliferation by
targeting Notch1 in renal cell carcinoma. Oncol Lett. 7:1689–1694.
2014.PubMed/NCBI
|
|
28
|
Cui L, Zhou H, Zhao H, et al: MicroRNA-99a
induces G1-phase cell cycle arrest and suppresses tumorigenicity in
renal cell carcinoma. BMC Cancer. 12:5462012. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Wu D, Pan H, Zhou Y, Zhou J, Fan Y and Qu
P: microRNA-133b downregulation and inhibition of cell
proliferation, migration and invasion by targeting matrix
metallopeptidase-9 in renal cell carcinoma. Mol Med Rep.
9:2491–2498. 2014.PubMed/NCBI
|
|
30
|
Yamada Y, Hidaka H, Seki N, et al:
Tumor-suppressive microRNA-135a inhibits cancer cell proliferation
by targeting the c-MYC oncogene in renal cell carcinoma. Cancer
Sci. 104:304–312. 2013. View Article : Google Scholar
|
|
31
|
Yamasaki T, Seki N, Yamada Y, et al: Tumor
suppressive microRNA138 contributes to cell migration and invasion
through its targeting of vimentin in renal cell carcinoma. Int J
Oncol. 41:805–817. 2012.PubMed/NCBI
|
|
32
|
Song T, Zhang X, Wang C, et al: MiR-138
suppresses expression of hypoxia-inducible factor 1α (HIF-1α) in
clear cell renal cell carcinoma 786-O cells. Asian Pac J Cancer
Prev. 12:1307–1311. 2011.
|
|
33
|
Liang J, Zhang Y, Jiang G, et al: MiR-138
induces renal carcinoma cell senescence by targeting EZH2 and is
down-regulated in human clear cell renal cell carcinoma. Oncol Res.
21:83–91. 2013. View Article : Google Scholar
|
|
34
|
Yu XY, Zhang Z, Liu J, Zhan B and Kong CZ:
MicroRNA-141 is downregulated in human renal cell carcinoma and
regulates cell survival by targeting CDC25B. Onco Targets Ther.
6:349–354. 2013.PubMed/NCBI
|
|
35
|
Chen X, Wang X, Ruan A, et al: miR-141 is
a key regulator of renal cell carcinoma proliferation and
metastasis by controlling EphA2 expression. Clin Cancer Res.
20:2617–2630. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Yoshino H, Enokida H, Itesako T, et al:
Tumor-suppressive microRNA-143/145 cluster targets hexokinase-2 in
renal cell carcinoma. Cancer Sci. 104:1567–1574. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Doberstein K, Steinmeyer N, Hartmetz AK,
et al: MicroRNA-145 targets the metalloprotease ADAM17 and is
suppressed in renal cell carcinoma patients. Neoplasia. 15:218–230.
2013.PubMed/NCBI
|
|
38
|
Lu R, Ji Z, Li X, et al: miR-145 functions
as tumor suppressor and targets two oncogenes, ANGPT2 and NEDD9, in
renal cell carcinoma. J Cancer Res Clin Oncol. 140:387–397. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Xu X, Wu J, Li S, et al: Downregulation of
microRNA-182-5p contributes to renal cell carcinoma proliferation
via activating the AKT/FOXO3a signaling pathway. Mol Cancer.
13:1092014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Zhao J, Lei T, Xu C, et al: MicroRNA-187,
down-regulated in clear cell renal cell carcinoma and associated
with lower survival, inhibits cell growth and migration though
targeting B7-H3. Biochem Biophys Res Commun. 438:439–444. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Khella HW, Bakhet M, Allo G, et al:
miR-192, miR-194 and miR-215: a convergent microRNA network
suppressing tumor progression in renal cell carcinoma.
Carcinogenesis. 34:2231–2239. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Huang J, Dong B, Zhang J, et al:
miR-199a-3p inhibits hepatocyte growth factor/c-Met signaling in
renal cancer carcinoma. Tumour Biol. 35:5833–5843. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wang X, Chen X, Wang R, et al:
microRNA-200c modulates the epithelial-to-mesenchymal transition in
human renal cell carcinoma metastasis. Oncol Rep. 30:643–650.
2013.PubMed/NCBI
|
|
44
|
Majid S, Saini S, Dar AA, et al:
MicroRNA-205 inhibits Src-mediated oncogenic pathways in renal
cancer. Cancer Res. 71:2611–2621. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Li H, Zhao J, Zhang JW, et al:
MicroRNA-217, down-regulated in clear cell renal cell carcinoma and
associated with lower survival, suppresses cell proliferation and
migration. Neoplasma. 60:511–515. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Yamasaki T, Seki N, Yoshino H, et al:
MicroRNA-218 inhibits cell migration and invasion in renal cell
carcinoma through targeting caveolin-2 involved in focal adhesion
pathway. J Urol. 190:1059–1068. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhai Q, Zhou L, Zhao C, et al:
Identification of miR-508-3p and miR-509-3p that are associated
with cell invasion and migration and involved in the apoptosis of
renal cell carcinoma. Biochem Biophys Res Commun. 419:621–626.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zhang WB, Pan ZQ, Yang QS and Zheng XM:
Tumor suppressive miR-509-5p contributes to cell migration,
proliferation and antiapoptosis in renal cell carcinoma. Ir J Med
Sci. 182:621–627. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ueno K, Hirata H, Shahryari V, et al:
Tumour suppressor microRNA-584 directly targets oncogene Rock-1 and
decreases invasion ability in human clear cell renal cell
carcinoma. Br J Cancer. 104:308–315. 2011. View Article : Google Scholar :
|
|
50
|
Saini S, Yamamura S, Majid S, et al:
MicroRNA-708 induces apoptosis and suppresses tumorigenicity in
renal cancer cells. Cancer Res. 71:6208–6219. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Hidaka H, Seki N, Yoshino H, et al: Tumor
suppressive microRNA-1285 regulates novel molecular targets:
aberrant expression and functional significance in renal cell
carcinoma. Oncotarget. 3:44–57. 2012.PubMed/NCBI
|
|
52
|
Yamasaki T, Seki N, Yoshino H, et al:
Tumor-suppressive microRNA-1291 directly regulates glucose
transporter 1 in renal cell carcinoma. Cancer Sci. 104:1411–1419.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Hirata H, Hinoda Y, Ueno K, Nakajima K,
Ishii N and Dahiya R: MicroRNA-1826 directly targets beta-catenin
(CTNNB1) and MEK1 (MAP2K1) in VHL-inactivated renal cancer.
Carcinogenesis. 33:501–508. 2012. View Article : Google Scholar :
|
|
54
|
Yu Z, Ni L, Chen D, et al: Identification
of miR-7 as an oncogene in renal cell carcinoma. J Mol Histol.
44:669–677. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Li X, Xin S, He Z, et al: MicroRNA-21
(miR-21) post-transcriptionally downregulates tumor suppressor
PDCD4 and promotes cell transformation, proliferation, and
metastasis in renal cell carcinoma. Cell Physiol Biochem.
33:1631–1642. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lv L, Huang F, Mao H, et al: MicroRNA-21
is overexpressed in renal cell carcinoma. Int J Biol Markers.
28:201–207. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Dey N, Das F, Ghosh-Choudhury N, et al:
microRNA-21 governs TORC1 activation in renal cancer cell
proliferation and invasion. PLoS One. 7:e373662012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhang A, Liu Y, Shen Y, Xu Y and Li X:
miR-21 modulates cell apoptosis by targeting multiple genes in
renal cell carcinoma. Urology. 78:e13–e19. 2011. View Article : Google Scholar
|
|
59
|
Zaman MS, Thamminana S, Shahryari V, et
al: Inhibition of PTEN gene expression by oncogenic miR-23b-3p in
renal cancer. PLoS One. 7:e502032012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Liu W, Zabirnyk O, Wang H, et al: miR-23b
targets proline oxidase, a novel tumor suppressor protein in renal
cancer. Oncogene. 29:4914–4924. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Li S, Chen T, Zhong Z, Wang Y, Li Y and
Zhao X: microRNA-155 silencing inhibits proliferation and migration
and induces apoptosis by upregulating BACH1 in renal cancer cells.
Mol Med Rep. 5:949–954. 2012.PubMed/NCBI
|
|
62
|
Nakada C, Tsukamoto Y, Matsuura K, et al:
Overexpression of miR-210, a downstream target of HIF1alpha, causes
centrosome amplification in renal carcinoma cells. J Pathol.
224:280–288. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Boguslawska J, Wojcicka A,
Piekielko-Witkowska A, Master A and Nauman A: MiR-224 targets the
3′UTR of type 1 5′-iodothy-ronine deiodinase possibly contributing
to tissue hypothyroidism in renal cancer. PLoS One. 6:e245412011.
View Article : Google Scholar
|
|
64
|
Xiao X, Tang C, Xiao S, Fu C and Yu P:
Enhancement of proliferation and invasion by MicroRNA-590-5p via
targeting PBRM1 in clear cell renal carcinoma cells. Oncol Res.
20:537–544. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Jung M, Mollenkopf HJ, Grimm C, et al:
MicroRNA profiling of clear cell renal cell cancer identifies a
robust signature to define renal malignancy. J Cell Mol Med.
13:3918–3928. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Gottardo F, Liu CG, Ferracin M, et al:
Micro-RNA profiling in kidney and bladder cancers. Urol Oncol.
25:387–392. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Cheng T, Wang L, Li Y, Huang C, Zeng L and
Yang J: Differential microRNA expression in renal cell carcinoma.
Oncol Lett. 6:769–776. 2013.PubMed/NCBI
|
|
68
|
Faragalla H, Youssef YM, Scorilas A, et
al: The clinical utility of miR-21 as a diagnostic and prognostic
marker for renal cell carcinoma. J Mol Diagn. 14:385–392. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Silva-Santos RM, Costa-Pinheiro P, Luis A,
et al: MicroRNA profile: a promising ancillary tool for accurate
renal cell tumour diagnosis. Br J Cancer. 109:2646–2653. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wotschofsky Z, Liep J, Meyer HA, et al:
Identification of metastamirs as metastasis-associated microRNAs in
clear cell renal cell carcinomas. Int J Biol Sci. 8:1363–1374.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Heinzelmann J, Henning B, Sanjmyatav J, et
al: Specific miRNA signatures are associated with metastasis and
poor prognosis in clear cell renal cell carcinoma. World J Urol.
29:367–373. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Redova M, Poprach A, Nekvindova J, et al:
Circulating miR-378 and miR-451 in serum are potential biomarkers
for renal cell carcinoma. J Transl Med. 10:552012. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Teixeira AL, Ferreira M, Silva J, et al:
Higher circulating expression levels of miR-221 associated with
poor overall survival in renal cell carcinoma patients. Tumour
Biol. 35:4057–4066. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Lichner Z, Mejia-Guerrero S, Ignacak M, et
al: Pleiotropic action of renal cell carcinoma-dysregulated miRNAs
on hypoxia-related signaling pathways. Am J Pathol. 180:1675–1687.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Neal CS, Michael MZ, Rawlings LH, Van der
Hoek MB and Gleadle JM: The VHL-dependent regulation of microRNAs
in renal cancer. BMC Med. 8:642010. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lian JH, Wang WH, Wang JQ, Zhang YH and Li
Y: MicroRNA-122 promotes proliferation, invasion and migration of
renal cell carcinoma cells through the PI3K/Akt signaling pathway.
Asian Pac J Cancer Prev. 14:5017–5021. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Bera A, Ghosh-Choudhury N, Dey N, et al:
NFkappaB-mediated cyclin D1 expression by microRNA-21 influences
renal cancer cell proliferation. Cell Signal. 25:2575–2586. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Bera A, Das F, Ghosh-Choudhury N, Kasinath
BS, Abboud HE and Choudhury GG: microRNA-21-induced dissociation of
PDCD4 from rictor contributes to Akt-IKKbeta-mTORC1 axis to
regulate renal cancer cell invasion. Exp Cell Res. 328:99–117.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Hildebrandt MA, Gu J, Lin J, et al:
Hsa-miR-9 methylation status is associated with cancer development
and metastatic recurrence in patients with clear cell renal cell
carcinoma. Oncogene. 29:5724–5728. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Gebauer K, Peters I, Dubrowinskaja N, et
al: Hsa-mir-124-3 CpG island methylation is associated with
advanced tumours and disease recurrence of patients with clear cell
renal cell carcinoma. Br J Cancer. 108:131–138. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Beresneva EV, Rykov SV, Hodyrev DS, et al:
Methylation profile of group of miRNA genes in clear cell renal
cell carcinoma; involvement in cancer progression. Genetika.
49:366–375. 2013.PubMed/NCBI
|
|
82
|
Creighton CJ, Morgan M, Gunaratne PH, et
al: Comprehensive molecular characterization of clear cell renal
cell carcinoma. Nature. 499:43–49. 2013. View Article : Google Scholar
|
|
83
|
Lin J, Horikawa Y, Tamboli P, Clague J,
Wood CG and Wu X: Genetic variations in microRNA-related genes are
associated with survival and recurrence in patients with renal cell
carcinoma. Carcinogenesis. 31:1805–1812. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Hell MP, Thoma CR, Fankhauser N,
Christinat Y, Weber TC and Krek W: miR-28-5p promotes chromosomal
instability in VHL-associated cancers by inhibiting Mad2
translation. Cancer Res. 74:2432–2443. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Prior C, Perez-Gracia JL, Garcia-Donas J,
et al: Identification of tissue microRNAs predictive of sunitinib
activity in patients with metastatic renal cell carcinoma. PLoS
One. 9:e862632014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Powers MP, Alvarez K, Kim HJ and Monzon
FA: Molecular classification of adult renal epithelial neoplasms
using microRNA expression and virtual karyotyping. Diagn Mol
Pathol. 20:63–70. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zaravinos A, Lambrou GI, Mourmouras N, et
al: New miRNA profiles accurately distinguish renal cell carcinomas
and upper tract urothelial carcinomas from the normal kidney. PLoS
One. 9:e916462014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Youssef YM, White NM, Grigull J, et al:
Accurate molecular classification of kidney cancer subtypes using
microRNA signature. Eur Urol. 59:721–730. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Wulfken LM, Moritz R, Ohlmann C, et al:
MicroRNAs in renal cell carcinoma: diagnostic implications of serum
miR-1233 levels. PLoS One. 6:e257872011. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Iwamoto H, Kanda Y, Sejima T, Osaki M,
Okada F and Takenaka A: Serum miR-210 as a potential biomarker of
early clear cell renal cell carcinoma. Int J Oncol. 44:53–58.
2014.
|
|
91
|
Zhao A, Li G, Peoc’h M, Genin C and
Gigante M: Serum miR-210 as a novel biomarker for molecular
diagnosis of clear cell renal cell carcinoma. Exp Mol Pathol.
94:115–120. 2013. View Article : Google Scholar
|
|
92
|
Von Brandenstein M, Pandarakalam JJ, Kroon
L, et al: MicroRNA 15a, inversely correlated to PKCalpha, is a
potential marker to differentiate between benign and malignant
renal tumors in biopsy and urine samples. Am J Pathol.
180:1787–1797. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Gao Y, Zhao H, Lu Y, Li H and Yan G:
MicroRNAs as potential diagnostic biomarkers in renal cell
carcinoma. Tumour Biol. Aug 6–2014.(Epub ahead of print).
View Article : Google Scholar
|
|
94
|
Shinmei S, Sakamoto N, Goto K, et al:
MicroRNA-155 is a predictive marker for survival in patients with
clear cell renal cell carcinoma. Int J Urol. 20:468–477. 2013.
View Article : Google Scholar
|
|
95
|
Slaby O, Redova M, Poprach A, et al:
Identification of MicroRNAs associated with early relapse after
nephrectomy in renal cell carcinoma patients. Genes Chromosomes
Cancer. 51:707–716. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Wang G, Chen L, Meng J, Chen M, Zhuang L
and Zhang L: Overexpression of microRNA-100 predicts an unfavorable
prognosis in renal cell carcinoma. Int Urol Nephrol. 45:373–379.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zhao JJ, Chen PJ, Duan RQ, Li KJ, Wang YZ
and Li Y: Up-regulation of miR-630 in clear cell renal cell
carcinoma is associated with lower overall survival. Int J Clin Exp
Pathol. 7:3318–3323. 2014.PubMed/NCBI
|
|
98
|
Wu X, Weng L, Li X, et al: Identification
of a 4-microRNA signature for clear cell renal cell carcinoma
metastasis and prognosis. PLoS One. 7:e356612012. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Slaby O, Jancovicova J, Lakomy R, et al:
Expression of miRNA-106b in conventional renal cell carcinoma is a
potential marker for prediction of early metastasis after
nephrectomy. J Exp Clin Cancer Res. 29:902010. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Berkers J, Govaere O, Wolter P, et al: A
possible role for microRNA-141 down-regulation in sunitinib
resistant metastatic clear cell renal cell carcinoma through
induction of epithelial-to-mesenchymal transition and hypoxia
resistance. J Urol. 189:1930–1938. 2013. View Article : Google Scholar
|
|
101
|
Chen B, Duan L, Yin G, Tan J and Jiang X:
Simultaneously expressed miR-424 and miR-381 synergistically
suppress the proliferation and survival of renal cancer cells -
Cdc2 activity is up-regulated by targeting WEE1. Clinics.
68:825–833. 2013. View Article : Google Scholar
|
|
102
|
Yu G, Li H, Wang J, et al: miRNA-34a
suppresses cell proliferation and metastasis by targeting CD44 in
human renal carcinoma cells. J Urol. May 24–2014.(Epub ahead of
print). View Article : Google Scholar
|
|
103
|
Redova M, Poprach A, Besse A, et al:
MiR-210 expression in tumor tissue and in vitro effects of its
silencing in renal cell carcinoma. Tumour Biol. 34:481–491. 2013.
View Article : Google Scholar
|
|
104
|
Schiffgen M, Schmidt DH, von Rucker A,
Muller SC and Ellinger J: Epigenetic regulation of microRNA
expression in renal cell carcinoma. Biochem Biophys Res Commun.
436:79–84. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Chen B, Duan L, Yin G, Tan J and Jiang X:
miR-381, a novel intrinsic WEE1 inhibitor, sensitizes renal cancer
cells to 5-FU by up-regulation of Cdc2 activities in 786-O. J
Chemother. 25:229–238. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Wang J, He J, Su F, et al: Repression of
ATR pathway by miR-185 enhances radiation-induced apoptosis and
proliferation inhibition. Cell Death Dis. 4:e6992013. View Article : Google Scholar : PubMed/NCBI
|